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Abstract. Stroke is one of the main causes of disease‑related 
mortality worldwide. Buyang Huanwu decoction (BHd) 
has been used to protect against stroke and stroke‑induced 
disability for several years in china. Studies have shown 
that BHd can relieve neuronal damage in rats with cerebral 
ischemia/reperfusion (i/r) injury. However, the mechanism 
remains unclear. a middle cerebral artery occlusion and 
reperfusion (Mcao‑r) model was used in the present study. 
The animals were treated with BHd (5, 10 and 20 g/kg) or 
rapamycin. Infarct size and modified neurological severity 
score were calculated on day 5 following Mcao‑r surgery. 
cellular changes around the ischemic penumbra were 
revealed by hematoxylin and eosin and nissl staining. The 
protein expression levels of nestin, brain‑derived neurotrophic 
factor (BdnF), doublecortin on the X chromosome (dcX) 
and autophagy‑related proteins (beclin 1, lc3‑ii and p62) in 
the peri‑ischemic area of the brain were detected. The results 
demonstrated that post‑surgical treatment with BHd reduced 
the brain infarct size and improved neurological deficits in 
Mcao‑r rats. BHd protected against Mcao‑r‑induced 
neuronal impairment and promoted neurogenesis, increased 

the protein expression of nestin, BdnF and dcX and mark‑
edly enhanced autophagy by increasing beclin 1 and lc3‑ii 
and decreasing p62. Meanwhile, BHd promoted the expres‑
sion of sirtuin 1 (SirT1), an important regulator of autophagy. 
in conclusion, the present study suggested that post‑surgical 
treatment with BHd could protect rat brains from i/r injury, 
potentially through the SirT1/autophagy pathway.

Introduction

in recent years, stroke has become one of the commonest causes 
of mortality worldwide (1,2). Stroke occurs when the blood 
supply to the brain is interrupted or decreased, which prevents 
the brain tissue from receiving oxygen and nutrients (3). in 
total, ~85% of stroke cases are caused by ischemia (4). Stroke 
can impair neural circuits and function (5). it not only disrupts 
the infarct area but also the surrounding peri‑ischemic 
areas (6). The lack of blood flow during stroke leads to neural 
damage, including excitotoxicity, mitochondrial dysfunction, 
calcium overload, oxidative stress, protein misfolding, inflam‑
matory changes and neuronal apoptosis (7,8). at present, 
clinical treatments of stroke in the acute phase mainly include 
thrombolysis, restoration of blood flow in the penumbral area, 
neurotrophic factor administration to protect neurons and 
symptomatic treatment. However, a large number of patients 
with stroke are not suitable for these treatments, due to the 
narrow time window of the acute phase (9,10). in addition, 
short‑term blood flow recovery usually causes more damage 
to the neurons (11,12). Stroke is a medical emergency; there‑
fore, early preventive action to reduce brain damage is crucial. 
However, a limited number of drugs can protect against stroke 
progression. Thus, identifying alternative therapeutic agents is 
necessary.

neurogenesis is the generation of new neurons in the 
brain, which occurs through the division, maturation and 
differentiation of neural stem cells (13). neurogenesis is 
particularly important in stroke, due to the need for the 
replacement of cortical neurons destroyed by stroke by 
new neurons, in order to rebuild neuronal connections (14). 
autophagy, the main degradation pathway, is essential for 
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maintaining cellular homeostasis (15). autophagy primarily 
occurs in peri‑ischemic areas during stroke (16). However, 
the role of autophagy in neuroprotection remains contro‑
versial. certain studies have indicated that the activation of 
autophagy can promote neuroprotection in stroke (17,18), 
while others have reported opposite findings (19). Several 
studies have shown that autophagy serves an important role 
in neurogenesis while a lack of autophagy‑related genes can 
reduce neurogenesis (20,21).

Proteins from the sirtuins (SirT) family can mediate 
autophagy (22). as a type of histone deacetylase, the SirT 
family has become an important regulator of metabo‑
lism and life span, with SirT1 being a critical regulator 
of autophagy (23). SirT1 can regulate the autophagic 
pathway under different conditions (24,25). in addition, 
SirT1 may serve an important role during stroke progres‑
sion.

Buyang Huanwu decoction (BHd) has been used for the 
treatment of stroke in china for several years (26). clinical 
trials have indicated that BHd could ameliorate the outcomes 
of patients who had suffered a stroke (5,27,28). BHd can protect 
against cerebral i/r injury by promoting neurogenesis (29‑31), 
inhibiting neural apoptosis and inflammation (32), promoting 
angiogenesis and improving cerebral circulation (33) in middle 
cerebral artery occlusion and reperfusion (Mcao‑r) rats. 
Multiple components of BHd could ameliorate the negative 
effect of stroke (34). Whether the SirT1/autophagy pathway 
is involved in the protective effect of BHd against stroke 
remains to be elucidated.

in the present study, a rat model of Mcao‑r was used 
to determine the neuroprotective effect of BHd in stroke. in 
addition, it was hypothesized that this effect may be associated 
with the SirT1/autophagy pathway.

Materials and methods

Animals. Male Sprague‑dawley rats (n=60; age, 8 weeks; 
weight, 270‑280 g) were supplied by the experimental 
animal centre of Guangzhou university of chinese 
Medicine (Guangzhou, china). all rats were raised in a 
specific‑pathogen free room under controlled temperature 
(24 ± 1˚C) and humidity (55‑70%) with a 12‑h light‑dark cycle, 
and were given free access to food and water. all experimental 
procedures were carried out according to the guidelines of 
the administrative Panel on laboratory animal care of 
Guangzhou university of chinese Medicine (Guangzhou, 
china). after 1 week of adaptive housing and feeding, animals 
were randomly divided into six groups (n=10 each group): 
i) Sham surgery (control); ii) Mcao‑r surgery (model); 
iii) Mcao‑r + rapamycin (rapa); iv) Mcao‑r + 5 g/kg 
BHd; v) Mcao‑r + 10 g/kg BHd; and vi) Mcao‑r + 20 g/kg 
BHd.

Rat model of MCAO‑R. a transient focal cerebral ischemia 
model (Mcao‑r model) was established as previously 
described (18,35). Briefly, rats were anesthetized with 
4% isoflurane and maintained with 1.5% isoflurane via an 
isoflurane vaporizer (RWD Life Science). A midline neck inci‑
sion was then performed to expose the right common carotid 
artery, external carotid artery (eca) and internal carotid 

artery (ICA). A 4‑0 silicone rubber‑coated nylon monofila‑
ment (cat. no. MSrc43B280PK100; rWd life Science) was 
inserted into the eca and then gently advanced into the 
ica, 18‑19 mm from the carotid bifurcation, to occlude the 
beginning of the MCA. After 2 h of occlusion, the monofila‑
ment was gently removed to restore blood flow. Throughout 
the surgery, the body temperature of all rats was maintained 
at ~37˚C. Rats were anaesthetized by 1% sodium pentobarbital 
(40 mg/kg) and euthanized by cervical dislocation on day 5 
following surgery.

Preparation of BHD. BHd was prepared according to previ‑
ously described and the quality control was also achieved 
(Fig. S1) (36). Brief ly, the powdered sample of BHd 
(143 g) was mixed with Radix astragali, Radix angelicae 
sinensis, Radix paeoniae rubra, Rhizoma ligustici chuanx‑
iong, Flos carthami, Semen persicae and Lumbricus at a 
120:6:5:3:3:3:3 ratio. all ingredients were purchased from 
Guangzhou Zhixin chinese Herbal Medicine co. ltd. 
and verified by the department of Pharmacy, Guangzhou 
university of chinese Medicine. The decoction was made by 
boiling the mixture in 10 times the amount of distilled water 
at 100˚C for 60 min. The drug solution was removed for use 
and the residue was boiled once more. The two solutions were 
combined and concentrated on a rotary evaporator at ~60˚C. 
The concentrated medicinal solution was vacuum‑cooled and 
dried twice to form a powder and dissolved in distilled water 
and the final concentration was 2.0 g/ml (equivalent to the dry 
weight of the raw material).

Drug administration. all groups of rats were treated with an 
intraperitoneal injection of hydroxychloroquine (20 mg/kg; 
cat. no. S4430; Selleck chemicals) 30 min after surgery (37). 
BHd powder and rapa (cat. no. S1039; Selleck chemicals) 
were dissolved with 0.9% saline. at the onset of reperfu‑
sion (38), the treatment groups, including the Mcao‑r + BHd 
and Mcao‑r + rapa groups, were treated with BHd (5, 
10 and 20 g/kg) by gavage and rapa (10 mg/kg) via intraperi‑
toneal injection, respectively.

Neurological scores. The modified neurological severity score, 
which uses different scores to evaluate motor, sensory, reflex 
and balance functions, was used to assess neurological deficits 
on day 5 following surgery, as previously described (39‑41). 
The motor test used a six‑point scale to assess the movement 
and walking ability of the rats (muscle state, abnormal motion 
and tail lifting test). The sensory test used a two‑point scale 
to assess superficial and deep sensations in the rats (vision, 
touch and proprioception). The reflex test used a four‑point 
scale to assess shallow and deep reflection in rats. The balance 
functions test used a six‑point scale to assess the movement 
of rats on the balance beam. The neurological function scores 
ranged between 0‑18 points, and were graded as follows: 
Mild damage (1‑6), moderate damage (7‑12) and severe 
damage (13‑18).

Cerebral infarct size measurement. Following euthanasia, rat 
brains were rapidly sliced using a rat brain matrix (rWd life 
Science) to measure the cerebral infarct size. continuously 
cut 5 sections of each brain tissue, 2 mm each, were made 
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(n=4). The sections were stained with 2, 3, 5‑triphenyltetra‑
zolium hydrochloride (TTc; cat. no. T8877; MilliporeSigma) 
at 37˚C for 15 min (42). Normal tissues stained red and isch‑
emic tissues, white. image‑Pro Plus 6.0 (Media cybernetics, 
inc.) image analysis software was used for image analysis.

Malondialdehyde (MDA), catalase (CAT) and glutathione 
peroxidase (GSH‑PX) expression measurements. The 
tissue of the ischemic hemisphere of the rats was chosen 
for the oxidative stress kit testing (n=3). The brain tissues 
were homogenized with ice‑cold saline and centrifuged 
at 14,000 x g for 10 min at 4˚C. The supernatant was then 
used to detect the levels of caT (cat. no. a007‑1‑1; nanjing 
Jiancheng Bioengineering institute), Mda (cat. no. a003‑1‑2; 
nanjing Jiancheng Bioengineering institute) and GSH‑PX 
(cat. no. a005‑1‑1; nanjing Jiancheng Bioengineering 
institute), according to the manufacturer's instructions. 
absorbance was measured using a microplate reader with the 
wavelength of 532, 405 and 412 nm.

Hematoxylin and eosin (H&E) and Nissl staining. The tissue 
of the ischemic hemisphere of the rats was chosen for H&e 
and nissl staining testing (n=3). Brain paraffin‑embedded 
sections were deparaffinized and rehydrated in xylene and 
gradient alcohol. The sections were then washed in PBS 
(Beyotime institute of Biotechnology) and underwent H&e 
(Beyotime institute of Biotechnology) or nissl (nanjing 
Jiancheng Bioengineering institute) staining for 10 min 
at 37˚C. The sections were then washed with PBS. Images 
were captured using a light microscope (leica Microsystems, 
inc.). image‑Pro Plus 6.0 (Media cybernetics, inc.) software 
was used for image analysis.

Western blot analysis. The tissue of the ischemic hemi‑
sphere of the rats was chosen for western blotting (n=3). 
Brain tissue was homogenized in ice‑cold riPa lysis buffer 
(cat. no. P0013B; Beyotime institute of Biotechnology) and 
centrifuged at 12,000 x g for 10 min at 4˚C. The supernatant 
was then extracted to determine the total protein concentra‑
tion using a bicinchoninic acid protein assay (cat. no. P0012S; 
Beyotime institute of Biotechnology). next, the appropriate 
volume of loading buffer (cat. no. Bl511B; Biosharp life 
Sciences) was added, followed by boiling for 10 min at 100˚C. 
Proteins samples (30 µg per well) were separated using 8, 
10 and 12% SdS‑PaGe gels and transferred onto a PVdF 
(cat. no. iSeQ00010; cat. no. iPVH00010; MilliporeSigma) 
membrane. The membrane was blocked with 5% skimmed 
milk (cat. no. 1172GR500; BioForxx) at 37˚C for 1 h. 
Then, incubated with primary antibodies against SirT1 
(cat. no. ab189494; 1:1,000; abcam), lc3 (cat. no. 2775; 1:1,000; 
cell Signaling Technology, inc.), beclin 1 (cat. no. 3738, 
1:1,000; cell Signaling Technology, inc.), p62 (cat. no. 39749; 
1:1,000; cell Signaling Technology, inc.), doublecortin on the 
X chromosome (dcX; cat. no. ab18723; 1:1,000; abcam), 
β‑actin (cat. no. 58169; 1:1,000; cell Signaling Technology, 
Inc.) at 4˚C overnight and incubated with goat anti‑rabbit 
IgG (cat. no. S0001; 1:3,000; Affinity Biosciences) or goat 
anti‑mouse IgG (S0002; 1:3,000; Affinity Biosciences) at 37˚C 
for 1 h. ecl reagent (cat. no. WBKlS0500; MilliporeSigma) 
was added to the membrane for visualizing the target bands. 

digital images of the blots were visualized using image lab 
3.0 software (Bio‑rad laboratories, inc.).

Immunofluorescence. The tissue of the ischemic hemisphere 
of the rats was chosen for immunofluorescence testing 
(n=3). rat sections (10 µm each) were blocked with 5% BSa 
(Beyotime institute of Biotechnology) and incubated with 
primary antibodies for nestin (cat. no. 4760; 1:300; cell 
Signaling Technology, inc.), lc3 (cat. no. 2775; 1:300; cell 
Signaling Technology, inc.), brain‑derived neurotrophic 
factor (BdnF; cat. no. ab108319; 1:300; abcam) and dcX 
(cat. no. ab18723; 1:300; Abcam) overnight at 4˚C. The 
slices were incubated with fluorescence‑coupled secondary 
antibody, anti‑mouse igG (cat. no. 4408; 1:1,000; cell 
Signaling Technology, inc.), anti‑mouse igG (cat. no. 4409; 
1:1,000; cell Signaling Technology, inc.) or anti‑rabbit igG 
(cat. no. 4412; 1:1,000; cell Signaling Technology, inc.) for 
2 h at 37˚C. Following rinsing, sections were incubated with 
daPi (cat. no. P0131; Beyotime institute of Biotechnology). 
Fluorescence was detected using a laser scanning confocal 
microscope (carl Zeiss aG). image‑Pro Plus 6.0 (Media 
cybernetics, inc.) image analysis software was used for 
image analysis.

Statistical analysis. Statistical analysis was performed using 
SPSS version 17 (SPSS, inc.). data are presented as the 
mean ± standard deviation. one‑way anoVa was applied 
to analyze differences in data for the biochemical parameters 
among the different groups, followed by dunnett's post hoc 
test, and an unpaired Student's t‑test was also used to deter‑
mine statistical differences. P<0.05 was considered to indicate 
a statistically significant difference.

Results

BHD ameliorates infarction and reduces neurological scores 
following MCAO‑R. The design of the present study is shown in 
Fig. 1a. First, the infarct volume was measured. TTc staining 
demonstrated that the infarct volume in the Mcao‑r + BHd 
group was markedly decreased in a dose‑dependent manner 
compared with that in the Mcao‑r group (Fig. 1B and c). 
The neurological scores following Mcao‑r in two BHd 
groups were improved (Fig. 1d), particularly in the 20 g/kg 
BHd group. a dosage of 20 g/kg BHd was selected for the 
next experiments. These data demonstrated that BHd could 
effectively ameliorate infarction and reduce neurological 
scores following Mcao‑r.

BHD relieves neuronal oxidative stress damage following 
MCAO‑R. To determine whether BHd exerted protective 
effects against oxidative stress, the level of Mda and the 
activity of caT and GSH‑PX were detected next (Fig. 2). 
compared with the sham group, the Mda level in the 
MCAO‑R group was significantly increased and the activity 
of caT and GSH‑PX was decreased. However, after the oral 
administration of BHd, the Mda levels in Mcao‑r rats were 
significantly reduced and the activity of CAT and GSH‑PX 
were significantly increased. These data demonstrated that 
BHd could relieve neuronal oxidative stress damage following 
Mcao‑r.
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BHD protects against neuronal death following MCAO‑R. as 
shown in Fig. 3a and B (H&e and nissl staining, respectively), 
large areas of neuronal necrosis were induced by cerebral 

i/r. The Mcao‑r group exhibited extensive neuronal death 
accompanied by the disappearance of cytoplasmic bodies, 
swelling of cell bodies, nuclear condensation and sparse 

Figure 1. BHd alleviates ischemic brain injury. (a) The schematic protocol of surgery for cerebral ischemia‑reperfusion. (B) rats were subjected to 2 h of 
Mcao‑r followed by reperfusion. The cerebral infarct volumes were determined by TTc staining. representative TTc‑stained brain slices from each group 
were shown. Scale bar=8 mm. (C and D) The infarct volumes and neurological deficit scores of each group were determined. The data were expressed as 
means ± standard deviation (n=4). Statistical comparisons were performed with one‑way anoVa followed by dunnett's t‑test. ###P<0.001 vs. sham group; 
*P<0.05, ***P<0.001 vs. Mcao‑r group. BHd, Buyang Huanwu decoction; Mcao‑r, middle cerebral artery occlusion and reperfusion; TTc, 2, 3, 5‑triphe‑
nyltetrazolium hydrochloride.
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nissl bodies. conversely, sham group neurons exhibited clear 
and large cell nuclei and bodies, abundant nissl bodies and 
strong staining. notably, BHd reversed these changes. The 
expression of BdnF (Fig. 3c and d) was further determined 
by immunostaining. Mcao‑r downregulated BdnF expres‑
sion. Post‑surgical treatment of Mcao‑r rats with BHd 
caused a significant increase in BDNF. Collectively, these data 
demonstrated that BHd could protect against neuronal death 
following Mcao‑r.

BHD promotes neurogenesis in MCAO‑R rats. as shown 
in Fig. 4, the expression of dcX, a protein expressed by 
neural precursor cells, was detected using immunostaining 
and western blot analysis. Mcao‑r downregulated dcX. 
Post‑surgical treatment with BHD caused a significant increase 
in dcX expression in Mcao‑r rats. Thus, these results 
supported that BHd promotes neurogenesis in Mcao‑r rats.

BHD activates SIRT1 and autophagy in the cerebral 
peri‑ischemic area of rats following MCAO‑R. in order to 
determine whether the SirT1/autophagy pathway was involved 
in the protective effect of BHd, SirT1 and autophagic markers 
(lc3, p62 and beclin 1) were detected using western blot anal‑
ysis (Fig. 5a‑e). The results demonstrated that the expression 
of SirT1 in the Mcao‑r and Mcao‑r + BHd groups was 
elevated. SIRT1 expression was significantly increased in the 
Mcao‑r + BHd group, compared with that in the Mcao‑r 
group. The expression of lc3‑ii and beclin 1 was increased, 
while that of p62 was slightly decreased in the cerebral 
peri‑ischemic area of rats in the Mcao‑r group. Post‑surgical 
treatment with BHd markedly increased autophagy, when 
compared with the Mcao‑r group. Post‑surgical treatment 
with rapa had a similar effect to that of BHd treatment. in 
addition, the distribution pattern of nestin and lc3 was eluci‑
dated using tissue immunostaining. The expression pattern of 
lc3 was similar to that observed following western blot anal‑
ysis (Fig. 6a‑c). The expression of nestin, a protein marker for 
neural stem cells, was also elevated by BHd. Therefore, these 

data suggested that the neuroprotective effect of BHd might 
be associated with the SirT1/autophagy pathway.

Discussion

in the present study, it was shown that autophagy was acti‑
vated on day 5 following cerebral i/r in vivo and post‑surgical 
treatment with BHd demonstrated similar trends in regulating 
autophagy with those of rapa treatment. Furthermore, the 
present study found that SirT1 was upregulated on day 5 
following Mcao‑r and BHd exacerbated this phenom‑
enon. in addition, BHd treatment increased nestin and dcX 
expression in Mcao‑r rats, suggesting that BHd promoted 
neurogenesis. Therefore, these results demonstrated that BHd 
exerts a neuroprotective effect against stroke and promotes 
neurogenesis, potentially through the activation of the 
SirT1/autophagy pathway.

autophagy, a dynamic process, in which a cell degrades its 
own cytoplasm through a surrounding lysosome and a bilayer 
membrane, fluctuates constantly (43). In the central nervous 
system, moderate autophagy activation may be a manifesta‑
tion of endogenous neuroprotective mechanisms (44). The 
formation of autophagosomes, as a process of cell repair and 
damage limitation following cerebral ischemia, serves a key 
role in neuronal survival (45,46). in china, BHd has been used 
for the clinical treatment of stroke for a number of years. BHd 
protects cerebral ischemia‑injured neurons, blood vessels, 
glial cells and the brain microenvironment through a variety 
of mechanisms (47‑50). in the present study, lc3‑ii and 
beclin 1 expression was found to be significantly increased, 
while p62 expression was found to be decreased, in the 
peri‑ischemic area of rat brains in the Mcao‑r + BHd and 
Mcao‑r + rapa groups, compared with the Mcao‑r group. 
Thus, BHd was shown to activate autophagy in Mcao‑r rats, 
a finding similar to that for Rapa.

oxidative stress is an important pathological mechanism 
of stroke (51). When i/r occurs, a large amount of reac‑
tive oxygen species (roS) is produced (52). Mitochondrial 

Figure 2. BHd reduces oxidative stress after Mcao‑r. The level of (a) Mda and activity of (B) caT and (c) GSH‑PX. data represent mean ± standard 
deviation (n=3). Statistical comparisons were performed with one‑way anoVa followed by dunnett's t‑test. ##P<0.01, ####P<0.0001 vs. sham group; *P<0.05, 
***P<0.001 vs. Mcao‑r group. BHd, Buyang Huanwu decoction; Mcao‑r, middle cerebral artery occlusion and reperfusion; Mda, malondialdehyde; 
caT, catalase; GSH‑PX, glutathione peroxidase; rapa, rapamycin.
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Figure 3. BHd protects against neural death after Mcao‑r. (a) Hematoxylin and eosin staining of the ischemic penumbra. Scale bar=50 µm. The arrow points 
to the cytoplasm and nucleus of neurons of sham group, Mcao‑r group and Mcao‑r + BHd group rats. Sham group neurons demonstrated clear and large 
cell nucleus and bodies. Mcao‑r group neurons demonstrated disappearance of the cytoplasmic bodies, swelling of cell bodies and nuclear condensation. The 
Mcao‑r + BHd group demonstrated neurons clear cell nucleus and bodies. (B) nissl staining of the ischemic penumbra. Scale bar=50 µm. The arrow points 
to the nissl body of sham group, Mcao‑r group and Mcao‑r + BHd group rats. Sham group neurons demonstrated a lot of nissl bodies and deep staining. 
Mcao‑r group neurons demonstrated sparse nissl bodies and weak staining. The Mcao‑r + BHd group demonstrated more nissl bodies and deeper 
staining. (C) Immunofluorescence analysis performed with BDNF antibody (green), nuclei were stained with DAPI (blue). Scale bar=20 µm. (D) The bar 
graph represents the IOD quantification of BDNF. The data are expressed as means ± standard deviation (n=3). Statistical comparisons were performed with 
one‑way anoVa followed by dunnett's post hoc test. ###P<0.001 vs. sham group; *P<0.05, **P<0.01 vs. Mcao‑r group. BHd, Buyang Huanwu decoction; 
Mcao‑r, middle cerebral artery occlusion and reperfusion; BdnF, brain‑derived neurotrophic factor; rapa, rapamycin; iod, integrated optical density.
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dysfunction cannot clear the excessive roS, thus triggering 
further pathological changes, such as calcium overload and 
excitotoxicity (53). There is a negative feedback regulation 
response between roS and autophagy in mitochondria; 

mitochondria‑produced roS can activate autophagy and when 
autophagy is activated, roS is eliminated (54). Mda is an 
important target that reflects the body's anti‑oxidative poten‑
tial and can indirectly reflect tissue peroxidation damage. CAT 

Figure 4. BHD promotes neurogenesis after MCAO‑R. (A) Immunofluorescence analysis performed with DCX positive cells in the subgranular zone of the 
hippocampal dentate gyrus of rats (green), nuclei were stained with DAPI (blue). Scale bar=20 µm. (B and C) Quantification of DCX by western blot. The 
data are expressed as means ± standard deviation (n=3). Statistical comparisons were performed with one‑way anoVa followed by dunnett's t‑test. #P<0.05 
vs. sham group; **P<0.01 vs. Mcao‑r group. BHd, Buyang Huanwu decoction; Mcao‑r, middle cerebral artery occlusion and reperfusion; dcX, double‑
cortin on the X‑chromosome; rapa, rapamycin.



li et al:  BuYanG HuanWu decocTion alleViaTeS STroKe8

and GSH‑PX are two important peroxidases in the body. BHd 
can decrease the Mda level in the ischemic penumbra and 
increase the caT and GSH‑PX levels. Therefore, BHd can 
reduce oxidative stress damage following Mcao‑r, which 
might be associated with the activation of the SirT1/autophagy 
pathway.

neurological deficits, such as hemiplegia and sensory 
disturbances, are the most common sequelae after stroke (55). 
apoptosis is a process of programmed cell death, which is 
activated following cerebral ischemia injury and the produc‑
tion of roS and inflammation during reperfusion (56). 
autophagy and apoptosis both a form of cell self‑regulation 
and the association between them is complex. Studies have 
shown that the inhibition of autophagy may lead to a shortage 
of bioenergy, thereby triggering cell apoptosis (57,58). BdnF, 
a critical growth factor, has been shown to promote neuronal 
survival and regulate different neuronal functions (42). BHd 
significantly ameliorated neurological deficit and the level 
of brain damage in rats after Mcao‑r. in the present study, 

following Mcao‑r, extensive neuronal death was observed, 
which was accompanied by the disappearance of cytoplasmic 
bodies, swelling of cell bodies, nuclear condensation and 
sparse nissl bodies, whereas sham group neurons exhibited 
clear and large cell nuclei and nissl bodies. However, treatment 
with BHD reversed these changes. The immunofluorescence 
results demonstrated that MCAO‑R significantly decreased 
the expression of BdnF, whereas post‑surgical treatment with 
BHd could markedly increase it compared with the Mcao‑r 
group. Thus, BHd could protect neurons against Mcao‑r, 
which may have been associated with the activation of the 
SirT1/autophagy pathway.

neurogenesis is hypothesized to be restricted to embryonic 
development, ceasing after birth. However, adult neurogenesis 
has been detected to occur throughout the lifetime of various 
mammals (59). adult neural stem cells in the subventricular 
zone of the lateral ventricle and the dentate gyrus of the 
hippocampus can be activated following stroke, to then 
proliferate and produce neuroblasts for the repair of damaged 

Figure 5. BHd activates SirT1/autophagy of rat cerebral peri‑ischemic area following Mcao‑r. (a) Western blots of lc3, beclin1, P62, SirT1 in BHd‑treated 
Mcao‑r rats. (B‑e) Quantitative analysis of the immunoblotted proteins was performed with image J. Statistical comparisons were carried out with anoVa 
followed by Tukey's test. data are presented as means ± standard deviation (n=3). #P<0.05 vs. sham group; *P<0.05, **P<0.01, ***P<0.001 vs Mcao‑r group. 
BHd, Buyang Huanwu decoction; SirT, sirtuin; Mcao‑r, middle cerebral artery occlusion and reperfusion; rapa, rapamycin.
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neurons (60,61). a number of studies have investigated the 
role of autophagy in embryonic and adult neural stem cells. 
in the adult mammalian brain, the most studied neural stem 
cells, such as those located in the subventricular zone of the 
lateral ventricle and the subgranular zone of the hippocampal 
dentate gyrus, are located in a relatively hypoxic environment, 

which is a necessary condition for stem cells (62,63). Through 
autophagy, a low level of roS appears to be maintained, to 
ensure the slow circulation of neural stem cells (64). dcX 
is a microtubule and actin filament‑associated protein (65). 
due to its specific expression in neural precursors and 
newly generated immature neurons in several regions of the 

Figure 6. The BHd‑induced neuroprotection is correlated with enhancement of autophagy. (a) The distribution of colocalization of nestin with the lc3 
following MCAO‑R in rat cerebral peri‑ischemic area. Immunofluorescence images showing the colocalization of nestin (red) with LC3 (green). Nuclei 
were stained with DAPI (blue). Scale bar=20 µm. The immunofluorescence intensity of (B) nestin and (C) LC3. The data are expressed as means ± standard 
deviation (n=3). Statistical comparisons were performed with one‑way anoVa followed by dunnett's post hoc test. #P<0.05, ##P<0.01, ###P<0.001 vs. sham 
group; *P<0.05, **P<0.01, ***P<0.001 vs. Mcao‑r group. BHd, Buyang Huanwu decoction; SirT, sirtuin; Mcao‑r, middle cerebral artery occlusion and 
reperfusion; rapa, rapamycin.
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brain, DCX is used as a specific marker to assess potential 
neurogenesis in the adult brain (66,67). nestin is expressed 
in neural stem and progenitor cells, which may participate in 
neurogenesis following stroke (18,68). Several studies have 
shown that BHd can induce neurogenesis during the occur‑
rence of stroke (30,69). in the present study, the expression of 
dcX in the Mcao‑r + BHd group was increased compared 
with the Mcao‑r group. These data demonstrated that the 
neuroprotective effect of BHd may be related to neurogenesis 
and autophagy. a double stain of a protein marker for neural 
stem cell (nestin) and autophagy‑related protein (lc3) were 
performed to illustrate whether the neurogenesis of BHd is 
related to its regulation of autophagy. confocal microscopy 
demonstrated that nestin and lc3 isoforms were located in 
living post‑ischemic cells. These data provided evidence to 
suggest that BHd increased neurogenesis in the peri‑ischemic 
area of rat brains on day 5 following Mcao‑r, which might 
be associated with the activation of the SirT1/autophagy 
pathway. SirT1, a nicotinamide adenine dinucleotide‑posi‑
tive‑dependent deacetylase, is a well‑known modulator of 
aging (70). SIRT1 has been shown to exert anti‑inflammatory, 
anti‑apoptotic and anti‑oxidative effects, promote dna repair, 
maintain energy metabolism and regulate autophagy following 
the occurrence of stroke (71). SirT1 can interact with several 
essential components of autophagy (22). Furthermore, research 
has shown that SirT1 protects the brain during stroke, poten‑
tially through the activation of autophagy pathways (72). in the 
present study, BHd was proven to elevate SirT1 expression, 
which may be an upstream autophagic protein.

in conclusion, the present study found that BHd may 
exert a neuroprotective effect and promote neurogenesis in 
Mcao‑r rats by regulating the SirT1/autophagy pathway in 
the peri‑ischemic area of the brain. The findings of this study 
suggest that BHd may be a promising treatment for stroke, 
and that the SirT1/autophagy pathway serves as a potential 
target for future therapies. However, the main limitation of 
this experiment is that the association between BHd and 
SirT1/autophagy was not examined in‑depth.
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