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Abstract. Ischemic heart disease is one of the major causes of 
cardiovascular‑related mortality worldwide. Myocardial isch‑
emia can be attenuated by reperfusion that restores the blood 
supply. However, injuries occur during blood flow restoration 
that induce cardiac dysfunction, which is known as myocardial 
ischemia‑reperfusion injury (MIRI). Hydrogen sulfide (H2S), 
the third discovered endogenous gasotransmitter in mammals 
(after NO and CO), participates in various pathophysiological 
processes. Previous in vitro and in vivo research have revealed 
the protective role of H2S in the cardiovascular system that 
render it useful in the protection of the myocardium against 
MIRI. The cardioprotective effects of H2S in attenuating 
MIRI are summarized in the present review.
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1. Introduction

Cardiovascular diseases  (CVD) contribute to a high 
morbidity and mortality burden globally  (1). In  2019, the 
number of patients with CVD was ~523 and ~18.6 million 
cases succumbed to CVD  (2). Myocardial ischemia is a 
common clinical symptom resulting from atherosclerosis and 
myocardial infarction (3). Reperfusion is often used to repair 

myocardial structure damage and improve cardiac function 
following ischemia. However, reperfusion may also result 
in myocardial ischemia‑reperfusion injury  (MIRI), which 
aggravates cardiac dysfunction. Therapeutic strategies, such 
as preconditioning, postconditioning and administration of 
antiplatelet or antithrombotic agents, have been utilized to 
alleviate MIRI (4).

Hydrogen sulfide  (H2S), the third discovered gaseous 
signaling molecule (after NO and CO), has been extensively 
studied in recent years (5). H2S was traditionally acknowledged 
as an environmental toxicant, however, it has recently gained 
significance as an endogenous‑generated biological transmitter 
in mammal tissues  (6). Multiple studies have revealed the 
physiological and pathological roles of H2S in the onset and 
progression of cardiac diseases (7,8). Thus, H2S is considered 
to be a potential treatment for MIRI. The present review has 
summarized the protective effects of H2S against MIRI.

2. Pathophysiological mechanism of MIRI

Oxidative stress. Oxygen homeostasis plays a vital role in 
the maintenance of physiological functions. Reactive oxygen 
species (ROS) are generated during the normal metabolism 
of oxygen and participate in signal transduction. ROS are then 
scavenged by various endogenous free radical scavenging 
enzymes, such as superoxide dismutase  (SOD), catalase, 
glutathione peroxidase and thioredoxin (9). However, over‑
production of ROS or insufficient enzyme activity may impair 
the equilibrium between ROS and antioxidants, resulting in 
damage to proteins, DNA and lipids (10). SOD1 knockout mice 
were shown to have excessive oxidative stress and aggravated 
myocardial injuries following acute myocardial ischemia (11). 
Moreover, excessive ROS impairs heart contraction by modi‑
fying excitation‑contraction coupling proteins. Excessive ROS 
also activates various signaling kinases and transcription 
factors associated with myocardial hypertrophy. In addition, 
the proliferation of cardiac fibroblast and the activity of MMP 
are promoted by ROS (12,13).

Mitochondrial function. The mitochondria are the main 
source of ROS production. ROS are generated in the elec‑
tron transport chain  (ETC) located on the mitochondrial 
membrane during the process of ATP production, namely 
oxidative phosphorylation. Electrons are then transported 
by a train of proteins known as the mitochondrial complex 
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via oxidation‑reduction reactions and combine with oxygen 
molecules to produce water. During this process, some oxygen 
molecules are reduced to form ROS (14).

Mitochondria may also act as a target of ROS damage. 
During the early process of reperfusion, the excessive ROS 
generated may induce oxidative stress, leading to the abnormal 
opening of the mitochondrial permeability transition 
pore (mPTP). Opening of the mPTP leads to mitochondrial 
Ca2+ overload, usually accompanied by oxidative or nitrosa‑
tive stress and ATP depletion. Abnormal opening of mPTP 
also causes loss of mitochondrial membrane potential (15), 
respiratory chain uncoupling and impaired ATP synthesis. 
The impaired mitochondrial function results in mitochon‑
drial swelling, rupture and cell apoptosis or necrosis (16,17). 
Mitochondria morphological changes observed during a MIRI 
in rat myocardial tissues mainly manifest as mitochondrial 
cristae and membrane damage, disordered fiber arrangement 
and larger perinuclear space (18). Furthermore, inhibition of 
mPTP opening using pharmaceutical agents, such as cyclospo‑
rine A, has been shown to reduce myocardial infarct size in 
acute ischemia‑reperfusion injury (IRI) animals (19).

Autophagy. Autophagy plays a key role in cell survival by 
transferring damaged proteins and organelles to lysosomes for 
degradation. However, the autophagy process is controversial 
in MIRI. Autophagy is activated via the AMP‑activated protein 
kinase pathway during ischemia to promote cell survival. 
However, during reperfusion, autophagy exerts a harmful role 
via Beclin activation (20). Loos et al (21) observed the activa‑
tion of autophagy in mild ischemia. However, severe ischemia 
did not activate autophagy. This demonstrates that autophagy 
induction is closely associated with the degree of MIRI.

Reperfusion injury salvage kinase  (RISK) pathway. 
Ischemic‑induced apoptosis (cell death) is accelerated by reper‑
fusion (3). Thus, anti‑apoptotic mechanisms may be exploited 
as potential methods to decrease reperfusion‑induced cell 
death. Reperfusion can activate several anti‑apoptotic path‑
ways in the RISK pathway, including PI3K/Akt and ERK1/2 
pathways, that regulate cell survival (22). Protein kinase C, 
protein kinase G and GSK‑3β are also regarded as members 
of the RISK pathway (23). Type 2 diabetes has been shown to 
impair nuclear factor‑erythroid factor 2‑related factor 2 (Nrf2) 
signaling via BTB domain and CNC homolog  1  (Bach1), 
thereby blocking the binding of Nrf2 to the heme oxygenase‑1 
promoter. Moreover, db/db diabetic mice treated with Na2S for 
7 days was shown to overcome this impairment by removing 
Bach1 from the nucleus in an ERK1/2‑dependent manner (24).

3. Characteristics of H2S

Generation and metabolism of endogenous H2S in mammals. 
Endogenous H2S is produced via enzymatic or nonen‑
zymatic pathways in mammalian tissues. Cystathionine 
β‑synthase  (CBS) and cystathionine γ‑lyase  (CSE) are 
pyridoxal‑5'‑phosphate‑dependent enzymes expressed in 
the cytosol that synthesize H2S using L‑cysteine or homo‑
cysteine as substrates (25). H2S may also be synthesized in 
a catalytic reaction by 3‑mercaptopyruvate sulfurtrans‑
ferase (3‑MST), involving α‑ketoglutarate (25). These three 

enzymes are tissue‑specific. CSE is mainly located in the 
kidney, liver, heart and vessels (26). CBS is found in neurons 
and astrocytes of the central nervous system, while 3‑MST 
is mainly expressed in the liver, kidney, brain and heart 
(Fig. 1) (27). The concentration of H2S varies in tissues, with 
the highest concentration observed in the heart (28‑31). Fig. 2 
shows the concentration of H2S in tissues and plasma in mice.

In mammals, there are three main catabolic pathways 
of H2S: i) H2S is oxidized to thiosulfate catalyzed by mito‑
chondrial thioquinone oxidoreductase, S‑dioxygenase and 
S‑transferase. The thiosulfate is then catalyzed by cyanide 
thioltransferase to sulfite, which is then oxidized by sulfite 
oxidase to sulfate; ii) H2S generates methyl mercaptan and 
dimethyl sulfide in a reaction catalyzed by cytoplasmic 
thiol S‑methyltransferase; and iii)  H2S interacts with 
methemoglobin to produce thiolhemoglobin (Fig. 1) (25).

H2S donors and inhibitors of H2S synthetic pathways. Various 
H2S donors have been employed for elucidating the physiolog‑
ical and pathological role of H2S. These donors are divided into 
the following categories: Inorganic salts, sulfur‑containing 
organic compounds and derivatives of Allium  sativum 
extracts (32). The H2S releasing mechanisms and protective 
effects of typical donors are summarized in Table I.

The most widely‑used H2S donors are sulfur‑containing 
inorganic salts that release H2S rapidly in large amounts. The 
utilization of sulfur‑containing inorganic salts in research may 
be limited by the superphysiological concentration of H2S (32). 
Morpholin‑4‑ium 4‑methoxyphenyl‑morpholino‑phosphi‑
nodithioate  (GYY4137) was synthesized to overcome this 
challenge (39). GYY4137 achieves lower concentrations of 
H2S, which can be maintained for longer period with improved 
efficacy and reduced cytotoxicity.

Researchers have also synthesized derivatives of natu‑
rally occurring sulfur‑containing organic compounds, such 
as S‑propargyl‑cysteine, S‑allycysteine and diallyl sulfide, 
to improve the effectiveness of the H2S donors. In contrast 
to conventional H2S donors that release H2S directly, 
Allium sativum extract derivatives increase the levels of H2S 
by increasing the expression and activity of CSE and CBS. 
This is advantageous as the levels of H2S are controlled and, 
thus, have a lower risk of toxicity.

Szczesny et al (46) reported a novel H2S donor, AP39, 
[(10‑oxo‑10‑(4‑(3‑thioxo‑3H‑1,2‑dithiol‑5yl)phenoxy)decyl) 
triphenylphosphonium bromide] that had a preferential 
response in the mitochondrial regions, as triphenylphos‑
phonium tends to accumulate in mitochondria. Exposure of 
cells to different concentrations of AP39 (30‑300 nmol/l) 
revealed that the effect of AP39 on mitochondrial activity 
was dependent on the concentration of H2S. It was shown 
that lower concentrations (30‑100 nmol/l) promoted mito‑
chondrial electron transport and cellular bioenergetic 
functions. By contrast, higher concentrations (300 nmol/l) 
had an inhibitory role. Thus, the antioxidant and cytoprotec‑
tive effects of AP39 against oxidative mitochondrial DNA 
damage have been reported.

Inhibitors blocking H2S synthesis enzymes have also 
been examined. In colon cancer cells, CBS inhibitor 
aminooxyacetic acid  (AOAA) can reduce tumor growth 
dose‑dependently (47). However, the effect of CSE inhibitor D, 
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L‑propynylglycine  (PAG) on myocardial injury remains 
controversial. In acute myocardial infarction and heart failure 
animal models, PAG could upregulated oxidative stress and 
apoptosis by suppressing H2S generation (8,48). Nevertheless, 
PAG administration can exacerbated acute lung inflammation 
in a rat model (49). 

4. Role of H2S in the cardiovascular system 

Physiological role of H2S in the cardiovascular system. H2S 
has a dual biological effect in mammals. High concentrations 
of H2S exert pathological and toxicological effects, such as 
inhibition of cellular bioenergetics, pro‑oxidant effects, geno‑
toxicity, proinflammatory effects and promotion of cell death. 
By contrast, low H2S concentrations stimulate mitochondrial 
electron transport, suppress inflammation, promote physi‑
ological vasodilatation, stimulate angiogenesis and inhibit 
oxidative stress, which are beneficial to cell survival (50).

Therapeutic role of H2S in the cardiovascular system. In 
recent years, the protective role of H2S in the cardiovascular 
system has been confirmed. The cardioprotective effects of 
H2S and the possible mechanism are summarized in Table II. 
These studies have revealed that multiple signaling pathways 
are involved in the therapeutic effects of H2S in cardiovascular 
system (6,51‑67). Notably, S‑sulfhydration may be the core 
mechanism of H2S in mediating protein function and regulating 
pathophysiological processes of the cardiovascular system.

5. Protective effects of H2S in MIRI

During MIRI, the plasma level of H2S and activity of CSE in 
the myocardium are decreased, leading to a further reduction 

in H2S synthesis. However, the mRNA expression level of 
CSE is enhanced following reperfusion, which contributes 
to positive feedback following the depressed H2S level (68). 
CSE knockout mice were observed to have lower levels of 
H2S in the blood and heart, followed by exacerbated oxidative 
stress and severe MIRI (69). Furthermore, acute H2S therapy 
significantly reduces myocardial infarct size per area‑at‑risk 
and lowers the plasma level of troponin‑I in myocardial I/R 
mice  (69). A meta‑analysis reported that preconditioning 
with H2S in vivo significantly decreases the infarct size by 
20.25% (95% CI 25.02; 15.47), while postconditioning with 
H2S notably reduced the infarct size by 21.61%  (95%  CI 
24.17; 19.05) (70). In vivo results have shown that pretreat‑
ment with H2S before MIRI resulted in improved myocardial 
function, ameliorated coronary microvascular reactivity and 
reduced infarct size (67). Apolipoprotein E knockout mice 
were also revealed to have enhanced plaque stability and blood 
lipid levels and reduced plaque formation when treated with 
NaHS compared with vehicle‑treated controls (71).

H2S inhibits oxidative stress. Administration of H2S 
restores cardiac function and enhances antioxidant function. 
Sun et al (72) compared the effects of diallyl trisulfide‑meso‑
porous silica nanoparticles (DATS‑MSN), a long‑term and 
slow‑releasing H2S donor, with two classical donors NaHS 
and GYY4137. The results of this study demonstrated that 
these three donors preserved the levels of glutathione and the 
activities of SOD and catalase, while DATS‑MSN had the 
highest antioxidant effects. This result may be attributed to 
the slow‑release and long‑term H2S effects of DATS‑MSN, 
which mimic the generation and function of endogenous 
H2S. It was shown that treatment with GYY4137 for 7 days 
before ischemia and reperfusion decreased the serum levels of 
malondialdehyde and myeloperoxidase, as well as suppressed 
superoxide anion levels and phosphorylation of MAPKs in 
the myocardium (68). In a Yorkshire swine model of mid‑left 
anterior descending coronary artery, sulfide treatment before 
and throughout reperfusion decreased myeloperoxidase and 
inflammation, thereby improving myocardial function and 
conferring protection against MIRI (67).

NaHS (10  µmol/l) postconditioning was revealed to 
decrease the myocardial infarct size of isolated rat hearts 
and inhibit oxidative stress by stimulating SOD activity 
and reducing malondialdehyde levels via the activation of 
the sirtuin1/peroxisome proliferator‑activated receptor‑γ 
coactivator‑1α pathway in an ex vivo study (73). 

On the contrary, AP39 exhibited antioxidative effects via 
ROS generation rather than scavenging. The alleviation of 
myocardial infarction induced by AP39 during MIRI partly 
arose from reduced production of ROS in interfibrillar and 
subsarcolemmal mitochondria of cardiomyocytes, which were 
dose‑dependent (Fig. 3) (74).

H2S improves mitochondrial function. The cardioprotective 
effects mediated by exogenous NaHS depend on mitochondrial 
ETC enzymes. Hemodynamic parameters and mitochondrial 
ETC functional assessment revealed that the cardioprotective 
effects of H2S require active mitochondria (75). Following 
MIRI, mouse hearts showed mitochondrial swelling, disor‑
ganized cristae and lower matrix density. However, treatment 

Figure 1. Biogenesis and metabolism of H2S in mammals. L‑cysteine or 
homocysteine can be catalyzed by CBS, CSE and 3‑MST to produce H2S. 
Sulfide is oxidized into methyl mercaptan, dimethyl sulfide, thiosulfate and 
thiolhemoglobin. CBS, cystathionine β‑synthase; CSE, cystathionine γ‑lyase; 
3‑MST, 3‑mercaptopyruvate sulfurtransferase; H2S, hydrogen sulfide.
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with H2S during reperfusion resulted in significantly improved 
mitochondrial structure, stimulated mitochondrial respiration 

and oxygen consumption (76). Karwi et al (74) reported that 
AP39 inhibited ROS generation and mPTP opening during 

Figure 2. Concentrations of H2S in plasma and tissues in mice. H2S, hydrogen sulfide.

Table I. Mechanism and protective effects of H2S‑releasing compounds.

	 Typical	 H2S‑releasing
Donor type	 donor name	 mechanism	 Protective effects

Inorganic salts	 NaHS	 Hydrolysis	 Stimulating ROS scavenging (33)
	 Na2S		  Inhibiting ROS production (34)
	 CaS		  Anti‑inflammation (35)
			   Vasodilation (36)
			   Promoting angiogenesis (37)
Sulfur‑containing organic compound	 GYY4137	 Hydrolysis	 Protecting mitochondria (38)
			   Vasodilation (39)
			   Anti‑inflammation (40)
			   Anti‑oxidative stress (41)
Derivative of allium sativum extract	 SPRC	 H2S generation enzyme	 Anti‑apoptosis (42)
	 S‑allycysteine		  Inhibiting ROS production (42)
	 Diallyl sulfide	 Glutathione	 Anti‑inflammation (43)
			   Promoting angiogenesis (44)
Mitochondria‑targeting compound	 AP39	 Hydrolysis	 Protection against mitochondrial
			   DNA oxidative damage (45)

ROS, reactive oxygen species; SPRC, S‑propargyl‑cysteine; H2S, hydrogen sulfide.
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MIRI. However, inhibition of the PI3K/Akt pathway, endo‑
thelial nitric oxide (NO) synthase (eNOS) or soluble guanylyl 
cyclase did not reverse the protective effects of AP39. Further 
research is required to investigate the association of these 
effects to post‑translation modifications mediated by H2S and 
the interaction with NO in mitochondria. 

H2S also leads to mitochondrial ATP‑sensitive K+ (KATP) 
channel opening. Ji et al  (77) reported that treatment with 
NaHS before reperfusion resulted in the reduction of infarct 
size and inhibited creatine kinase release in isolated rat hearts. 
However, these observations were shown to be reversed by 
KATP channel blockers (glibenclamide or 5‑hydroxydecanoate). 
Moreover, novel H2S‑donor 4‑carboxyphenyl isothiocyanate 
was reported to activate the mitochondrial KATP channel and 
partially depolarize the mitochondrial membrane potential 
(Fig. 3) (78).

H2S regulates the RISK pathway. The RISK pathway, acti‑
vated at the onset of reperfusion, can be regulated by H2S, 
thereby protecting against MIRI. In primary cultures of 
neonatal cardiomyocyte damage induced by hypoxia/reoxy‑
genation (H/R), NaHS was shown to reduce apoptosis in a 
dose‑dependent manner. Furthermore, H2S inhibits mPTP 

opening at a concentration of 30 µmol/l by increasing the 
phosphorylation of GSK‑3β at Ser9 (78). H2S administration 
was not shown to inhibit mPTP opening in isolated mito‑
chondria owing to the lack of intracellular signaling elements, 
such as GSK‑3β (79). In db/db diabetic mice, which are at 
an increased risk of MIRI, Na2S therapy administered at the 
time of reperfusion activated the ERK1/2 pathway, thereby 
increasing anti‑apoptotic proteins and inhibiting the activation 
of GSK3β (79). Na2S also significantly reduced the infarct 
size and circulating troponin‑I levels in an ERK1/2‑dependent 
manner (80).

Kelch‑like ECH‑associated protein‑1 (Keap‑1)/Nrf2/anti‑
oxidant response elements (ARE) pathway is a primary pathway 
involved in the cellular defense against oxidative stress. In 
response to oxidative stress, H2S dissociates Nrf2 from 
Keap1  (81). During early preconditioning, H2S promotes 
the nuclear translocalization of Nrf2 and increases the 
phosphorylation of protein kinase C epsilon and STAT‑3. 
Moreover, H2S increases the expression of heme oxygenase‑1 
and thioredoxin  1 during late preconditioning  (82). As 
a result of Nrf2 nuclear translocation, ARE is activated 
and enhances the transcription of SOD, catalase and heme 
oxygenase‑1  (83). PH  domain leucine‑rich repeat protein 

Figure 3. Cardioprotective effect of H2S during MIRI are exerted by inhibiting oxidative stress and improving mitochondrial function. H2S promotes PI3K, 
Keap‑1 and SIRT1 activity, inhibits PHLPP‑1 activity respectively. Increase of PI3K and decrease of PHLPP‑1 can activate Akt and then promote GSK‑3β 
to inhibit mPTP opening, which can decrease Cyt‑c release from mitochondria to cytosol and inhibit apoptosis. Keap‑1 can activate Nrf2, ARE and SOD, to 
suppress oxidative stress. Increase of SIRT1 can promote PGC‑1α and SOD, and further inhibit oxidative stress. ARE, antioxidant response elements; Cyt‑c, 
cytochrome c; HO‑1, heme oxygenase‑1; Keap‑1, Kelch‑like ECH‑associated protein‑1; Nrf2, nuclear factor erythroid 2‑related factor 2; mPTP, mitochon‑
drial permeability transition pore; PGC‑1α, peroxisome proliferator‑activated receptor γ coactivator‑1; PHLPP‑1, PH domain leucine‑rich repeat protein 
phosphatase‑1; SIRT1, sirtuin1; SOD, superoxide dismutase; H2S, hydrogen sulfide.
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phosphatase‑1 (PHLPP‑1) has recently been shown to dephos‑
phorylate Akt at Ser473, which increases infarct size and 
aggravates MIRI (84,85). During MIRI, the levels of cardiac 
malondialdehyde are increased, while the expression levels of 
SOD and heme oxygenase‑1 are downregulated. Pretreatment 
with GYY4137 was shown to reverse the oxidative stress 
induced by MIRI. GYY4137 also increased the protein 
expression levels of Akt and Nrf2 by downregulating the 
level of PHLPP‑1. Thus, the antioxidant effect of H2S in MIRI 
partly depended on the PHLPP‑1/Akt/Nrf2 pathway  (41). 
PI3K, an upstream factor of Akt, is considered an important 
molecule in the underlying mechanism of H2S protection 
against ischemia‑reperfusion. The PI3K/Akt/Nrf2 pathway 
has been reported to play a major role in alleviating cerebral 
ischemia‑reperfusion injury  (86). However, to the best of 
our knowledge, this mechanism has not been reported in the 
cardiovascular system.

H2S regulates microRNA (miRNA/miR). Several studies have 
reported that the expression of miRNA is influenced by H2S in 
MIRI (Fig. 4). In cardiomyocytes of neonatal rats, H/R injury 
was shown to promote the expression of miR‑1. The expres‑
sion of histone deacetylase 4 (HDAC4) was also observed 
to be decreased (at mRNA and protein levels) during H/R. 
Preconditioning with H2S treatment downregulated miR‑1, 

increased HDAC4 expression and reduced caspase‑3 cleavage 
and release of lactate dehydrogenase. However, a study showing 
that the protective effects of H2S could be partially reversed 
by transfection of cardiomyocytes with miR‑1 mimic, demon‑
strates that H2S protected neonatal rat cardiomyocytes from 
apoptosis and enhanced cell viability via the miR‑1/HDAC4 
signaling pathway (87).

H2S reduced the activity of caspase‑1, as well as the forma‑
tion and activity of inflammasome in a miR‑21‑dependent 
manner. Caspase‑1 is an effector enzyme of the inflammasome 
that is mainly responsible for the processing and release of 
IL‑1β and IL‑18 (88). Na2S administration was demonstrated 
to inhibit apoptosis or necrosis in cardiomyocytes in in vitro 
studies and reduce infarct size following MIRI in vivo by 
activating miR‑21  (89). A potential target of interaction 
between miR‑21 and Toll‑like receptor‑4 exists. For instance, 
in lipopolysaccharide‑induced acute lung injury, miR‑21 was 
shown to negatively regulate inflammatory responses via the 
Toll‑like receptor‑4 and NF‑κB signaling pathway (90). In 
addition, miR‑21 activates the PI3K/Akt signaling pathway 
to participate in rheumatoid arthritis by inhibiting PTEN 
expression (91). miR‑21 was also shown to reduce p38 MAPK 
protein expression, which inhibits activation of caspase‑3 via 
PTEN/Akt (92). However, the involvement of these mechanisms 
in the protection against MIRI by H2S requires further study.

Figure 4. Cardioprotective effects of H2S during MIRI are exerted by regulating miRNA. H2S can increase miR‑21 expression to inhibit inflammasome 
production and suppress inflammation through TLR‑4/NF‑κB pathway. Moreover, increase of miR‑21 can decrease apoptosis level through PTEN/PI3K/Akt 
pathway. As well as miR‑21, miR‑133a expression can be increased by H2S. miR‑133a increases Bcl‑2 level and decreases Apaf‑1 and Bax level, resulting in the 
suppression of apoptosis. miR‑133a can also decrease CHOP, HSPA5 and eIF2α level to inhibit ER stress. H2S can also inhibit miR‑1 expression to enhance 
HDAC‑4 level and suppress apoptosis. Apaf‑1, apoptotic peptidase activating factor‑1; ER stress, endoplasmic reticulum stress; HDAC4, histone deacetylase 4; 
TLR‑4, Toll‑like receptor‑4; H2S, hydrogen sulfide; miRNA/miR, microRNA; eIF2α, eukaryotic initiation factor‑2α; HSPA5, heat shock protein family A 
(Hsp70) member 5.
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Endoplasmic reticulum  (ER) stress is activated to 
protect cells when they are exposed to hypoxia. However, 
sustained activation of ER stress causes apoptosis  (93). 
Ren et al (94) reported that the expression levels of ER stress 
biomarkers,heat shock protein family A (Hsp70) member 5, 
CHOP and eukaryotic initiation factor‑2α, were significantly 
increased during ischemia/reperfusion. However, in vitro and 
in vivo results revealed that pretreatment with H2S alleviated 
ER stress and subsequent apoptosis via the miR‑133a signaling 
pathway by reversing the cardiomyocyte trauma induced by 
MIRI. The combination of H2S intervention and miR‑133a 
overexpression notably increased the proliferation, migration 
and invasion of cardiomyocytes. miR‑133a was also observed 
to promote anti‑apoptotic protein Bcl‑2 expression and inhibit 
pro‑apoptotic protein Bax, caspase‑3, caspase‑9 and apop‑
totic peptidase activating factor‑1 expression. Consequently, 
decreasing apoptosis in the cardiomyocytes (95,96).

Crosstalk between H2S and NO. Accumulating evidence 
has revealed that there is a crosstalk between H2S and NO. 
CSE knockout mice showed a reduction in NO levels due to 
decreased eNOS expression. Acute treatment with H2S in CSE 
knockout mice was found to increase NO bioavailability and 
restore eNOS protein expression, which consequently attenu‑
ated oxidative stress and MIRI (69). In another in vivo study, 
H2S, donated by diallyl trisulfide, activated eNOS protein 
expression and NO metabolites, reduced infarct size and 
restored myocardial contractile function (97). H2S was also 
confirmed to attenuate cardiac arrest‑induced mitochondrial 
injury and cell death in cardiopulmonary resuscitation in 
mice (98). These protective effects are conferred by increasing 
phosphorylation of eNOS in the left ventricle and increasing 
serum nitrite/nitrate levels (98). However, further research is 
required to confirm the protective role of H2S in MIRI.

S‑sulfhydration. In recent years, increased attention has been 
paid to S‑sulfhydration, a post‑translational modification 
between H2S and cysteine residues of proteins that modifies 
the structure and biological activities of protein targets (99). 
Pharmacological postconditioning performed at the onset of 
reperfusion with NaHS significantly increased S‑nitrosylation 
of cardioprotective proteins, as well as reduced post‑ischemic 
contractile dysfunction and infarct size  (100). However, 
the S‑sulfhydration of proteins in MIRI has not been fully 
studied. H2S was reported to S‑sulfhydrate Keap1 in response 
to oxidative stress, thereby mediating the dissociation of Nrf2 
from Keap1, and as a result, promoting Nrf2 translocation in 
sulfur mustard‑induced lung injury (81). A similar mechanism 
was confirmed in diabetic mice, wherein, H2S attenuated 
diabetes‑accelerated atherosclerosis by S‑sulfhydrating Keap1 
at Cys151, resulting in activation of Nrf2 signaling (51). These 
mechanisms may contribute to the potential role of H2S in 
MIRI.

6. Conclusions

In summary, H2S plays a vital protective role in attenuating 
MIRI via mechanisms, such as attenuation of oxidative stress, 
restoration of mitochondrial function, regulation of miRNA, 
interaction with NO and S‑sulfhydration. However, while 

these effects have been demonstrated in cellular and animal 
models, they have not been replicated in humans, to the best 
of our knowledge. Therefore, the transition of H2S from bench 
to bedside is necessary. Off‑target effects of H2S may result in 
unexpected adverse reactions, including irreversible damage. 
Therefore, future research should focus on maximizing the 
potential benefits of H2S in cardioprotection in MIRI, while 
minimizing the unwanted side effects. 
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