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Abstract. Nitric oxide, carbon monoxide and hydrogen sulfide
are three endogenous gasotransmitters that serve a role in
regulating normal and pathological cellular activities. They
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can stimulate or inhibit cancer cell proliferation and invasion,
as well as interfere with cancer cell responses to drug treat-
ments. Understanding the molecular pathways governing the
interactions between these gases and the tumor microenviron-
ment can be utilized for the identification of a novel technique
to disrupt cancer cell interactions and may contribute to the
conception of effective and safe cancer therapy strategies.
The present review discusses the effects of these gases in
modulating the action of chemotherapies, as well as prospec-
tive pharmacological and therapeutic interfering approaches.
A deeper knowledge of the mechanisms that underpin the
cellular and pharmacological effects, as well as interactions,
of each of the three gases could pave the way for therapeutic
treatments and translational research.
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1. Introduction

Cancer is one of the most dreaded diseases and is a major threat
to human life. Among different clinical disorders, cancer is
the second most common cause of death after cardiovascular
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diseases (1). Different approaches and strategies, such as
chemotherapy, radiotherapy, surgery, immunotherapy and
small molecule-targeted therapy, have been studied and
applied to target and treat cancer (2,3).

Chemotherapeutic drugs work by targeting fast-growing
and proliferating cells, leading to cell death and shrinking
of the tumors. The conventional cancer chemotherapy, ‘the
standard treatment’, is not always successful, even after
50-100 years of research and clinical experience, although cases
of lymphocytic leukemia and Hodgkin's lymphoma have been
treated successfully in this manner (1). Conventional chemo-
therapy indiscriminately delivers the toxic anticancer agent
to tumors and normal tissues simultaneously (4). Therefore,
cancer-selective drug delivery approaches are required to
avoid undesirable systemic side effects. One way of tackling
these problems is to deliver anticancer drugs selectively to
the tumor site (5). One of the different approaches is using
gasotransmitters to selectively provide anticancer drugs to the
tumor site (6).

The three small, diffusible gaseous mediators nitric oxide
(NO), carbon monoxide (CO) and hydrogen sulfide (H,S)
serve multiple roles in normal physiology and the pathogen-
esis of numerous diseases. Several studies have emphasized
the roles of NO, CO and H,S in cancer (7-10); however, there
are numerous puzzles and controversies. Some studies have
demonstrated that these mediators are pro-tumorigenic,
while others have reported that they have an antitumorigenic
effect (11-13). It is now recognized that these three gases
exhibit bell-shaped (also termed ‘biphasic’, ‘bimodal’ or
‘Janus-faced’) pharmacological characteristics in cancer (6).
An improved understanding of the complicated pharmacolog-
ical nature of these mediators has far-reaching consequences.
It also tackles some of the difficulties of the field, enabling
the development of novel therapeutic techniques based on
pharmacologically suppressing mediator production (6). The
present review discusses the important roles of NO, CO and
H,S in tumor pathophysiology, addressing how different levels
of these gases can affect tumor growth, angiogenesis and
survival. Furthermore, it highlights the potential therapeutic
value of the gasotransmitters in cancer chemotherapy.

2. Chemotherapy

History of chemotherapy. The use of chemicals to treat a
disease is called chemotherapy. This therapeutic model was
conceptually born in the early 20th century when the German
physician Paul Ehrlich adopted chemicals to treat infectious
diseases (14,15). Ehrlich stepped into the field of oncology
with great ambition, trying to explore de novo pharmaco-
logical bullets to shoot cancer cells (16). The net findings of all
his experiments were disappointing since none of the proposed
drugs worked on cancer cells (17).

Cancer chemotherapy remained indistinct for >30 years,
and scientists continued to follow Ehlrich's fishing strategy
after his death. Certain researchers studied the effect of
mustard gas or its derivatives on bone marrow eradication;
an idea that was obtained from using the gases during the
First World War (18,19). Others, such as Sidney Farber, used
anti-folates, such as aminopterin and 6-mercaptopurine, to
treat childhood cancers (20). In 1950, 6-mercaptopurine was

selected for a clinical trial investigating the treatment of acute
lymphatic leukemia in children. Despite the promising initial
results leading to cancer remission, all investigated chemicals
had significant adverse effects indicated by quick relapse a
few weeks after treatment (21). The chemotherapeutic drug
screening mission was continued. By 1964, ~215,000 chemi-
cals, plant derivatives and fermentation products were studied,
and several million mice were included in these studies (22).
The challenges encountered in the discovery and delivery of
the proper anticancer chemotherapeutics were developing a
convenient model to reduce the vast repertoire of chemicals
into a considerable list that could have efficiency against
cancer, obtaining suitable funds to support the suggested
studies and treatment modalities, and admission to clinical
facilities to examine the impact of the selected substances.
Therefore, different organizations, funding agencies and
research centers were established to support scientists and
oncologists economically, in order to defeat cancer.

After all these chemotherapeutic screening failures, scien-
tists turned the view back, asking what makes cancer cells
switch their response to treatment from sensitive to resistant.
Scientists examined if it would be better to employ dual chemo-
therapy rather than the conventional monotherapy approach
used, and this idea of using multiple chemical combinations
immediately appeared promising. Freireich et al (23) were
the first scientists who combined a four-drug regime (vincris-
tine, amethopterin, mercaptopurine and prednisone) to treat
leukemia in children. Despite full cancer remission for several
months, they observed severe brain metastasis and death, and
thus, stopped this chemotherapeutic regimen. The outcome
of tetra-combinatorial therapeutic approaches, including
mechlorethamine, oncovin, procarbazine and prednisone
(MOPP), and mechlorethamine, oncovin, methotrexate and
prednisone, in treating Hodgkin's diseases was surprising, as
the complete remission rate increased to 80% in the USA (24).
Furthermore, ~60% of patients with Hodgkin's treated with
MOPP never relapsed (25). MOPP, ‘the miracle’, made the
concept of cancer curability possible. Indications from combi-
nation chemotherapies in treating certain types of advanced
hematological malignancies motivated scientists to consider
a similar therapeutic regime for solid tumors; however, the
primary method for treating solid tumors was surgery (26).
By the early 1970s, the adjuvant chemotherapy approach was
introduced, where chemotherapy was used after surgery to
target microscopic tumors and reduce cancer recurrence (26).
Bonadonna et al (27) introduced the first combinational
chemotherapeutic-postoperative approach, called cyclophos-
phamide, methotrexate, fluorouracil-adjuvant therapy, to treat
early-stage breast cancer in women. The concept of combi-
national adjuvant chemotherapy was popular in the USA.
Fisher et al (28) examined L-phenylalanine mustard to target
breast cancer and other solid tumors, such as colorectal cancer.
Depending on the type and size of the tumor, an additional
approach, called neoadjuvant chemotherapy, is currently used.
In this approach, chemotherapy is applied before the surgery
or the primary therapy (29).

Most, if not all, solid tumors acquire drug resistance
after a few cycles of chemotherapy, and thus, an efficient
chemotherapeutic approach has not been developed yet. This
is mainly due to dynamic phenotypic and genotypic changes
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in cancer cells and their surrounding microenvironment.
Despite the common non-curative effect of chemotherapy, the
disease progression-free survival curves have been markedly
improved (30). Any effective therapeutic approach requires
systematic knowledge regarding the drug's mechanism of
action, primary pharmacologic metabolites, the differences in
pharmacokinetics and pharmacodynamics, and the behavior of
cancer cells and their crosstalk with the tumor microenviron-
ment (TME) (31). This knowledge has markedly progressed
during the last 20-30 years upon the emergence of novel
technical avenues in genomic and proteomic analysis. As a
result, novel treatment modalities, such as immunotherapy and
targeted therapy, have been introduced and suggested to be
applied either separately or in combination with chemotherapy.

Mechanism of action and classification of chemotherapy.
Chemotherapeutic drugs are clustered into subgroups
according to their structure and overall mechanisms of action.
Each subgroup is subdivided into several cytostatic drugs,
which are used to treat different types of cancer (32). Table SI
lists the most prominent types of drugs, their mechanism of
action, the targeted cancer types and the number of clinical
trials for each drug.

Microenvironment and chemotherapy.Innon-hematological
malignancy, a tumor is a disorganized, miscommunicated
aberrant tissue, where tumor cells are surrounded by stroma
and they all interact unsystematically within one unit. The
stroma consists of cellular and non-cellular compartments,
and altogether they are referred to as the TME. The TME
is made up of different types of cells, such as cancer-asso-
ciated fibroblasts (CAFs), tumor-associated macrophages
(TAMs), different sub-types of anti- and pro-inflammatory
immune cells, adipocytes and tumor-associated vasculature
(endothelial cells and pericytes), and extracellular matrix
(ECM) (33). These compartments interact with each other
and with tumor cells, initiating various biochemical and
cellular signals, which drive cancer cell proliferation,
invasion and the response to treatment (34). Chemotherapy
eliminates and reduces tumor growth primarily, whereas
a small population of cancer cells shift their survival
machinery and do not respond to the treatment, as they
become more aggressive cells, which serve as the source
of relapse. The TME has the potential to drive the
anti-chemotherapeutic effect of cancer cells by interfering
with different survival mechanisms and cellular signaling
pathways (35). This is evident in different types of cancer,
such as breast and ovarian cancer, in which enriched TME
signatures associated with a treatment-resistant phenotype
are observed (34). Among the different signatures, the
hypoxic nature of the TME decreases the proliferation rate
and induces survival of cancer cells, thus reducing their
response to chemotherapy (36-38). The hypoxic TME trig-
gers angiogenic switch by inducing aberrant blood vessel
formation in cancer, and due to the leaky properties of
cancer-associated vasculature, the drugs that circulate in
the blood will not be delivered efficiently to the core of the
tumor (39,40). Additionally, the pharmacokinetic action of
certain chemotherapeutic drugs depends on the availability
of free radicals. Therefore, the cytotoxic activity of those

drugs is reduced in the absence or presence of low oxygen
(O,) levels (40,41).

The architecture of the TME, characterized by its pheno-
typic plasticity and heterogenic properties, is essential to allow
or prevent drug delivery to the tumor (42). The reorganization
of the ECM due to the interaction of cancer cells with CAFs
and TAMs leads to drug sequestration, preventing them from
reaching the cancer cells (34,43,44).

3. Gasotransmitters

In the last decades, three gaseous molecules have been identi-
fied as gasotransmitters: NO, CO and H,S. These particular
gases are similar to each other in their production and
function, but exert their functions in unique ways in the human
body (45). NO is produced endogenously in endothelial cells
from L-Arg by a family of enzymes, called NO synthases
(NOS), in the vasculature, which modulates vascular tone
by activating soluble guanylyl cyclase (sGC) enzyme and
producing cyclic GMP (46). Endogenous CO is produced by
the enzyme heme oxygenase (HO), which converts free heme
to biliverdin (47). CO has a vasorelaxant and an antiprolif-
erative action on vascular smooth muscles cells (VSMCs),
making it an important determinant of vascular tone in
several pathophysiological conditions (48). H,S is produced
endogenously in mammalian tissues from L-cysteine by
cystathionine-f-synthase (CBS), cystathionine y-lyase and
another mitochondrial enzyme, 3-mercaptopyruvate sulfur-
transferase (49). It regulates vascular diameter, and protects
the endothelium from oxidative stress, ischemia reperfusion
injury and chronic inflammation by activating several K*
channels in VSMCs (50,51). According to Wang et al (52),
other molecules, such as sulfur dioxide, methane, hydrogen
gas, ammonia and carbon dioxide, are also considered to be
potential gasotransmitter candidates, despite the fact that they
have not been adequately explored or do not completely fit the
diagnostic criteria for endogenous gasotransmitters.

History of gasotransmitters. NO was discovered in 1772 by
Joseph Priestley as a clear, colorless gas with a half-life of
6-10 sec (53). In 1979, Gruetter et al (54) found that adding NO
in a mixture with nitrogen or argon gases into an organ bath
vessel containing isolated pre-contracted strips of a bovine
coronary artery induces vascular smooth muscle relaxation. In
1980, Furchgott and Zawadzki (55) revealed that endothelial
cells produce endothelium-derived relaxing factor (EDRF) in
response to stimulation by acetylcholine in vessels with intact
endothelium. After 7 years and in two unrelated studies, both
Ignarro et al (56,57) and Palmer et al (56,57) demonstrated
that EDRF is NO. Moncada et al (58) demonstrated that
NO is synthesized from the amino acid L-arginine. Earlier,
Murad et al (59) reported that nitro vasodilators, such as nitro-
glycerin (GTN) and sodium nitroprusside, induce vascular
tissue relaxation, stimulate sGC expression and increase cGMP
levels in tissues. All these studies contributed to the establish-
ment of a signaling molecule in the cardiovascular system. In
1992, the cover of Science magazine proclaimed NO as the
molecule of the year (60). Furthermore, 6 years later, Pfizer, Inc.
introduced Viagra, a drug that inhibits phosphodiesterase-5
via the NO-cGMP signaling cascade, which revolutionized
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the management of erectile dysfunction (61). In the same
year, the importance of the NO discovery was acknowledged
by awarding the Nobel Prize in Physiology and Medicine to
Furchgott, Ignarro and Murad (62).

Few discoveries have had the type of impact on biology
that NO has had since it was discovered (63). The first
scientific article described NO in 1816 (64), while in 1994,
Thomsen, et al (48,65) were the first to report a link between
NO and cancer action. In 1993, there were >1,000 new publica-
tions on the biology of NO. At the end of the 20th century, the
rate of NO publications approached a plateau at ~6,000 papers
per year, spanning almost every area of biomedicine (63). The
number of published articles in PubMed (pubmed.ncbi.nlm.
nih.gov/) reached 58,848 by the end of 2020.

In the late 1200s, a poisonous gas produced by the incom-
plete combustion of wood similar to CO was described by the
Spanish alchemist Arnold of Villanova (66). Between 1772
and 1799, an English chemist, Joseph Priestley, recognized
and characterized CO (53). The first scientific article described
CO in 1899 (67), and subsequently, the ‘first paper linking
CO to cancer was published in 1927 (68). Between 1920 and
1960, Roughton performed several kinetic studies on CO and
hemoglobin (69-71). In 1944, he revealed that CO bound to
hemoglobin changed the oxyhemoglobin dissociation curve,
and demonstrated that CO was produced in the body during the
metabolism of the hemoglobin molecule (72). Subsequently,
Tenhunen et al (73) described and characterized HO as the
enzyme responsible for breaking down heme in the body,
demonstrating that heme catalysis resulted in the subsequent
release of CO and free iron as by-products.

H,S was first discovered in 1777 by Carl Wilhelm
Scheele (74), and the first paper related to H,S was published
in 1917 (75). The importance of H,S in cell physiology was
highlighted in the mid-1990s, and the first link between
H,S and cancer was reported in 2005. H,S at physi-
ological concentrations can reduce the apoptotic effects of
chemopreventative drugs and play an important role in the
response of colonic epithelial cells of the human adeno-
carcinoma cell line HCT116 to both beneficial and toxic
chemicals (76). It is clear that H,S, similar to other endogenous
gases, has now been identified as a gasotransmitter (77). It was
initially regarded as highly poisonous in the environment;
however, this perception has changed as a growing number
of studies have illustrated H,S as a cytoprotective and cardio-
protective agent (78,79). Fig. 1 depicts a timeline of important
scientific developments in the history of gasotransmitter
research and therapeutic usage.

Role of NO in cancer. NO is a small biomolecule that exerts
different effects on tumor growth and invasion. It is a pleiotropic
regulator and serves essential roles in various intercellular or
intracellular processes, including vasodilatation, neurotrans-
mission and macrophage-mediated immunity (7). Vascular
endothelial cells can synthesize NO from L-arginine, and
this biosynthetic pathway has been thoroughly documented
in numerous other cell types, including nervous and immune
cells (80,81). It can display a cytotoxic property at higher
concentrations as generated by activated macrophages and
endothelial cells (7). A total of three different isoforms of the
NOS family synthases have been identified: Endothelial NOS

(eNOS), neuronal NOS (nNOS) and inducible NOS (iNOS).
The gene symbol nomenclatures are NOS1 for nNOS, NOS2
for iNOS and NOS3 for eNOS (7). However, the role of NO in
cancer biology, particularly in breast cancer, only started to be
elucidated in 1994 (82). It has been detected that NOS expres-
sion is increased in various types of cancer, such as breast,
cervical, brain, laryngeal, and head and neck cancer (83)
(Table I). NO exhibits a pro- or antitumorigenic effect (84).
NO appears to enhance tumor growth and cell proliferation at
measurable concentrations in different clinical samples from
different cancer types (85).

In contrast to conventional signaling molecules that act by
binding to specific receptor molecules, NO exerts its biological
actions via a wide range of chemical reactions (86). The NO
concentration and minor differences in the composition of
the intracellular and extracellular environment determine the
exact reactions attained. Under normal physiological condi-
tions, cells produce small but significant amounts of NO,
contributing to the regulation of anti-inflammatory effects
and its antioxidant properties (83). However, in tissues with
a high NO output, iNOS is activated, and nitration (addition
of NO,), nitrosation (addition of NO*) and oxidation will be
dominant (87). The interaction of NO with O, or superoxide
(0O,) results in the formation of reactive nitrogen species
(RNS). The RNS, dinitrogen trioxide (N,O;) and peroxynitrite
(ONOO), can induce two types of chemical stresses: Nitrosative
and oxidative (88). N,O; effectively nitrosates various
biological targets to yield potentially carcinogenic nitrosa-
mines and nitrosothiol derivatives, and N-nitrosation may
have essential implications in the known association between
chronic inflammation and malignant transformation (88). O,
and NO may rapidly interact to produce the potent cytotoxic
oxidants ONOO" and its conjugated acid, peroxynitrous acid.
In natural solutions, ONOO is a powerful oxidant, oxidizing
thiols or thioethers, nitrating tyrosine residues, nitrating and
oxidizing guanosine, degrading carbohydrates, initiating
lipid peroxidation, and cleaving DNA, which has important
implications in cancer (8§3).

Effect of NO on the TME. The effects of NO in a multistage
model of cancer have been reported previously, it can drive
angiogenesis, apoptosis, the cell cycle, invasion and the
metastatic process (83,85). NO also serves a role in cellular
transformation, the onset of neoplastic lesion formation, and
the monitoring of invasion and colonization throughout metas-
tasis (89). Therefore, understanding its role in promoting TME
elements is crucial as it will reduce the ambiguity, and aid the
development of NO-based cancer therapeutics, which will be
effective in the prevention and treatment of a range of human
cancer types.

The TME is characterized by hypoxia and acidity. Small
pH drops (-0.6 U) favor the production of bioactive NO from
nitrite, as evidenced by a higher degree of cyclic guanosine
3'.5-monophosphate-dependent vasorelaxation in arterioles. A
small dose of nitrite may make tumors more sensitive to radia-
tion, resulting in a considerable growth delay and improved
survival in mice (90). Therefore, low pH has been revealed to be
an ideal setting for tumor-selective NO generation in response
to nitrite systemic injection (90). The generation of NO by
iNOS inhibits C-X-C motif chemokine ligand 10 expression
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Figure 1. Timeline of key scientific advances during the history of gasotransmitters research and its therapeutic use. CO, carbon monoxide; EDRF, endothe-

lium-derived relaxing factor; H,S, hydrogen sulfide; NO, nitric oxide.

in melanoma cells, resulting in a protumorigenic TME (91).
Furthermore, eNOS upregulation in the TME reduced both
the frequency and size of tumor implants in a surgical model
of pancreatic cancer liver metastasis (92) and the influence of
NO on tumor cell protease expression since tumor cell anoikis
and invasion are both regulated by myofibroblast-derived
matrix. Within tumor cells, eNOS-dependent downregula-
tion of the matrix protease cathepsin B was detected, and
cathepsin B silencing reduced tumor cell invasiveness in a
manner comparable to eNOS upregulation. Therefore, an
NO gradient within the TME influences tumor progression
through orchestrated molecular interactions between tumor
cells and stroma.

The role of NO in the complex interactions between
the TME and the immune response is a good example of
how complicated the molecular and cellular mechanisms
determining the involvement of NO in cancer biology are.
Although the activities of NO in the TME are varied and
context-dependent, the evidence suggests that NO is an immu-
nosuppressive mediator (93). By targeting tumors in a cell
nonautonomous manner, S-nitroso glutathione (GSNO), a NO
donor, reduced the tumor burden in a mouse model of castra-
tion-resistant prostate cancer (CRPC). Both the abundance of
anti-inflammatory M2 macrophages and protein kinase R-like
endoplasmic reticulum kinase expression were decreased by
GSNO, indicating that NO influences TAM activity. GSNO
also reduced IL-34, indicating that TAM differentiation was
suppressed. This demonstrates the importance of NO in CRPC
tumor inhibition via the TME (94).

Role of H,S in cancer. H,S is a novel gasotransmitter, which
regulates cell proliferation and other cellular functions (95).
It has been revealed that H,S serves an essential role as a
signal molecule in regulating cell survival (95). It seems
paradoxical that, on one hand, H,S acts as a physiological
intercellular messenger to stimulate cell proliferation, and on
the other hand, it may display cytotoxic activity (96). H,S, at

physiologically relevant concentrations, hyperpolarizes the
cell membrane, regulates cell proliferation, relaxes blood
vessels and modulates neuronal excitability (95). Increased
expression of various H,S-producing enzymes in cancer cells
of different tissues has been reported, and novel roles of H,S
in the pathophysiology of cancer have emerged (9). This is
mainly observed in some cancer types, such as breast, lung,
gastric, colorectal, bladder, prostate, oral, bone and thyroid
cancer, where the malignant cells both express high levels of
CBS and produce increased amounts of H,S, which results in
enhanced tumor growth and spread by stimulating cellular
bioenergetics, activating proliferative, migratory and invasive
signaling pathways, and enhancing tumor angiogenesis (97),
as indicated in Table I, which highlights the research on the
involvement of NO, H,S, and CO production enzymes in
cancer regulation. Importantly, in preclinical models of these
cancer types, either pharmacological inhibition or genetic
silencing of CBS was sufficient to suppress cancer cell bioen-
ergetics in vitro, and to inhibit tumor growth and metastasis
in vivo (9,98). This enhances the antitumor efficacy of front-
line chemotherapeutic agents, providing a strong rationale
for the development of CBS-targeted inhibitors as anticancer
therapies (99). However, the observation that inhibition of
H,S biosynthesis exerts anticancer effects is contradicted by
another study which demonstrated that increasing H,S with
exogenous donors also exerts antitumor actions (100). H,S
stimulates the cytoprotective PI3K-AKT, p38-MAPK and
nuclear factor erythroid 2 (NRF2) signaling pathways when
present at low concentrations (101). Sulfhydration partially
promotes a number of biological functions of H,S, including
ATP-sensitive potassium (K,rp) channel opening (101). At
physiological concentrations, H,S can also serve a role in
stimulating the cellular bioenergetic function by donating
electrons to the mitochondrial electron transport chain at
complex II, leading to increased mitochondrial levels of cyclic
AMP (102). At higher concentrations, H,S inhibits oxidation
of cytochrome c, which results in disruption of mitochondrial
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electron transport, and it can also exert pro-oxidant and
DNA-damaging effects (103).

Effect of H,S on the TME. H,S acts as a gaseous signaling
molecule and is endogenously generated by three
H,S-producing enzymes, namely CBS, cystathionine y-lyase
and 3-mercaptopyruvate sulfur transferase. Imbalances in
H,S-producing enzymes as well as H,S levels are associ-
ated with malfunctional H,S metabolism, which has been
increasingly associated with several human pathological
disorders (104). Several cancer cell lines and specimens
exhibit upregulation of one or more of the H,S-synthesizing
enzymes, and this aberrant expression is suggested to be a
tumor enhancer (105). By modulation of the expression of the
H,S-producing enzyme, the amount of tumor-derived H,S
is altered, thereby modifying the TME and affecting tumor
expansion and metastasis (106).

Numerous mechanisms contribute to the pro-tumor effect
of H,S, including the induction of angiogenesis, regulation
of mitochondrial bioenergetics, acceleration of cell cycle
progression and anti-apoptotic functions (107). Furthermore,
hypoxia is a common feature of the TME in a number of solid
tumors, which affects the level of H,S by preventing H,S
catabolism and consequently stimulating cystathionine y-lyase
gene expression (107). Furthermore, under the influence of
hypoxia in the microenvironment, the levels of H,S-producing
enzymes are upregulated, and the H,S-producing enzymes
are transferred toward the mitochondria, which results in
increased H,S production (106). Angiogenesis, which is an
important process in cancer progression, is stimulated by
paracrine signaling between stroma in the TME and epithelial
tumor cells (108).

Previous evidence has demonstrated that H,S is an
endogenous stimulator of ischemic-induced angiogen-
esis by promoting the upregulation of hypoxia-inducible
factor 1 (HIF-1)-a via activation of different pathways,
including the VEGFR2/mTOR and PI3K/AKT signaling
pathways (105,109,110). H,S appears to support tumor cell
proliferation by increasing vascular endothelial growth factor
(a critical growth factor in angiogenesis) expression in kidney
and ischemic tissues (111,112). An in vivo study conducted on
nude mice revealed that silencing of CBS expression markedly
decreased tumor growth. The researchers concluded that
the reduction in tumor growth was associated with both the
suppression of cancer cell signaling and metabolism, as well as
the paracrine mechanism in the tumor environment (113).

In colon cancer, CBS-derived H,S promotes angiogenesis
and vasorelaxation, thereby supporting tumor growth (113). In
ovarian cancer, CBS knockdown reduces the number of blood
vessels, resulting in tumor growth (97). Taken together, these
results indicate that CBS serves an essential role in promoting
angiogenesis and tumor growth. Therefore, CBS could be a
promising molecular target for cancer therapy. Recently,
researchers have developed a novel strategy to improve
chemotherapy in patients with colorectal cancer by remod-
eling the TME through reduction of the high levels of H,S
in colon tissues using copper iron oxide nanoparticles (114).
Another strategy for cancer treatment is destroying the tumor
metabolism symbiosis. This method successfully affects
cancer cells with minimum impairment to healthy cells by

using a zero-waste zwitterion-based H,S-driven nanomotor
that generates acidosis in cancer cells within the TME, and
consequently, the tumor growth will be suppressed (115).

One of the important characteristics of cancer cells is
the acidic microenvironment (reduced intracellular pH) due
to accumulation of lactic acid that results from a high rate
of glycolysis. H,S donors trigger the activation of cellular
transporters, such as glutamine transporter-1 (GLT-1) and
ATP-binding cassette transporter Al, which directly regulates
the aerobic glycolysis, which is a metabolic indicator of
cancer (116). Nevertheless, activation of GLT-1 has both a
promoting and an inhibiting effect depending on the cancer
cell type, and thus, further studies are required to clarify the
consequent responses (8).

It has been demonstrated that most cancer cells exhibit
increased uptake of glucose and high lactate production,
known as the Warburg effect, due to glycolysis that causes
the acidic TME, which enhances tumor progression (117).
Previous studies have demonstrated that continuous exposure
of cancer cells to a low concentration of H,S results in inhibi-
tion of cancer progression. This anticancer effect is mainly
due to an increase in metabolic lactic acid production by H,S
and diminishes the pH regulatory system, which consequently
leads to intense intracellular acidification and eventually
drives cancer cell death (107,118).

Within the TME, there are key proteins and enzymes, such
as matrix metalloproteinase, adhesive enzymes (E-cadherin)
and integrins, which serve an essential role in the migration
and metastasis of cancer cells (119,120). Tumor cells that enter
the stroma within the TME after detaching from the main
tumor move into the blood vessels and ultimately reach the
other organs in the body (121). H,S donors have been used in
different studies and have been demonstrated to successfully
prevent migration and invasion by decreasing proteins and
enzymes involved in migration and invasion in different cancer
types (8,122,123). For example, it has been reported that treat-
ment of hepatocellular carcinoma cells with 600-1,000 xM
sodium hydrosulfide (NaHS), which is an H,S donor, efficiently
reduces migration and invasion in a concentration-dependent
manner via modulation of the EGFR/ERK/MMP-2 and
PTEN/AKT signaling pathways (124). Similarly, NaHS
treatment prevents migratory activity in thyroid cancer cells
by deactivating the PI3K/AKT/mTOR and MAPK signaling
pathways (125). Furthermore, NaHS reduces the MMP-2
protein levels in gastric cancer (126). Additionally, H,S serves
arole in a different stage of cancer development and is involved
in modulation of the TME, which regulates the rate of cancer
progression and the effectiveness of therapy (106).

Role of CO in cancer. CO is best recognized for being a toxic
gas produced by the burning of fossil fuels. On the one hand,
CO poisoning is associated with high mortality rates, and thus,
it attracts a lot of attention (127). On the other hand, CO has
been conclusively demonstrated to be a gasotransmitter with
physiological activities in mammals (128,129). CO is now
accepted as a potential therapeutic agent along with its physi-
ological roles and has entered multiple clinical trials (130,131).
CO is produced in all cells by HO-1 and HO-2 (132). Each
possesses strong cytoprotective functions for the cell,
evidenced by the fact that the absence of either, particularly
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the stress-response isoform HO-1, is detrimental to the cell
and organism (133,134). The inducible HO isoform (HO-1) can
be upregulated in response to various stimuli, including heme,
oxidative stress, ultraviolet irradiation, heat shock, hypoxia and
NO (135). The constitutive HO isoform (HO-2) is expressed
in several tissues, including the brain, kidney, liver and
spleen (6). Low CO concentrations also activate K 1, channels
and influence various intracellular kinase pathways, including
the PI3K-AKT and p38 MAPK signaling pathways (128). CO
exerts adverse biological effects at higher concentrations,
which, in vivo, are mainly attributed to the binding of CO to
hemoglobin. The resulting carboxyhemoglobin reduces the
O,-carrying capacity of the blood and leads to tissue hypoxia.
In vitro, CO inhibits mitochondrial electron transport by
irreversibly inhibiting cytochrome ¢ oxidase (128).

Cellular and animal pharmacological experiments
suggest numerous therapeutic indications where HO-1 or CO
administration imparts benefits in treating conditions such
as sepsis, bacterial infection, cancer, inflammation, circa-
dian clock regulation, stroke, erectile dysfunction and heart
attack (131). Some of the best-characterized physiological
effects of CO include anti-inflammatory, antiproliferative,
anti-apoptotic and anticoagulative responses. By contrast,
at higher concentrations, CO becomes cytotoxic (136). In
contrast to NO, the cytoprotective and cytotoxic effects of
CO are intimately intertwined. For example, a low level of
CO-mediated inhibition of mitochondrial activity, followed
by aslight increase in intracellular reactive O, species produc-
tion, is important in CO-mediated cytoprotective signaling
events (137,138). In a way, the cytoprotective effects of CO
resemble the protective effects of pharmacological precon-
ditioning. A short, relatively mild insult triggers a secondary
cytoprotective phenotype via activation of the prototypical
antioxidant response element NRF2-related factor. Thus, a
protective cellular phenotype is maintained in the cell for
a long time after CO has already been cleared from the
biological system (6).

Gasotransmitter signaling significance. To highlight the
significance of gasotransmitter signaling cascades in tumor
growth and the chemotherapeutic response, network analysis
approaches were utilized to identify the gasotransmitter-tumor
signaling signature. Utilizing the PubMed (https://pubmed.
ncbi.nlm.nih.gov/) and Web of Science (https://clarivate.
com/webofsciencegroup/solutions/web-of-science/) databases,
~127 candidates (genes and proteins) were identified, which
were significantly related to the gasotransmitters and
tumorigenesis simultaneously. Using the selected list of candi-
dates, the present network analyses were applied using the
Enrich R (https://maayanlab.cloud/Enrichr/) and Metascape
(https://metascape.org/gp/index.html#/main/stepl) databases
to identify all possible genes, proteins and pathways that may
represent tumor-gasotransmitters interrelated signaling. As
shown in Fig. 2A and B, the most relevant enriched pathways
in the present analysis were ones related to cancer, which
in turn, justifies the relevance and accuracy of the selected
candidate list and highlights the significance of gasotrans-
mitter signaling cascades in tumor development and growth.
Additionally, different essential cellular signaling pathways
were significantly enriched, such as the ‘positive regulation

of locomotion’, “TNF signaling pathway’, ‘apoptotic signaling
pathway’ and ‘HIF-1 signaling pathway’. These pathways serve
an essential role in driving the fate of cancer cells and their
response to different treatment modalities (139). Therefore,
it is reasonably relevant to investigate the crosstalk between
gasotransmitters and tumor cells.

This pathway analysis was further validated using the
EviNet database (https://www.evinet.org/). The detected
enrichment signature was similar to the one identified using
Enrich R and Metascape (data not shown). Furthermore, a
deeper enrichment analysis revealing protein-protein interac-
tions was performed considering three direct and physical
connections at the minimum (Fig. 3A and B). Accordingly,
the candidates were clustered into three densely connected
networks upon applying the molecular complex detection
algorithm using the Metascape annotation database. Each
group or individual candidate within the group may represent
a platform for molecular-mechanistic studies to investigate the
interaction between the group members and gasotransmitters
and their impact on cancer cell proliferation and response to
treatment.

The present review investigated links between the current
candidate list and a drug signature database containing annota-
tions regarding drug induction or inhibition of gene expression.
As shown in Table SII, the present candidate list was signifi-
cantly enriched and associated with different anticancer or
cancer-related drugs. The odds ratio ranking method is simply
the odds ratio; however, the combined score is the odds ratio
multiplied by the negative natural log of the P-value derived
from Fisher's exact test and the Enrichr z-score (combined
score=log(p)*z). Overall, this suggested that gasotransmitters
serve essential roles in drug response signaling by cancer cells.
Therefore, well-designed mechanistic studies are required to
elucidate such roles and open novel avenues for drug discovery
and cancer treatment modalities.

4. Effectiveness of gasotransmitters in chemotherapeutic
drug treatment

Following the crucial discovery of gasotransmitters as funda-
mental biological molecules, their physiological significance
has become a debated topic in recent decades. Utilizing
gasotransmitters as therapeutic aids is justified by their roles
in carcinogenesis, including enhancement of apoptotic stimuli,
inhibition of metastasis and inhibition of angiogenesis.
Therefore, using them alone or in combination with cytotoxic
agents is an essential research platform for researchers and
clinicians in cancer therapy (6,140-142).

Platinum compounds have been investigated extensively,
and several studies have demonstrated that tumor cells are
sensitized to cisplatin compounds by NO donors (143,144).
In vitro, combination of cisplatin with natural NO gas or
the NO donors diethylamine NONOate (DEA NONOate) or
1-propanamine, 3-(2-hydroxy-2-nitroso-1-propylhydrazino)
NONOate increased the killing efficacy of cisplatin by
50-1,000 times compared with cisplatin alone, and the effect
lasted for a number of hours (145). Furthermore, the combina-
tion treatment of cisplatin and diethylenetriamine NONOate
reverses resistance and induces apoptosis in prostate cancer
cell lines (146) and metastatic human colon carcinoma cell
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hsa05200: Pathways in cancer

hsa05161: Hepatitis B

G0:0040017: positive regulation of locomotion
G0:0048732: gland development

hsa04668: TNF signaling pathway

ko05418: Fluid shear stress and atherosclerosis
G0:0097190: apoptotic signaling pathway
G0:0070482: response to oxygen levels
R-HSA-449147: Signaling by interleukins

hsa04066: HIF-1 signaling pathway

hsa05169: Epstein-Barr virus infection

G0:0045596: negative regulation of cell differentiation
G0:0071214: cellular response to abiotic stimulus
G0:0070848: response to growth factor

G0:0051347: positive regulation of transferase activity
G0:0002521: leukocyte differentiation

M105: PID TELOMERASE PATHWAY

G0:0071396: cellular response to lipid

G0:1901699: cellular response to nitrogen compound
G0:0051090: regulation of DNA-binding transcription factor activity

M Pathways in cancer
M Hepatitis B
W Positive regulation of locomotion
B Gland development
W TNF signaling pathway
Fluid shear stress and atherosclerosis
M Apoptotic signaling pathway
I Response to oxyg?en levels
I Signaling by Interleukins
HIF-1 signaling pathway
Epstein-Barr virus infection
Negative regulation of cell differentiation
W Cellular response to abiotic stimulus
I Response to growth factor
Positive regulation of transferase activity
Leukocyte differentiation
PID TELOMERASE PATHWAY
Cellular response to lipid
i Cellular response to nitrogen compound
Regulation of DNA-binding transcription factor activity

Figure 2. Pathway enrichment analysis. (A) Bar graph of enriched pathways across input gene lists, the top 20 clusters are arranged according to the degree of
significance (P-value). (B) Network of the top 20 enriched pathways. The members with the best P-value from each of the 20 clusters were selected with the
constraint that there are not >15 members per cluster and not >250 terms in total. Each node represents an enriched member and is colored accordingly. GO,
Gene Ontology; HIF-1, hypoxia-inducible factor 1; PID, primary immunodeficiency.

lines (147). NO-producing aspirin compounds that can emit
NO for several hours have also been investigated. For example,
in a clonogenic assay, nitroaspirin exhibited dose-dependent
cytotoxicity and greatly boosted cisplatin cytotoxicity in both
resistant and susceptible cells (148).

Carmustine is a chemotherapeutic drug that is combined
with a NO source (the donor drug DEA NONOate), and the
combination of chlorotoxin-NO, carmustine, or temozolomide
enhances glioma cell death. Two variables that contributed
to the enhanced cytotoxic activity of these cells were the
production of active levels of the cytoprotective enzyme
O6-methylguanine-DNA methyltransferase activity and
altered p53 activity (149).

In the same year, Shami, Saavedra, Wang, Bonifant,
Diwan, Singh, Gu, Fox, Buzard, Citro, Waterhouse,
Davies, Ji and Keefer (150) created glutathione/glutathione
S-transferase-activated nitric oxide (JS-K), a selective targeted
NO donor that was active in vitro and in vivo against human
HL60 leukemia cells, following its reaction with glutathione

to produce NO in vivo. JS-K acts as a chemosensitizer for
doxorubicin-induced cytotoxicity in renal (151), prostate (152)
and bladder cancer cells (153).

NF-xB and NOS activation make HT29 human colon
cancer cells more sensitive to doxorubicin cytotox-
icity (154). Simvastatin increases NF-xB activity and NO
production, while also increasing doxorubicin intracellular
accumulation and cytotoxicity (154). The enhanced intra-
cellular accumulation of doxorubicin is caused by tyrosine
nitration in P-glycoprotein and multidrug resistance protein
1 by NO (155). In mice with triple-negative breast cancer,
NO-releasing nanoparticles in combination with doxorubicin
or a doxorubicin nanoparticle carrier decreased cell survival,
caused apoptosis, elevated doxorubicin intracellularly,
compromised lysosomal membrane integrity and suppressed
tumor growth (156). Subsequently, an S class nanocarrier of
NO (Nano-NO) was developed, and successfully targeted NO
to hepatocellular cancer (157). Nano-NO has improved the
administration and efficacy of chemotherapy. Additionally,
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combining nanomaterials with NO donors, as shown by
Housein ez al (78) and others (158), has improved the method
of NO delivery. The aforementioned Nano-NO make tumor
cells more susceptible to chemotherapy.

GTN in combination with vinorelbine and cisplatin
increases the response in patients with lung cancer and reduces
the median time to tumor progression (159). Additionally, the
combination treatment of GTN and valproic acid results in
the inhibition of Bcl-2 as well as the expression of Bax and
caspase-3 in human K562 cells (160). STAT3 is associated with
a number of the substituted NO-releasing quinolone-1,2 4-tri-
azole/oxime derivatives (161). In melanoma with the B-Raf
V600E mutation and vemurafenib-resistant melanoma, STAT3
inhibitors have shown efficacy (161). Poly-S nitrosylated
human albumin alters colon cancer cell resistance to bevaci-
zumab (162). Furthermore, the combination of bevacizumab
with S-nitrosylated human albumin exhibits antitumor effects
both in vitro and in vivo (163).

Long-term (3-5 days) exposure of cancer cells to low levels
of H,S (30 M; sustained >7 days) using the slow-releasing
H,S donor GYY4137 causes cancer cell death in vitro by
activating caspase activity and causing apoptosis (164,165).
In a mouse xenograft model, GY Y4137 caused a reduc-
tion in tumor volume, and this had no apparent deleterious
effects on physiological functions (165). A previous study,
which was performed on 11 cancer cell lines, revealed that
H,S-releasing non-steroidal anti-inflammatory drugs inhib-
ited the proliferation of all 11 cancer cell lines that were
tested (102), providing further evidence of the potential of
H,S as an anticancer agent. Using sulfide salt NaHS, which
releases large amounts of H,S instantaneously in an aqueous
solution (=400 uM; detected within first 1.5 h), caused only
a minimal growth inhibitory effect in cancer cell lines,
indicating the possibility that a long period of continuous,
low-level H,S exposure is required for its efficient anticancer
function (118). Based on these findings, it is hypothesized
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that the anti-proliferative effect of H,S is selective, meaning
it affects cancer cells but not normal cells.

One must remember that the three gasotransmitters do
not work alone. Instead, they work together. This coop-
eration occasionally occurs using overlapping signaling
pathways (for instance, both NO and CO stimulate the sGC
pathway). NO directly stimulates the sGC pathway, and
H,S concurrently blocks cGMP via inhibition of cGMP
phosphodiesterase (166). One of the few studies of this
contest demonstrated the anticancer effect of a combined
NO- and H,S-donating compound, nitric oxide and hydrogen
sulfide-releasing hybrid-aspirin, both in vitro and in vivo (6).
The impact of NO and H,S on the TME is displayed in Fig. 4,
and several gasotransmitter-based drugs targeting the TME
are currently being investigated in clinical studies (167-169).

To further investigate and understand the nature of these
interactions, more comprehensive studies are required,
mainly in the context of cancer, which may be utilized for
therapeutic benefits in the future.

5. Conclusions

More than three decades of studies in the field of the three
gasotransmitters NO, CO and H,S have resulted in the identifi-
cation of several pathophysiological paradigms and associated
experimental therapeutic approaches that may be ultimately
suitable for clinical translation. In particular, the initial
perplexing observation that both gasotransmitter-synthesis
inhibitors and donors appear to have anticancer effects, which
the complex biology and bell-shaped pharmacology of NO,
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CO and H,S can explain, should not be considered as a barrier
to translation into clinical settings. Their critical functions
in normal cells compared with cancer cells open avenues for
combinatorial treatment approaches together with chemo-
therapeutic drugs, aiming for improved clinical significance.
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