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Abstract. The P2X7 purinergic receptor (P2X7R) is a 
non‑selective cation channel activated by high levels of 
adenosine triphosphate that are commonly present in serious 
conditions. Activation of this purinergic receptor is closely 
related to the development of various disease states including 
inflammatory and neurodegenerative disorders, orthopedic 
diseases and types of cancer. Accumulating evidence has 
shown that the P2X7R plays a crucial role in the development 
of various heart diseases. For example, activation of P2X7Rs 
may alleviate myocardial ischemia‑reperfusion injury by 
releasing endogenous cardiac protective substances. In 
contrast to these findings, activation of P2X7Rs can promote 
the development of acute myocardial infarction and myocar‑
ditis by inducing inflammatory responses. Activation of these 
receptors can also contribute to the development of different 
types of cardiomyopathies including diabetic cardiomyopathy, 
dilated cardiomyopathy and hypertrophic cardiomyopathy by 
inducing cardiac hypertrophy, fibrosis and apoptosis. Notably, 
inhibition of P2X7Rs can improve cardiac structure and 
function abnormalities following acute myocardial infarction, 
reduction of inflammatory responses following myocarditis 
and attenuation of the cardiomyopathy process. Furthermore, 
recent evidence has demonstrated that P2X7Rs are highly 
active in patients infected with coronavirus disease‑2019 
(COVID‑19). Hyperactivation of P2X7Rs in COVID‑19 may 
induce severe myocardial injury through the activation of 
several signaling pathways. The present study reviewed the 
important role of the P2X7R in cardiac dysfunctions and 

discusses its use as a possible new therapeutic approach for the 
prevention and treatment of several myocardial diseases.
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1. Introduction

Cardiovascular diseases are the main cause of mortality 
globally, accounting for ~30% of annual worldwide mortali‑
ties (1). This number is expected to rise to ~40% by the year 
2030 (2). The high mortality rate of cardiovascular diseases 
indicates that further assessments are required to understand 
the mechanisms underlying the development of these diseases 
and identify other pharmacological agents targeting protection 
against heart injuries. The P2X7 purinergic receptor (P2X7R) 
has been implicated in several signaling pathways and in the 
development of a variety of pathological conditions including 
chronic neuropathic pain, neurodegenerative diseases, such 
as multiple sclerosis, inflammatory disorders, orthopedic 
diseases, such as osteoporosis and cancerous diseases such 
as lung cancer (3‑10). Studies have highlighted the role of the 
P2X7R in the development of heart diseases, such as acute 
myocardial infarction, myocardial ischemia‑reperfusion 
injury and myocarditis (11‑13). It is interesting to note that 
the importance of the P2X7R in heart injury mediated by the 
coronavirus disease‑2019 (COVID‑19) has been highlighted by 
various studies (14‑16). These studies have revealed a potential 
new approach that positions the P2X7R as a prognostic cardiac 
biomarker and pharmacological target for the prevention and 
treatment of heart injuries, which may increase survival and 
improve the quality of life in patients with heart diseases. 
The present review article provided a brief overview of the 
properties of the P2X7R, its distribution in the heart and its 
pathological role in heart diseases, with a particular focus on 
acute myocardial infarction, myocardial ischemia‑reperfusion 
injury, autoimmune myocarditis and various types of cardiomy‑
opathies as well as myocardial injury induced by COVID‑19.
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2. P2X7R

P2X7R belongs to a family of purinergic receptors. This 
family is categorized into two main groups, namely the P1 
and P2 receptors (17). P2 receptors are subdivided into P2X 
receptors (P2XRs), which are ligand‑gated ion channels and 
P2Y receptors (P2YRs), which are G‑protein coupled recep‑
tors (18,19). A total of seven P2XR subtypes (P2X1R‑P2X7R) 
and eight P2YR subtypes (P2Y1R, P2Y2R, P2Y4R, P2YR6 
and P2Y11R‑P2Y14R) have been identified to date (20,21). All 
subtypes of P2XR are non‑selective cation channels activated 
by exogenous adenosine triphosphate (ATP), which is triggered 
by the efflux of K+ and the influx of Na+ and Ca2+ (22). ATP is 
stored intracellularly in synaptic vesicles and is released from 
neuronal and non‑neuronal cells in response to various stimuli 
such as hypoxia, pain, infection and inflammation (23,24). It is 
released into the extracellular space by vesicular exocytosis or 
pore‑forming channels by pannexin 1 and connexin 43 (23‑26). 
The release of ATP by vesicular exocytosis is a calcium‑depen‑
dent release that is dependent on an increase in intracellular 
calcium concentration, whereas the ATP release through 
pore‑forming channels is a calcium‑independent release (27).

P2X7R has distinctive features that differentiate it from 
the other P2XRs. One of these features is that it is activated by 
ATP with a half maximal effective concentration (EC50) value 
in the range of 0.1‑1 mM. This range is higher than that of the 
other P2XRs (EC50, 1‑10 µM) (28). Its activation requires a 
massive amount of extracellular ATP, which does not usually 
exist in normal cells (29). It seems likely that P2X7Rs have low 
activity levels under normal conditions (Fig. 1A). By contrast, 
during certain pathological conditions, including hypoxia, 
inflammation, pain, cellular damage and other stress condi‑
tions, high levels of extracellular ATP can activate P2X7Rs 
and subsequent multiple signaling pathways (30). Activation of 
P2X7Rs opens cationic channels that facilitate the flux of small 
cations, such as K+, Na+ and Ca2+, resulting in the activation of 
several intracellular signaling pathways (31). These pathways 
include the activation of nucleotide‑like receptor family pyrin 
domain member 3 (NLRP3) inflammasome, NF‑κB, nuclear 
factor of activated T cells (NFAT), hypoxia‑inducible factor 
1‑alpha (HIF‑1α) and ERK1/2 as well as the formation of 
reactive oxygen species (ROS; Fig. 1B) (32,33). Furthermore, 
sustained activation of P2X7Rs opens large pores that facili‑
tate the passage of large cations and organic dyes, such as 
choline and ethidium, respectively, which result in apoptotic 
cell death (34‑36).

The NLRP3 inflammasome is the most notable response 
following P2X7R activation. The binding of ATP to P2X7Rs 
allows K+ efflux and Na+ and Ca2+ influx. Low levels of intracel‑
lular K+ induce the configuration of the NLRP3 inflammasome 
with apoptosis‑associated speck‑like protein containing a 
caspase recruitment domain (ASC). This stimulates caspase‑1 
that cleaves the pro‑inflammatory cytokines pro‑IL‑1β and 
pro‑IL‑18 to form IL‑1β and IL‑18, thus contributing to 
a series of inflammatory responses  (37). These cytokines 
may induce profibrotic TGF‑β1, resulting in fibrosis  (38). 
Furthermore, the NLRP3 inflammasome with ASC activates 
caspase‑1 that cleaves Gasdermin‑D, which forms membrane 
pores and promotes the inflammatory cell death program (39). 
P2X7R induces inflammation by activation of NF‑κB which 

increases several inflammatory cytokine genes, such as 
TNF‑α and IL‑1β (40). Similarly, P2X7R activation promotes 
NFAT function, which in turn leads to IL‑2 inflammatory 
cytokine secretion, downregulation of glycogen synthase 
kinase activity and lymphocyte proliferation  (32,41,42). 
HIF‑1α is also a marked response following P2X7R activation. 
Ca2+ influx induced by P2X7R activation upregulates HIF‑1α 
through phosphoinositide 3‑kinase (PI3K)/protein kinase 
B (Akt)/mammalian target of rapamycin (mTOR) signaling 
pathway (43,44). This association between P2X7R and HIF‑1α 
may promote angiogenesis by activating the vascular endo‑
thelial growth factor (VEGF) secretion (45,46). Furthermore, 
Ca2+ influx after P2X7R activation may induce cell prolifera‑
tion and migration by enhancing ERK1/2 phosphorylation and 
activating NF‑κB transcription, which in turn leads to the 
secretion of matrix metalloproteinases (MMPs) (47,48). In 
addition, the P2X7R activation may induce cell death by the 
formation of ROS (49). Taken together, the data indicate that 
P2X7R is possibly a starting point for the activation of several 
intracellular signaling pathways, which in turn cause inflam‑
mation, fibrosis, proliferation, angiogenesis and cell death. 
These multiple intracellular signaling pathways induced by 
the P2X7R activity indicate that P2X7Rs may represent an 
attractive target for the prevention and treatment of numerous 
pathological conditions.

3. P2X7R in the heart

P2X7Rs are distributed widely throughout the body. In the 
heart, P2X7Rs are found in embryonic stem cell‑derived 
cardiomyocytes and their activation can increase the expres‑
sion levels of several cardiac‑specific genes, such as α‑myosin 
heavy chain (α‑MHC) and α‑actinin  (50). They are also 
expressed in epicardium‑derived cells, indicating that they 
play roles in embryonic cardiac growth and development (51). 
P2X7Rs are mainly present in the sinoatrial node, right 
atrium and left ventricular. In the rat heart, P2X7R is highly 
expressed in the right atrium and left ventricular, while in the 
human heart it is highly expressed in the right atrium (52). 
Furthermore, these receptors are present in cardiac muscle cells 
notably atrial cardiomyocytes and other cardiac cells, such as 
cardiac endothelial cells and cardiac fibroblasts (53,54). The 
wide distribution of the P2X7R in cardiac cells suggests that 
this receptor has a crucial role in several cardiac pathological 
conditions, which are discussed in detail below.

P2X7R in acute myocardial infarction. Acute myocardial 
infarction (AMI), commonly called a heart attack, is a serious 
condition characterized by sustained ischemia and reduced 
blood flow to the heart muscle, resulting in an accelerated 
death of heart muscle cells (55). Several cellular and molecular 
changes occur following myocardial infarction, which can be 
categorized into the inflammatory, proliferative and matura‑
tion phases. Firstly, the inflammatory phase (the early phase 
within 0‑4 days) is characterized by the release of ROS and 
pro‑inflammatory mediators as well as fibrin deposition and 
necrosis of cardiomyocytes. Secondly, the proliferative phase 
(within ~1‑2 weeks) is characterized by extracellular matrix 
deposition, myofibroblast differentiation, angiogenesis and the 
formation of tissue granules. Thirdly, the maturation phase 
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(from weeks to months), is characterized by apoptosis of 
myofibroblasts and the formation of a mature scar (56‑58).

A strong relationship has been noted between P2X7R 
expression and AMI. P2X7Rs are upregulated in an 
experimental in vivo AMI model (13,59,60). A clinical study 
confirmed that P2X7R mRNA expression was upregulated 
in patients with AMI (61), suggesting that P2X7Rs may be 
used as predictive biomarkers in AMI. Previous studies have 
shown that the upregulation of P2X7R expression in AMI 
is commonly accompanied by an enhanced inflammatory 
response. For example, overexpression of P2X7R following 
myocardial infarction increases the NLRP3 inflamma‑
some and release the proinflammatory cytokine IL‑1β (59). 
Furthermore, activation of P2X7Rs aggravated AMI injury in 
an animal model resulting in increased ROS levels and vaso‑
pressin activity (60). Taken together, these studies indicate that 
the P2X7R plays a key role in the pathogenesis of myocardial 
infarction.

The inhibition of P2X7Rs may enhance cardiac function 
and improve survival following AMI. Gao et al (13) indicated 
that inhibition of P2X7Rs with short hairpin RNA attenuated 
sympathetic hyperinnervation by suppressing nerve growth 
factor levels. This study further indicated that inhibition of 
P2X7Rs ameliorated inflammatory infiltration by suppressing 
NF‑κB activation and improved cardiac dysfunction by inhib‑
iting the AKT/ERK1/2 signaling pathways (13). Furthermore, 

Mezzaroma et al (62) demonstrated that inhibition of P2X7Rs 
with small interfering RNA prevents caspase‑1 activity 
and ameliorates cardiac remodeling. The role of P2X7R in 
AMI was confirmed by using specific P2X7R antagonists. 
It was shown that the P2X7R antagonist pyridoxalphos‑
phate‑6-azophenyl‑2',4‑disulfonic acid hindered the formation 
of the ASC/cryopyrin inflammasome and reduced infarct 
size as well as cell death following AMI (62). In addition, the 
application of the P2X7R antagonist Brilliant Blue G (BBG) 
attenuated sympathetic hyperactivity and cardiac dysfunc‑
tion by reducing oxidative stress as well as vasopressinergic 
cell activation in AMI rats (60). These studies indicate that 
P2X7R is a possible candidate for the treatment of myocardial 
infarction, particularly during the early inflammatory phase. 
The effect of P2X7Rs in the late phases of myocardial infarc‑
tion remains to be elucidated. Therefore, further studies are 
required to verify whether the P2X7R plays a key role during 
the proliferation and maturation phases following myocardial 
infarction.

P2X7R in myocardial ischemia‑reperfusion injury. 
Myocardial ischemia/reperfusion (I/R) injury is a complex 
condition characterized by the restoration of blood flow to the 
ischemic heart muscle (63). P2X7R expression is upregulated 
in the experimental model of myocardial I/R injury (64,65). 
There is controversy regarding the ability of P2X7R to 
exacerbate or reduce myocardial I/R injury. A previous 
study indicated that the P2X7R promoted cardiac damage by 
inducing inflammatory responses in myocardial I/R injury. In 
an animal model of myocardial I/R injury, overexpression of 
the P2X7R was shown to increase the activity of NF‑κB and 
release several inflammatory cytokines, such as IL‑6, IL‑8, 
IL‑10 and TNF‑α (64). However, it is still unknown whether 
P2X7R inhibitors can preserve heart function in response to 
myocardial I/R injury. Therefore, further assessment studies 
on the effect of the P2X7R‑induced inflammatory response in 
myocardial I/R injury are recommended.

In contrast to these findings, other studies have shown 
that the activation of the P2X7R can alleviate myocardial I/R 
injury by stimulating the release of endogenous cardiopro‑
tectants. During myocardial I/R injury, it was demonstrated 
that pannexin‑1 interacts with P2X7Rs to form a channel. The 
activation of this channel is responsible for the release of the 
cardioprotectants adenosine and sphingosine 1‑phosphate (11). 
These cardioprotectants can attenuate mitochondrial damage, 
prevent myocardial apoptosis and improve myocardial 
I/R injury via the activation of the PI3K/AKT signaling 
pathway (66). This was confirmed by using pannexin‑1 and 
P2X7R antagonists in an animal model. Vessey et al  (66) 
indicated that the pannexin‑1 antagonist carbenoxolone and 
the P2X7R antagonist BBG increases infarct size and blocks 
cardioprotection in a rat experimental myocardial I/R injury 
model. Furthermore, overexpression of the P2X7R following 
myocardial ischemia increases ERK1/2 phosphorylation, 
suggesting that the P2X7R may prevent myocardial apoptosis 
and attenuate cardiomyocyte injury in response to I/R (65,67). 
Considering all this evidence, the activation of P2X7R seems 
to be beneficial in myocardial I/R injury, suggesting that 
the P2X7R agonist is a possible target for the prevention of 
myocardial I/R injury.

Figure 1. Activation of P2X7R. ATP is a physiological agonist of P2X7Rs. 
(A) Under normal conditions, the intracellular ATP concentration is present 
at high levels, within the mM range  (32,87) and the extracellular ATP 
concentration is present at low levels, within the nM range (88). This concen‑
tration of extracellular ATP does not activate the P2X7 purinergic receptor, 
indicating that P2X7Rs have negligible activity under normal conditions. 
(B) Under pathological conditions, such as hypoxia, inflammation and 
cellular damage, the extracellular ATP concentration can increase and subse‑
quently activate the P2X7 purinergic receptor and several signaling pathways 
including the NLRP3 inflammasome, the NF‑κB, NFAT, HIF‑1α, ERK1/2 
and ROS. P2X7R, P2X7 purinergic receptor; ATP, adenosine triphosphate; 
NLRP3, nucleotide like receptor family pyrin domain member 3 inflamma‑
some; NFAT, nuclear factor of activated T cells; HIF‑1α, hypoxia‑inducible 
factor 1‑alpha; ROS, reactive oxygen species.
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P2X7R in autoimmune myocarditis. Autoimmune myocarditis 
is an inflammatory disease of the myocardium characterized 
by the infiltration of inflammatory monocytes, macrophages 
and CD4+ helper T cells into the myocardium and conse‑
quently fibrosis and necrosis  (68‑70). P2X7R expression 
is upregulated in ~50% of the experimental models of 
autoimmune myocarditis, which leads to CD4+ helper T cell 
and macrophage infiltration (12). A previous study using a 
mouse model of autoimmune cardiomyopathy indicated that 
the wild‑type mice demonstrated increases IL‑1β and IL‑17 
cytokine production. However, the levels of these cytokines 
are decreased in P2X7R−/−mice (71). In addition, treatment 
of mice with autoimmune myocarditis mice with the P2X7R 
antagonist A740003 improves their cardiac function by inhib‑
iting CD4+ helper T cell and macrophage infiltration (12). 
These studies indicated that the P2X7R is a possible target for 
the treatment of autoimmune myocarditis.

P2X7R in cardiomyopathies. Cardiomyopathy is a disorder 
of the cardiac muscle characterized by structural and func‑
tional changes of cardiomyocytes (72). A total of two types of 
cardiomyopathies have been identified, primary or secondary. 
Primary cardiomyopathies can be divided into three main 
classes as follows: Genetic (hypertrophic cardiomyopathy), 
mixed‑genetic and non‑genetic (dilated cardiomyopathy) 
and acquired (inflammatory cardiomyopathy). Secondary 
cardiomyopathies are usually associated with a variety of 
systemic disorders (diabetes) and toxicity of specific drugs 
(chemotherapy)  (72). Cardiac fibrosis is a key feature of 
various cardiomyopathies and is defined as an excess deposi‑
tion of the extracellular matrix including type I collagen by 
cardiac fibroblasts (73). It is notable that activation of P2X7Rs 
by the P2X7R agonist BzATP elevates the protein expression 
of profibrotic markers, including TGF‑β1, connective tissue 
growth factor (CTGF) and α‑smooth muscle actin (α‑SMA) 
in neonatal rat cardiac fibroblasts (67). This indicates that that 
P2X7Rs participate in the development of cardiac fibrosis (74).

An association between P2X7 expression and cardiomy‑
opathy has been shown since overexpression of this receptor 
has been observed in various forms of cardiomyopathy. It has 
been demonstrated that P2X7Rs are upregulated in mouse 
models of experimental diabetes (68) and experimental dilated 
cardiomyopathies (75). Overexpression of P2X7Rs in animal 
cardiomyopathy models is commonly accompanied by cardiac 
hypertrophy, fibrosis and apoptosis. For example, overexpres‑
sion of P2X7R in a mouse model of diabetic cardiomyopathy 
increases cardiac hypertrophy markers, such as atrial natri‑
uretic peptide and β‑myosin heavy chain, fibrosis markers, 
such as collagen I and TGF‑β1 and apoptosis markers, such 
as caspase 3 and Bax (75). A genetic study demonstrated an 
association between P2X7R expression and cardiomyopathy. 
In humans, the single nucleotide polymorphism of P2X7R 
(E186K) that results in loss of function is associated with 
hypertrophic cardiomyopathy (76).

Inhibition of P2X7R can attenuate cardiac fibrosis in 
cardiomyopathies. Cardiac fibrosis markers including collagen 
I, CTGF, α‑SMA and TGF‑β1 are reduced in a P2X7R knock‑
down model. This was supported by using P2X7R antagonists 
in an animal model of cardiomyopathy. The application of 
the P2X7R antagonist BBG attenuated cardiac fibrosis by 

inhibiting the NLRP3/IL‑1β signaling pathway  (74). The 
application of the P2X7R antagonist A438079 ameliorates 
cardiac hypertrophy, fibrosis and apoptosis by inhibiting the 
PKCβ/ERK signaling pathway (75). These data demonstrate 
that P2X7Rs have a potential role in the prevention and/or 
treatment of various forms of cardiomyopathy.

Involvement of the P2X7R in heart injury mediated by 
COVID‑19. COVID‑19 is a respiratory viral infection 
characterized by the excessive and sustained production of 
inflammatory cytokines, the so‑called cytokine storm (15,77). 
This disease can cause serious injuries in various organ 
systems, including the cardiovascular system. Viral myocar‑
ditis is the most common form of heart injury mediated by 
COVID‑19  (78). Arrhythmia and myocardial infarction 
have also been reported as heart injuries in patients with 
COVID‑19 (79,80). There is growing evidence that demon‑
strates the importance of purinergic receptors, particularly the 
P2X7R, in COVID‑19 (81). It is important to note that the P2X7R 
is hyperactivated in patients infected with the COVID‑19 viral 
strain. This hyperactivity can cause myocardial injury by the 
activation of several intracellular signaling pathways. The first 
possible pathway is the cytokine storm. During this viral infec‑
tion, the P2X7R is stimulated by high levels of ATP resulting 
in NLRP3 inflammasome activation and considerable inflam‑
matory cytokine production. These cytokines contribute to 
the cardiac inflammatory responses that may cause AMI, 
viral myocarditis and arrhythmia (14,81). The second possible 
pathway involves the angiotensin‑converting enzyme (ACE) 
II. During COVID‑19 infection, the P2X7R triggers pathways 
associated with the action of the renin‑angiotensin‑aldosterone 
system (RAAS) (81). The main effector molecule in the RAAS 
is angiotensin II, which causes vasoconstriction, cardiac hyper‑
trophy and apoptosis. This molecule is upregulated in several 
pathological conditions including cardiovascular diseases. In 
fact, ACE generates angiotensin II from angiotensin I, while 
ACE2 inhibits the activity of angiotensin II by transferring 
it to angiotensin 1‑7. Therefore, ACE2 has a cardioprotective 
effect against myocardial injury (82). It has been demonstrated 
that during the COVID‑19 viral infection, the virus enters 
human cells by binding to ACE2 resulting in the downregu‑
lation of the ACE2 signaling pathway, which can potentially 
cause myocardial injury (83‑85). Another possible pathway is 
that of VEGF. Hyperactivity of P2X7Rs following COVID‑19 
has been shown to increase VEGF production (15). This may 
stimulate angiogenesis in cardiac cells which in turn leads to 
cardiac hypertrophy. Collectively, these studies indicate that 
the P2X7R plays a major role in myocardial injury caused by 
COVID‑19. It can be hypothesized that inhibition of P2X7R is 
a promising therapeutic target for the prevention or treatment 
of cardiac injuries in patients with COVID‑19.

4. Conclusion

In conclusion, the aforementioned studies have shown that the 
P2X7R plays an essential role in the development of several 
heart diseases. The majority of the studies have demonstrated 
that the activation of the P2X7R promotes the development 
of AMI, autoimmune myocarditis and various types of 
cardiomyopathies including diabetic cardiomyopathy, dilated 
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cardiomyopathy and hypertrophic cardiomyopathy. Activation 
of the P2X7R during COVID‑19 infection may also enhance 
the process of myocardial injury via the activation of several 
intracellular signaling pathways. Based on this evidence, it is 
likely that the P2X7R can be used as a prognostic indicator 
for the detection of various heart diseases. Overall, P2X7R 
inhibitors appear to be a promising therapeutic target for the 
prevention or treatment of heart diseases, as these inhibitors 
have been shown to have primarily anti‑inflammatory effects 
against AMI and myocarditis, as well as antifibrotic and anti‑
apoptotic effects in the case of cardiomyopathies. This view is 
supported by a recent review that draws attention to purinergic 
receptors as therapeutic targets for the treatment of cardiovas‑
cular disease (86). However, it is important to note the efficacy 
of P2X7R inhibitors during the progression of heart disease 
when these inhibitors are used in clinical cardiology, as they 
may not have the same beneficial effects in different types of 
heart disease. This has been observed in experimental models 
of myocardial infarction, the use of P2X7R inhibitors may 
enhance cardiac function and significantly improve survival 
in the early inflammatory phase following myocardial infarc‑
tion (13,60,62). On the other hand, the use of P2X7R inhibitors 
may increase infarct size and abrogate the cardioprotective 
effects of adenosine and sphingosine 1‑phosphate in myocar‑
dial I/R injury (66). To develop a complete profile of P2X7R 
in the setting of heart diseases, additional experimental studies 
are required to elucidate the effects of P2X7R inhibitors on 
other common cellular and molecular features associated with 
heart diseases. For example, the effects of P2X7R inhibitors 
can be examined on cardiac fibroblast proliferation, myofi‑
broblast differentiation, angiogenesis and scar formation 
following myocardial infarction. In addition, further studies 
are required to demonstrate the effect of P2X7R inhibitors on 
the COVID‑19 signaling pathways associated with myocardial 
injury.
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