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Abstract. Histone alterations are a hallmark of kidney cancer. 
Histone acetylation modification mediated by bromodomain 
proteins (BRD) has been indicated to be related to a variety of 
cancer types and several targeted inhibitors have been proven 
to be promising modalities for cancer adjuvant therapy. As 
renal cell carcinoma (RCC) is not sensitive to radiotherapy or 
chemotherapy, the exploration of effective adjuvant therapies 
remains an important research direction for advanced RCC. 
At present, studies on bromodomain family proteins in RCC 
are limited and the roles of bromodomain family proteins in 
RCC have remained to be fully elucidated. The present review 
discussed the role of bromodomain family proteins in RCC, 
aiming to explore possible potential therapeutic targets of 
BRD‑related drugs in this type of cancer.
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1. Introduction

According to the Global Cancer Statistics 2020, the number 
of new cases of renal cell carcinoma (RCC) has increased by 
~100,000 over the past decade (1,2). Among cancers of the 
urinary system, RCC ranks third in terms of prevalence (3). 
Organ metastasis of advanced RCC is the main cause of a 
poor prognosis. Since RCC is not sensitive to conventional 
radiotherapy and chemotherapy (4), the search for specific 
biomarkers and individualized treatment options for RCC is 
an important direction.

Epigenetic alterations are among the hallmarks of cancer. 
Epigenetics has a critical role in RCC, including DNA meth‑
ylation, chromatin remodeling and histone acetylation. The 
main function of the bromodomain proteins (BRD) is the 
acetylation modification of histones (5). The first BRD was 
discovered in 1992 (6). Although the BRD is highly conserved 
structurally, BRD family proteins may be divided into eight 
distinct subfamilies (I‑VIII) based on their secondary struc‑
ture (5,7). Research has indicated that targeting these BRDs 
may provide a novel strategy for the treatment of metastatic 
RCC. The present review summarizes the roles of existing 
BRD families in related pathways in renal cancer and discusses 
the efficacy of existing BRD inhibitors and their prospects for 
clinical application.

2. Acetylation of BRD

Histone modification in transcriptional regulation. In eukary‑
otic cells, DNA is packaged into chromatin in three processes: 
The binding of DNA to core histones, the formation of nucleo‑
some core particles and chromosome core particles by core 
histones (H2A, H2B, H3 and H4) and junctional histones 
(H1) (8). The functions of histones are divided into the regula‑
tion of DNA transcription, DNA replication and DNA repair. 
Of these, core histones have a critical role in transcriptional 
regulation mainly through their post‑translational modifica‑
tions (PTMs) (9,10).

Histone modification was the first confirmed PTM. It 
was first hypothesized by Allfrey et al (11) that there was a 
‘switch’ that regulates cellular gene expression. The subse‑
quent discovery of histone acetyltransferase (HAT), histone 
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deacetylase (HDAC) and the mechanisms that control histone 
acetylation activity support the hypothesis put forth by 
Allfrey et al (11) on the role of histone acetylation in gene 
expression (12‑14).

However, whether lysine acetylation controls histone 
activity and how it controls gene activation and repression 
remain to be fully elucidated. Until the discovery that BRD 
was the first chromatin ‘reader’, it was known to exist in the 
nucleus as an acetyl‑lysine (Kac) binding domain and to be 
associated with numerous transcriptional proteins (6,15). Thus, 
histone acetylation was established as a fundamental mecha‑
nism for regulating gene transcription. However, BRD does 
not have a role in histone modification alone. Such ‘large‑scale 
engineering’ may require multiple histone combination modi‑
fications or sequential initiation, with BRD acting on one or 
more histone tails to activate target genes and downstream 
functions (16,17). BRD‑mediated lysine acetylation modi‑
fications are a major epigenetic modification in RCC tumor 
metabolism. BRDs are involved in histone modifications, 
transcription factor recruitment and transcriptional regulation, 
and DNA damage repair in RCC as chromatin remodeling 
factors (5). Furthermore, BRDs have unique structural 
properties (7).

Structure and function of BRD. BRD consists of 110 amino 
acids and includes four α helices (αZ, αA, αB and αC) 
with two distinct interhelical αZ‑αA (ZA) and αB‑αC (BC) 
loop regions. The two loops in turn produce a hydrophobic 
pocket that functions as a module for the recognition of the 
acetyl‑lysine modification (Fig. 1) (15,18). Different BRDs have 
BRD modules with varying lengths of the ZA and BC loop 
regions and may contain other types of action modules (19).

BRDs also include other domains, which combine with 
BRD to perform specific functions (Fig. 2). Certain BRDs 
contain ATPase structures that enhance the ability to bind 
Kac, contribute to the assembly of its associated complex, 
facilitate the movement of the complex along chromatin 
and coordinate the function of multiple protein docking in 
chromatin remodeling (20). For instance, ATPase family 
AAA domain containing 2 (ATAD2) of the ATPase family is 
directly involved in DNA replication by being recruited to the 
DNA replication site (21). In addition, ATAD2 has been iden‑
tified as a chromatin modifier that promotes melanoma (22). 
Although ATAD2 has not been extensively studied in RCC, 
studies have indicated an increased risk of developing RCC 
in patients with melanoma and vice versa. Both may have the 
same type of genomic mutation (23). Coactivators containing 
both HAT and BRD structural domains assist substrate recruit‑
ment by enabling the HAT‑mediated acetylation of multiple 
lysine residues on histones and transcription factors, thereby 
promoting transcriptional activation (24). ATPase‑containing 
structures of BRDs enhance the ability to bind Kac, contribute 
to the assembly of its associated complexes, facilitate the 
movement of the complexes along chromatin and coordinate 
multiple protein‑protein functions in chromatin remodeling. 
Unlike other BRDs, BRD and extraterminal (BET) proteins 
have two tightly packed BRDs that specifically bind diacety‑
lated lysine residues (25,26), promote chromatin opening, 
recruit transcription factors and coactivators to target gene 
promoters and enhancers, and activate the RNA polymerase 

II (Pol II) complex to promote transcriptional elongation (27). 
Similarly, tandem plant homeodomain (PHD) fingers with 
BRDs contribute to the assembly and activity of their associ‑
ated complexes in nucleosomes and act on DNA replication in 
chromosome segregation (28,29). BRDs are widely involved in 
the transcription of cancer‑related genes, and depending on the 
subtle differences in BRDs and various combinations of func‑
tional groups, highly selective inhibitors may be designed with 
potential clinical applications for the treatment of metastatic 
cancers (30).

Functions of BRDs in RCC. The development of RCC mainly 
includes the following biological behaviors: Angiogenesis, 
proliferation and immune regulation. In the pathogenesis of 
RCC, 3p deletion and von Hippel‑Lindau (VHL) gene inac‑
tivation are the most frequently‑occurring mutations (31,32). 
Their co‑mutation has a decisive role in the initiation of RCC. 
Inactivation of VHL leads to the uncontrolled activation 
of hypoxia‑inducible factor (HIF) target genes that regulate 
angiogenesis, glycolysis and apoptosis (4). The deletion of 
these tumor suppressor genes and the activation of oncogenes 
eventually lead to the development of RCC.

Different BRDs have different roles, which has led to the 
consideration of different BRDs in RCC (Table I). Angiogenesis 
is a typical feature of RCC and BRDs may be involved in RCC 
angiogenesis from different signaling pathways (33), and may 
even promote angiogenesis in RCC with a low HIF expres‑
sion (34). Furthermore, the majority of the BRDs mainly 
function as oncogenic proteins, promoting the proliferation 
of RCC cells (35‑41), and are associated with influencing the 
occurrence of renal cancer recurrence and metastasis (42). 
According to the ‘braided river’ model to interpret RCC (43), 
the gene mutation of RCC has an evolutionary process. 
Certain BRDs appear in RCC of more advanced stages and 
are more likely to cause distant metastasis (39,44,45). Finally, 
the formation of tumors is also inseparable from changes in 
immune regulation. The immune‑killing effect on the tumor 
is the main error correction method of the human system. The 
killing of RCC may be achieved by upregulating IFNα expres‑
sion (46) and by the induction of CD4+ T‑cells (47); polybromo 
1 (PBRM1), as a protective factor, may enhance these effects. 
However, E1A binding protein P300 (EP300)/CREB binding 
protein (CBP) also leads to the depletion of peripheral lympho‑
cytes (48), and the inhibition of peripheral inflammatory factors 
by BRD4 diminishes its killing effect on tumor cells (49). On 
the one hand, different or opposing roles between BRDs and 
mutations in BRDs are evolutionary in RCC. These generally 
increase the difficulty of RCC‑specific biomarker research. On 
the other hand, differential mutations in RCC allow patients 
to select therapeutics with high specificity. In the following 
sections, the progress of BRDs in RCC is discussed after being 
classified according to their main roles.

3. Possible functions of oncogenic BRD and their inhibitors 
in RCC

EP300/CBP. EP300 and CBP, two homologous lysine 
acetyltransferases (Fig. 2), are homologous transcriptional 
adapters targeted to the E1A oncoprotein and have a core 
role in the transcriptional regulation of hypoxia‑responsive 
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genes (50). EP300/CBP interacts with EP300/CBP‑associated 
factor (PCAF) to function in the normal cell cycle. However, 
EP300/CBP is overexpressed in RCC, while PCAF is 
frequently demonstrated to be absent as a tumor suppressor 
gene (51).

EP300/CBP promotes cell growth and angiogenesis in 
RCC through acetylation modification. EP300/CBP func‑
tions as a co‑transcription factor and forms a transcriptional 
complex with proteins such as HIF1α to recruit to the promoter 
of VEGF (52,53), and HIF‑1α transcriptional activation or 

Figure 1. Structure of the first BRD module of BRD4 (PDB ID: 2dww). The four BRD α‑helices (αZ, αA, αB and αC) are linked by flexible loop regions (AB, 
BC and ZA loops). Software used: Python 3.8 and pymol‑2.4.0‑cp38‑cp38‑win_amd64. BRD, bromodomain.

Figure 2. Domain of BRD. The name of the selected protein and the number of amino acids are provided at either end of the graphic presentation. Software 
used: BioRender (https://app.biorender.com/). GCN5L2, general control of amino acid synthesis protein 5‑like 2; PCAF‑N, PCAF N‑terminal domain; HAT, 
acetyl transferase; BD, bromodomain; PCAF, P300/CBP‑associated factor; EP300, E1A binding protein p300; NRID, nuclear receptor interaction domain; 
KIX, kinase‑inducible domain of CREB‑interacting domain; RING, really interesting new gene; PHD, plant homeodomain; CH1, cysteine‑histidine‑rich 
region 1; NRID, nuclear receptor interaction domain; CREBBP, CREB Binding protein; BRD9, bromodomain‑containing protein 9; DUF3512, domain of 
unknown function; PBRM1, polybromo 1; BAH, bromo‑adjacent homology; HMG, high‑mobility group; SMARCA2, SWI/SNF related, matrix associated, 
actin dependent regulator of chromatin, subfamily a, member 2; QLQ, glutamine‑leucine‑glutamine domain; HSA, small helicase/SANT associated domain; 
BRK, brahma and kismet domain; BPTF, bromodomain PHD finger transcription factor; DDT, DNA‑binding homeobox and different transcription factors 
domain; Q‑rich, glutamine‑rich domain; ATAD2, ATPase family AAA domain containing 2; ATPase, ATPase domain; BRD4, bromodomain‑containing 
protein 4; NPS, N‑terminal cluster of phosphorylation sites; BID, basic residue enriched interaction domain; ET, extra‑terminal domain; BRD2, bromodo‑
main‑containing protein 2; BRDT, bromodomain testis associated; TRIM24, tripartite motif containing 24; B‑Box, B‑box‑type zinc finger domain; BBC, 
B‑box, C‑terminal domain; TRIM33, tripartite motif‑containing 33.
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transcriptional repression is dependent on EP300/CBP (54). 
Consistent with HIF1α, HIF2α induces EP300/CBP recruit‑
ment so that it not only binds specifically to the enhancer of 
HIF2α to promote HIF2α expression for RCC cell growth, 

but also promotes RCC angiogenesis by enhancing VEGF 
transcription (55). In addition, HIF1α and HIF2α induce the 
recruitment of EP300/CBP at the promoter of telomerase 
reverse transcriptase, promoting the immortalization and 

Table I. BRDs in RCC.

Class Gene name Alias Function Role in RCC (Refs.)

Histone GCN5L2 KAT2A, GCN5, Histone Carcinogenic  (99)
acetyltransferase  PCAF‑B acetyltransferase
 PCAF KAT2B Histone Cancer inhibition  (102)
   acetyltransferase
 EP300 p300, KAT3B, Transcriptional Carcinogenic  (35)
  MKHK2, RSTS2 coactivator
 CREBBP CBP, KAT3A, Chromatin Carcinogenic  (50)
  MKHK1, RSTS1 remodeling factor,
   transcriptional
   coactivator
Subunits of the BRD9 FLJ13441, Transcriptional Carcinogenic  (39)
SWI/SNF complex  LAVS3040, regulator
  PRO9856,
  SMARCI2
 PBRM1 PB1, HPB1, Chromatin Cancer inhibition  (90)
  BAF180, remodeling
  SMARCH1, RCC factor  (91)
 SMARCA BRM, HBRM, Chromatin Cancer inhibition  (95)
 (A/B) SNF2L2, BAF190, remodeling
  SNF2A, HSNF2a, factor
  NCBRS
ISWI family of BPTF FAC1, FALZ, Chromatin Carcinogenic (44)
chromatin remodeling  NURF301 remodeling factor
factors
ATPase family ATAD2 ANCCA, CT137, Transcriptional Carcinogenic  (38)
  PRO2000, coactivator
  MGC5254
BET family proteins BRD4 CAP, MCAP, Transcriptional Carcinogenic  (49)
  HUNK1 regulator
 BRD2 FSH, RING3, Transcriptional Carcinogenic  (37)
  KIAA9001, regulator
  D6S113E, FSRG1,
  NAT, RNF3
 BRDT BRD6, CT9, Transcriptional Carcinogenic  (41)
  SPGF21 coactivator
TRIM family proteins TRIM24 TIF1α, PTC6, Transcriptional Carcinogenic  (40)
  RNF82, TIF1A activator
 TRIM3 TIF1‑γ, PTC7, E3 ubiquitin Cancer inhibition  (103)
 (A/B) RFG7, KIAA1113, protein ligase,
  TIF1G, FLJ11429, transcriptional
  ECTO inhibitor

BRD, bromodomain protein; GCN5L2, general control of amino acid synthesis protein 5‑like 2; PCAF, EP300/CBP‑associated factor; 
CREBBP, CREB binding protein; PBRM1, polybromo 1; BPTF, BRD PHD finger transcription factor; ATAD2, ATPase family AAA domain 
containing 2; TRIM, tripartite motif‑containing; EP300, E1A binding protein P300; SMARCA2, SWI/SNF related, matrix associated, actin 
dependent regulator of chromatin, subfamily A, member 2; RCC, renal cell carcinoma.
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transformation of renal cancer cells (56). Furthermore, 
EP300/CBP binding to H3AcK18 enhances RCC cell viability, 
adhesion and invasiveness (35).

EP300/CBP also promotes RCC progression by promoting 
macrophage infiltration through the RNA‑binding motif 
protein 15 (RBM15)‑C‑X‑C motif chemokine ligand 11 
signaling axis (57). In addition, EP300/CBP upregulation is 
also associated with T‑cell dysfunction. EP300/CBP reduces 
tumor‑infiltrating lymphocytes by downregulating immune 
checkpoint gene expression via binding to serine and argi‑
nine‑rich splicing factor 2 and cause immune escape of RCC 
cells (48).

EP300/CBP is structurally and functionally complex; 
however, it currently only has two related inhibitors in RCC. 
Inhibitors targeting the BRD binding of EP300/CBP include 
C646, which effectively inhibits EP300/CBP (57). HBS1, a 
high‑affinity ligand of cysteine‑histidine‑rich region 1, func‑
tions as an antibody to HIF1α, but is able to block the binding 
of HIF1α to the CH300 structural domain of EP300/CBP 
without affecting normal cell function (58).

The BET family: BRD4, BRD2 and BRD testis associated 
(BRDT)
BRD4. BRD4 is highly expressed in RCC (36). BRD4 is a 
transcriptional and epigenetic regulator that has a crucial 
role in transcription (59,60). BRD4 has multiple substrate 
binding sites and a common kinase structural domain that 
phosphorylates Pol II, the proto‑oncogene C‑MYC and the 
transcription factors TATA‑box binding protein associated 
factor 7 (a component of the TFIID complex, controls the first 
steps of transcription) and cyclin‑dependent kinase (CDK)9. 
BRD4 is also a scaffolding protein that interacts with chro‑
matin modifiers and transcription factors, including recruiting 
transcription factors and transcription elongation factor b (61).

Normally, BRD4 is inhibited by caspase‑3, leading to the 
pyroptosis of RCC cells. When BRD4 is activated, it inhibits 
the production of the peripheral inflammatory factors, IL‑1β 
and IL‑18, by cells. This allows immune evasion of RCC from 
IL‑1β and IL‑18 (49), promotes RCC cell proliferation and 
epithelial‑mesenchymal transition (EMT) and inhibits tumor 
killing by peripheral T‑cells (62). Another study demon‑
strated that BRD4 acetylation modified the histones of B‑cell 
lymphoma‑2 (BCL2) and C‑MYC to increase their expres‑
sion (36). MYC is a heterogeneous gene fragment frequently 
activated in cancer, and targeting BRD4 may inhibit its 
expression (63). This suggests that BRD4 upregulation is 
closely related to RCC; the inhibition of BRD4 gene expres‑
sion and the enhancement of peripheral inflammatory factors 
may become a novel treatment strategy for metastatic RCC.

BRD4‑related drugs have been tested in vivo and in vitro. 
JQ1, a BET inhibitor, has been demonstrated to inhibit 
RCC (49). JQ1 not only acts on ordinary RCC (36), but 
also exerts a notable inhibitory effect on sunitinib‑resistant 
RCC (64). There are other BET inhibitors, such as physache‑
nolide C, which enhances T‑cell‑mediated tumor cell killing 
through the targeted inhibition of BRD4 (62). High selectivity 
is a prominent indicator of the inhibitory effect: BDF‑1253 
leads to a ~4‑fold greater inhibition of BRD4 compared to the 
prototype, nitroxibenzylidine, and exhibits suitable selectivity 
for BET proteins over other BRDs or epigenetic modifiers (37). 

The effective blockade of BRD4 downstream gene expression 
by inhibiting BRD4 induces cell cycle arrest and apoptosis, 
impairs RCC cell viability and reduces RCC cell growth (36).

Pharmacological studies on kidney cancer cells have 
revealed that BRD4 and the PI3K/mTOR pathway comple‑
ment each other to promote the proliferation of kidney 
cancer cells. VS‑5584, a dual inhibitor of PI3K/mTOR, 
may effectively inhibit the proliferation and survival of 
RCC cells (65), but leads to increased BRD4 expression, 
resulting in enhanced tumor drug resistance. By contrast, the 
simultaneous inhibition of BRD4 and PI3K/mTOR signifi‑
cantly inhibits tumor cell survival and does not increase 
tumor drug resistance. Furthermore, the dual inhibitor 
of mTORC1/2 (Palomid 529) has been found to be more 
effective in BRD4‑negative RCC cells than normal RCC 
cells (66), demonstrating that BRD4 and the PI3K/mTOR 
pathway have a complementary effect on each other. By 
contrast, SF2523 is a dual inhibitor of BRD4 and PI3K‑AKT; 
SF2523 is more effective than the PI3K inhibitor and JQ1 
in killing RCC cells (67). Furthermore, the BET inhibitor 
OTX015 exerts a therapeutic effect on cancer patients with 
deletion of BRCA1‑associated protein 1 (BAP1), a ubiquitin 
carboxy‑terminal hydrolase (68); patients with a BAP1 dele‑
tion in RCC tend to have poor prognosis (69).

The aforementioned inhibitors exert potent effects by 
inhibiting BRD4 or when BRD4 is inhibited (Fig. 3). The inhi‑
bition of BET family members has great therapeutic potential 
in the treatment of RCC. Currently, clinical resistance to BET 
inhibitors limits their application; however, synergistic anti‑
tumor effects have been observed when used in combination 
with other tumor suppressors (70). Therefore, the design of 
BET BRDs dual‑target inhibitors and their combination is a 
reasonable strategy, which may be used to enhance the efficacy 
of cancer therapy and reduce drug resistance. However, exten‑
sive animal studies are still required to verify the efficacy and 
toxicology prior to clinical application.

BRD2. BRD2 may be a surrogate for BRD4 (37). JQ1, a BET 
inhibitor, is also partially selective for BRD2 and BRD3 (64). 
Researchers have found overexpression of both BRD2 and 
BRD4 BET family proteins in RCC. It has also been indicated 
that knockdown of BRD2 or BRD4 only moderately inhibits 
RCC cell proliferation. However, co‑knockdown of BRD2 and 
BRD4 results in significant inhibition of BCL2 and C‑MYC 
oncoprotein expression, thereby reducing the proliferation of 
RCC cells. This indicates the compensatory effect between 
members of the BET family (37).

BRDT. BRDT functions as a chromatin remodeling 
factor in recognizing acetylated histones and recruiting 
transcriptional complexes (71). It interacts with eukaryotic 
translation initiation factor 4E‑binding protein 1 (eIF4EBP1) 
to promote C‑MYC transcription and RCC progression. 
BRDT inhibitor PLX51107 exerts an inhibitory effect on 
RCC cells; however, eIF4EBP1 overexpression hinders its 
inhibitory effect (72). Therefore, dual inhibitors of both 
proteins or a combination of both inhibitors may be required 
for clinical application in RCC. The initiation of BET family 
proteins in RCC does not appear to proceed via a sole mech‑
anism, i.e. not only in terms of the binding of BETs to other 
proteins, but also among BETs (64), which complement each 
other while interacting.

https://www.spandidos-publications.com/10.3892/mmr.2023.13026
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Other oncogenic BRDs
BRD PHD finger transcription factor (BPTF). BPTF contains 
two PHD fingers and a BRD that regulates gene transcription 
by interacting with the MYC‑associated zinc finger protein, 
ZF87/MAZ (73). BPTF is a subunit of the ISWI chromatin 
remodeling complex, NURF, and has a crucial role in chro‑
matin remodeling as a transcription factor (74). The increased 
expression of BPTF causes glycolytic reprogramming and 
distant lung metastasis in RCC. Its inhibitor, AU1, is effec‑
tive in inhibiting the metastatic potential of patient‑derived 
cells, metastatic RCC‑derived organoids, as well as in situ 
xenograft models of metastatic RCC, suggesting that BPTF 
may be applied as an initial therapeutic marker for metastatic 
RCC (44).

ATPase family AAA domain containing 2 (ATAD2). 
There are two isoforms of human ATAD2, ATAD2A and 
ATAD2B (75). However, the majority of published func‑
tional studies have been performed on ATAD2A (21,75,76). 
ATAD2 is an emerging oncoprotein, a potential biomarker 
and a potent cancer drug target. In RCC, ATAD2 has been 
found to be a novel gene that is associated with prog‑
nosis, and its high expression increases the risk of RCC 

progression (77). By knocking down and overexpressing 
ATAD2, it has been found that its overexpression promotes 
RCC progression (38).

BRD9. BRD9 is highly expressed in HIF2α‑deficient 
RCC. SOX17 recruits BRD9 to upregulate genes in RCC 
pathogenesis, including VEGFR2 (34). There is a negative 
correlation between the expression of BRD9 and HIF2α, 
and the expression of related genes is upregulated by BRD9 
to target the Notch1‑Hes1 signaling pathway to promote the 
proliferation, migration and invasion of RCC cells (39). A 
previous study demonstrated that BRD9 inhibitor (I‑BRD9, 
also known as GSK602) effectively inhibited tumor growth 
in vitro and in vivo. It also prolonged the survival of RCC mice 
compared to sunitinib (34). Due to HIF activation in RCC 
caused by VHL inactivation, targeting HIF2α and applying 
anti‑angiogenic targeted drugs are considered mainstream 
therapeutic approaches for metastatic RCC (78). A lower 
expression of HIF2α in RCC was indicated to be associated 
with a lower survival rate and prognosis. Hence, the search for 
novel drug targets in HIF2α‑deficient RCC may be promising. 
BRD9 is expected to be a valuable target for the treatment of 
HIF2α‑deficient RCC.

Figure 3. BRD regulate important carcinogenic factors through histone modification. The EP300/CBP complex promotes the expression of RBM15 and down‑
stream CXCL11 and SRSF2 expression. Furthermore, EP300/CBP recruits STAT3 and promotes MYC expression. EP300/CBP binds to HIF1α and HIF2α 
and promotes angiogenesis. In PBRM1‑inactivated RCC cells, the increase in HIF1α/HIF2α expression promotes tumor tissue angiogenesis. The inactivation 
of PBRM1 also results in uninhibited STAT3 and PI3K pathways, promoting RCC development. In RCC, RBPJ promotes the production of DAPK3, which 
competes with PKA for the binding site of UBE3A, ultimately degrading PBRM1 and promoting RCC proliferation. BRD4/BRD2 promotes PI3K/mTOR 
pathways and the expression of BCL2 and MYC. It also inhibits T‑cell infiltration in tumor tissues by inhibiting NLPR3. Software used: BioRender (https://app.
biorender.com/). EP300, E1A binding protein P300; CBP, CREB binding protein; RBM15, RNA‑binding motif protein 15; CXCL11, C‑X‑C motif chemokine 
ligand 11; SRSF2, serine and arginine‑rich splicing factor 2; STAT3, signal transducer and activator of transcription 3; HIF, hypoxia‑inducible factor; BRD, 
bromodomain protein; RCC, renal cell carcinoma; RBPJ, recombination signal binding protein for immunoglobulin kappa J region; DAPK3, death associated 
protein kinase 3; PKA, protein kinase A; UBE3A, ubiquitin protein ligase E3A; p21, one of the downstream target genes of p53; NLRP3, NOD‑like receptor 
thermal protein domain associated protein 3.



MOLECULAR MEDICINE REPORTS  28:  139,  2023 7

4. Tumor suppressor BRD in RCC

PBRM1 regulates multiple biological processes of RCC. 
PBRM1 is frequently mutated in human tumors and PRBM1 
comprises 1,689 amino acids. PBRM1 is characterized 
by a C‑terminal high migration pattern, including two 
bromine‑associated homologous structural domains and six 
bromine structural domains (79). These bromine structural 
domains combine with acetylated residues at the histone 
tail (80), and each bromine domain has a different affinity 
for the specific acetylated peptides on the histones and may 
coordinate with the exact pattern of acetylated lysine residues 
in the nucleosome (81,82). Previous studies suggested that 
RCC is characterized by partial loss of chromosome 3p, while 
PBRM1 resides on 3p and has deletion mutations at a relatively 
high frequency, just second only to VHL in RCC, accounting 
for ~30‑40% of RCC cases (79,80,83). As PBRM1 is a tumor 
suppressor, the deletion mutation of PBRM1 combined with 
VHL deletion produces stable tumor models (84,85).

RCC develops its mutations differently and at different 
time‑points. In certain RCC cell lines, PBRM1 may remain 
present following the deletion of VHL. The deletion mutation 
or suppressed state of PBRM1 may be caused by other factors. 
For instance, recombination signal binding protein for immu‑
noglobulin kappa J region (RBPJ) promotes death‑associated 
protein kinase 3 binding to ubiquitin‑protein ligase E3A 
(UBE3A), destabilizing PBRM1 in RCC cells and thereby 
reducing the protective effect of PBRM1 on normal renal 
tissue. UBE3A knockdown increased the sensitivity of CDK 
inhibitors, and RBPJ inhibitors modulate CDK4/6 inhibitor 
drug sensitivity to improve tumor suppression (86). By inhib‑
iting PBRM1 upstream as described above, the presence of 
PBRM1 has been found to exert protective effects on normal 
kidney tissue, suggesting that it inhibits the action of common 
oncogenic factors in RRC. However, following the knockdown 
of PBRM1, it has been found that PBRM1 deletion did not 
allow for the inhibition of the HIF1/STAT3 signaling pathway 
in the kidney, and PBRM1 deletion attenuated the activity of 
the negative regulator of mTORC1, TSC1, facilitating mTORC1 
activation and leading to advanced RCC (84,87). In addition, 
deletion of PBRM1 enhanced the hypoxic response, leading 
to increased induction of HIF1α and HIF2α, which promoted 
angiogenesis and cell proliferation in kidney cancer (88,89). 
The simultaneous knockdown of both PBRM1 and VHL genes 
in RCC cell lines also resulted in the activation of HIF and in 
the upregulation of PI3K signaling, promoting glucose uptake 
and adhesion in RCC cells (Fig. 3) (90,91).

PBRM1 deficiency is not only involved in angiogenesis 
following the induction of hypoxia, but also allows tumor cells 
to acquire the related functions of immune evasion. PBRM1 
recruits lysine demethylase 5C to upregulate IFNα gene 
expression and acts on IFN‑stimulated gene factor 3 to inhibit 
RCC progression (46). Furthermore, PBRM1 has been found 
to bind directly to the RRM1 and RRM2 sites and promote the 
infiltration of CD4 T‑cells in the peripheral tissues of RCC (47). 
As with anti‑vascular targeting agents, anti‑programmed cell 
death 1 agents are associated with improved clinical prognosis 
in patients with PBRM1‑deficient mutated RCC (92). This 
suggests that PBRM1‑deficient RCC is sensitive to targeted 
drugs and immune agents.

Other tumor suppressor BRDs in RCC
SMARCA2. SWI/SNF‑related, matrix‑associated, actin‑
dependent regulator of chromatin subfamily A member 2 
(SMARCA2)S mutations are highly associated with VHL 
inactivation, an elevated tumor grade and a relatively poorer 
prognosis (93,94). RCC cells in the G2/M phase are promoted 
to undergo apoptosis and cell cycle arrest by SMARCA2 muta‑
tions, not only by SMARCA2 deletion but also by epigenetic 
silencing of SMARCA2. Therefore, the inhibition of SMARCA2 
transcription has a carcinogenic role (95), and the restoration 
of SMARCA2 expression by a HDAC3 inhibitor (RGFP966) 
effectively inhibited tumor progression in RCC (96). The 
restoration of the expression of tumor suppressor genes may 
thus be an effective strategy for the treatment of RCC.

5. Different functions of homologous BRD

General control of amino acid synthesis protein 5‑like 2 
(GCN5L2) and PCAF. GCN5L2 was the first histone acetyl‑
transferase identified with an N‑terminal structural domain, a 
conserved HAT structural domain and a C‑terminal bromine 
structural domain (97). The aforementioned three structural 
domains are also found in PCAF, with only one molecular 
weight difference between the two (Fig. 2). The two proteins 
have approximately the same function, although PCAF can 
be methylated (98). Furthermore, both have opposite effects 
on RCC outcomes. The overexpression of GCN5L2 upregu‑
lates monocarboxylate transporter 1 (MCT1), thus promoting 
glycolysis in RCC cells. The proliferation of RCC cells with a 
high GCN5L2 expression may be significantly inhibited by an 
MCT1 inhibitor (AZD3965) (99).

PCAF is known as GCN5‑related N‑acetyltransferase 
in the lysine acetyltransferase family (100). As previously 
mentioned, PCAF (the EP300/CBP‑associated factor) is 
a tumor suppressor gene in RCC (101). NADPH oxidase 
(NOX)4 functions as a mitochondrial energy sensor and the 
derived reactive oxygen species inhibit the acetylation of 
PCAF, promote metabolic reprogramming and enhance drug 
resistance in RCC cells (102). Promoting PACF expression or 
inhibiting NOX to reduce drug resistance in RCC may be a 
novel therapeutic approach.

Tripartite motif‑containing (TRIM)24 and TRIM33. The 
TRIM family is a class of proteins with E3 ubiquitin ligase 
activity. Its members include a number of key biological 
processes, including autophagy, carcinogenic, intracellular 
signaling, protein ubiquitination and innate immunity (103). 
TRIM24 and TRIM33 form chromatin remodeling 
complexes with heterochromatin protein 1 and HDAC, 
with chromatin remodeling, mainly of different molecular 
weights (Fig. 2) (104). However, the two have distinct 
roles in the progression of RCC. In RCC, the transcription 
of TRIM24 is regulated by bone morphogenetic protein 
(BMP)8A, and the upregulation of TRIM24 by BMP8A 
enhances the Wnt‑regulated Wnt signaling pathway, thus 
promoting proliferation, invasion, and metastasis and drug 
resistance (40,45).

In contrast to TRIM24, TRIM33 functions as a tumor 
suppressor in RCC and its overexpression inhibits β‑linked 
proteins on the Wnt signaling pathway, which reduces the 
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expression of cyclin D1 and C‑MYC. Consequently, TRIM33 
inhibits the growth of RCC and leads to the upregulation 
of E‑calmodulin expression and the downregulation of 
N‑calmodulin to reduce the EMT potential of RCC cells (103). 
In addition, the overexpression of TRIM33 significantly 
inhibits TGFβ‑induced Smad activation, inhibiting RCC 
progression (105).

6. Clinical value of BRD

Large‑scale studies have identified mutations in BRDs that 
cause dysfunction and lead to cancer development. BRDs are 
intimately involved in the regulation of gene transcription; 
therefore, the inhibition of BRD structural proteins is consid‑
ered a strategy for targeting oncogenic transcription factors 
that have long been considered attractive drug targets, but 
cannot be directly regulated with small molecule inhibitors. 
This can also be tailored to the nature of the tumor, with 
different transcriptional repression. For instance, BET inhi‑
bition has been shown to block the association of MYC with 
BRD4 and MYC transcription (61,63). In anti‑angiogenesis, 
the transcriptional expression of HIF, VEGF and VEGFA 
can be reduced by targeted inhibition of BRDs (33,34). In 
immunotherapy, immune checkpoints can be suppressed by 
targeting and inhibiting BRDs or activating BRDs to restore 
the transcriptional activity of antitumor factors (46‑48). 
As presented in Table II, a large number of related drugs 
(Fig. S1) have been applied to basic studies on RCC and 
these have exhibited improved tumor‑suppressive effects 
by directly inhibiting BRD or its downstream functional 

molecules. Targeting BRD structural proteins holds promise 
in clinical practice; however, to date, at least to the best of 
our knowledge, no clinical trials have been performed on 
RCC.

7. Conclusions and future perspectives

RCC is a common disease of the urinary system; however, 
its development process is highly complex, while research on 
BRDs has provided certain insight. BRDs are fully involved 
in the proliferation, angiogenesis and immune regulation of 
RCC, and supplement the signaling pathways of these cellular 
behaviors. Inhibiting the expression of these oncogenes or 
restoring the expression of those tumor suppressor genes may 
exert a notable inhibitory effect on RCC and may provide a 
potential solution for RCC resistance to VEGF‑targeted drugs. 
Of note, the aforementioned studies on BRD molecules have 
revealed information regarding the promotion or inhibition of 
RCC; however, the specific underlying mechanisms remain to 
be fully elucidated and further in‑depth research is required, 
as clinical trials on related inhibitors are lacking.
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Table II. Inhibitors.

Inhibitor Target protein Type of experiment (Refs.)

CPTH2 EP300/CBP Cell experiments  (35)
C646 EP300/CBP Cell and animal experiments (57)
HBS1 EP300/CBP Cell and animal experiments (58)
SF2523 BRD4, P13K Cell and animal experiments  (67)
JQ1 BET  Cell and animal experiments  (36)
BDF1253 BET  Cell and animal experiments  (37)
PCC BET Cell experiments  (62)
OTX015 BRD2/3/4 Cell and animal experiments  (68)
AU1 BPTF Cell and animal experiments  (44)
AZD3965 MCT1 (downstream Cell and animal experiments  (99)
 signaling of GCN5L2
 is blocked)
RGFP966 HDAC3 (expression Cell and animal experiments (96)
 of SMARCA2
 returned to normal)
PLX51107 BRDT Cell and animal experiments (72)

CPTH2, a histone acetyltransferase inhibitor; C646, a selective small molecule inhibitor of EP300/CBP; AU1, GSK1379725A, a BRD PHD 
finger transcription factor antagonist; HBS1, a high‑affinity ligand of cysteine‑histidine‑rich region 1, an EP300/CBP inhibitor; RGFP966, 
an inhibitor of histone deacetylase 3; SF2523, a PI3K/BRD4 inhibitor; JQ1, a BET inhibitor; BDF1253, a BET inhibitor; PLX51107, a 
BET inhibitor; PPC, a BET inhibitor; OTX015, a BET inhibitor; AZD3965, an inhibitor of monocarboxylate transporter 1. CPTH2, cyclo‑
pentylidene‑[4‑(4‑chlorophenyl)thiazol‑2‑yl]hydrazone; PPC, physachenolide C; C646, ChemBridge#5838646; EP300, E1A binding protein 
P300; CBP, CREB binding protein; BET, BRD and extraterminal; BRD, bromodomain protein.
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