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Abstract. Endometrial cancer (EC) ranks as the sixth most 
common malignancy in women around the world. Although 
low‑grade and early‑stage EC commonly have an excellent 
prognosis, ~20% of EC patients experience an unfavorable 
prognosis. Identifying the pathogenesis and novel therapeutic 
targets may help address this group of patients. Non‑coding 
(nc)RNAs, such as long non‑coding RNAs (lncRNAs), 
microRNAs and circular RNAs (circRNAs), have been associ‑
ated with EC occurrence and development. In addition, the 
aberrant activation of the Wnt/β‑catenin signaling pathway 
can promote the proliferation, invasion, migration and 
epithelial‑to‑mesenchymal transition (EMT) of EC cells. The 
network of ncRNAs has also been demonstrated to inhibit or 
activate the Wnt/β‑catenin signaling pathway. In the present 
review, ncRNAs, the Wnt/β‑catenin signaling pathway, and 
their crosstalk in EC were summarized and highlighted. 
This information is expected to provide novel insights into 
improving the management of EC using RNA as therapeutics.

Contents

1.	 Introduction
2.	 Wnt/β‑catenin signaling pathway in EC
3.	 Therapies targeting the Wnt/β‑catenin signaling pathway
4.	 Challenges and perspectives

1. Introduction

Endometrial cancer (EC) originates from the endometrium 
and is one of the most common cancers in females worldwide, 
accounting for 7% of all new cancer diagnoses and leading to 
4% of all estimated cancer deaths in 2022 (1). The incidence 
and death rates of EC appear to have been leveling off in recent 
years after two decades of increase since 1997 (1). Given that 
EC mainly affects peri‑ and postmenopausal women, the 
cancer burden of EC is likely to remain incremental due to an 
increase in the adult and aging populations (2). Surgery is the 
primary treatment of EC, which is accompanied by adjuvant 
therapies, such as chemotherapy, followed by external beam 
pelvic radiotherapy and vaginal brachytherapy. The majority 
of EC patients who had undergone surgery and adjuvant 
therapies based on clinicopathological characteristics, had a 
favorable prognosis with a 76‑95% 5‑year survival rate (3). 
However, since the pathogenesis of EC has not been fully 
elucidated, effective treatment is deficient for advanced and 
recurrent EC creating a need to explore new targets and 
develop new screening methods.

The Wnt signaling pathway is a highly conserved axis 
participating in various physiological and pathological 
processes (4). Wnt1 was first discovered in 1982 by Dr Roel 
Nusse (5), after which several other Wnt family proteins were 
identified, and their functions were studied in further detail. 
The Wnt signaling pathway is divided into two categories, the 
canonical pathway (β‑catenin‑dependent) and the non‑canon‑
ical pathway (β‑catenin‑independent). The non‑canonical 
pathways mediate cell polarity and regulate intracellular levels 
of calcium, while the canonical Wnt pathway is closely related 
to the tumorigenesis, progression, and prognosis of certain 
solid tumors, including EC (6,7).

Previous studies have confirmed that β‑catenin is the 
main positive mediator that activates selected genes and plays 
essential roles in embryonic development, tissue homeostasis 
and regeneration (4,8,9). Previous studies that focused on the 
Wnt/β‑catenin pathway in EC, evaluated the role of Catenin 
beta 1 (CTNNB1) gene mutation, which encodes for the 
β‑catenin and also excessively activates the Wnt/β‑catenin 
pathway. CTNNB1 mutation frequently occurs in endome‑
trioid types of ECs (EECs) and is the most common mutation 
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in all early‑stage and low‑grade EC patients. Although these 
subsets of EC patients tend to have low‑risk characteristics, 
the presence of CTNNB1 mutation is associated wuth worse 
outcomes with decreased recurrence‑free survival and overall 
survival  (10‑12). Furthermore, other components of the 
Wnt/β‑catenin pathway, and their crosstalk with other signaling 
pathways have been determined to occur in EC (13‑17).

Non‑coding RNAs (ncRNAs) are a class of functional 
RNAs that play critical roles in normal cellular processes, 
as well as in the pathogenesis of human diseases, including 
long non‑coding RNA (lncRNA), microRNA (miRNA), and 
circular RNA (circRNA)  (18‑20). RNA‑RNA interaction 
plays a fundamental role at multiple levels of gene expression 
and regulation (20,21). RNA transcripts containing miRNA 
binding sites (also known as seed sequence) can act as a 
competing endogenous RNA (ceRNA) specifically for shared 
miRNAs, co‑regulating with each other, and integrating 
ncRNAs with the protein‑coding RNA (21).

Dysregulation of a variety of ncRNAs expression and the 
associated ceRNA network have been reported to engage in the 
genesis and progress of various malignancies, including EC. 
For example, lncRNA NEAT1 was reported to be abnormally 
expressed in several cancers, and to promote cell proliferation, 
migration and invasion of EC cells by sponging miR‑214‑3p 
via the HMGA1/Wnt/β‑catenin pathway (22‑24). LncRNA 
BMPR1B‑AS1 was overexpressed in EC tissues, and exerted 
an oncogenic role by competitively binding to miR‑7‑2‑3p 
to modulate the DCLK1‑induced PI3K/Akt/NF‑κB pathway 
activation (25). Also, the aberrant expression of a series of 
cirRNAs has been identified as oncogenic drivers or tumour 
suppressors in EC. For example, circ_0039569, circ_0007534, 
circ_0005797, circ_0001610 and more were found to affect 
cell proliferation, metastasis, invasion, drug‑resistance and the 
radiosensitivity of EC cells (26‑29).

In the present review, a brief overview of the non‑canonical 
pathway is provided with a focus on the role of the canonical 
pathway in EC. Next, the Wnt/β‑catenin signaling pathway 
was associated with the RNA network to further elucidate the 
mechanisms of initiation and progression of EC, aiming to 
provide new insights into EC prevention and intervention by 
utilizing potential targets.

2. Wnt/β‑catenin signaling pathway in EC

The Wnt signaling pathway is divided into two catego‑
ries, the canonical pathway (β‑catenin‑dependent) and the 
non‑canonical pathway (β‑catenin‑independent) (6,7) (Fig. 1). 
The non‑canonical pathway regulates intracellular calcium 
levels and modulates cell polarity. However, the canonical Wnt 
pathway has more association with tumorigenesis, progression, 
and prognosis of certain solid tumors, including EC.

Planar cell polarity (PCP)/Wnt signaling pathway in EC. 
The non‑canonical Wnt signaling pathway includes the PCP 
pathway and calcium‑dependent Wnt pathways. There are six 
core components involved in this pathway: i) Frizzled (FZD), 
ii) Flamingo (Fmi, also known as Stan, Celsr in vertebrates), 
iii) Vang‑like (Vangl), iv) Dishevelled (Dsh; Dishevelled‑like 
(DVL) in vertebrates), v) Prickle (Pk) and vi) Diego (Dgo; also 
known as Inversin and Diversin in vertebrates) (30‑34). FZD, 

Celsr and Vangl are transmembrane proteins, while DVL, Pk 
and Diversin are cytoplasmic proteins. Upon interacting with 
these proteins, the small Rho GTPase effector molecules, 
c‑Jun N‑terminal kinase (JNK), and Nemo‑like kinase (NLK) 
are activated (34‑37). These processed lead to the asymmetric 
distribution of the PCP/Wnt signaling pathway proteins that 
consequently influence the cell polarity (34) (Fig. 1).

Several studies have confirmed that the aberrant regula‑
tions of the PCP/Wnt signaling pathway are correlated 
with developmental abnormalities and diseases including 
Kartagener's syndrome, open neural tube defects, deafness, 
heart defects and polycystic kidneys (38‑42). Previous studies 
have also indicated that the upregulation of the PCP/Wnt 
signaling pathway is associated with poor prognosis in multiple 
cancers (43,44). Luga et al (45) reported that exosomes derived 
from breast cancer fibroblasts could activate the Wnt11/PCP 
signaling, consequently promoting an invasive behavior. As a 
result of this process, asymmetric distribution of the PCP/Wnt 
signaling pathway proteins were observed in cancer cells.

In addition, disruption of the Prickle1‑Rictor complex may 
have the ability to inhibit breast cancer migration, while the 
upregulation of this complex was associated with poor prog‑
nosis (46,47). Notably, the PCP/Wnt signaling pathway is also 
highly associated with the epithelial‑mesenchymal transition 
(EMT), which plays a vital role in endometrial carcinogen‑
esis (34,48,49). Studies have also indicated that Wnt5A and 
Wnt11 could initiate the PCP/Wnt signaling pathway, while 
Wnt5A was reported as a tumor suppressor in multiple cancers. 
Wasniewski et al (50) reported that the expression of Wnt5A 
was decreased in patients with EC, thus, could be a potential 
marker in EC. However, the precise role of interaction between 
the PCP/Wnt signaling pathway and EMT‑promoting endome‑
trial carcinogenesis still requires further investigation.

Calcium‑dependent Wnt signaling pathway in EC. Unlike 
the PCP/Wnt signaling pathway, the calcium‑dependent Wnt 
signaling pathway regulates the expression of selected gene 
targets by modulating intracellular calcium ion homeostasis. 
It has been confirmed that the binding of Wnt5A to Frizzled 
and activation of receptor tyrosine kinase orphan‑like 
receptor 2 (ROR2) tyrosine kinase suppresses the canonical 
Wnt/β‑catenin signaling pathway (51). In response to DVL 
and G proteins, phospholipase C is activated, resulting in an 
increase in diacylglycerol (DAG), inositol 1,4,5‑triphosphate 
(IP3), and intracellular calcium (34). Calcium is a universal 
second messenger responsible for the activation of calcium 
calmodulin‑dependent protein kinase II (CaMKII) and 
protein kinase C (PKC). CaMKII and PKC subsequently 
activate downstream signaling molecules such as NFκB and 
CREB (34). In addition, CaMKII and PKC may play suppres‑
sive roles in regulating β‑catenin (52).

Previous studies have also demonstrated that Wnt5A 
initiates the calcium‑dependent Wnt signaling pathway (34). 
Moreover, although Wnt5A may act as a tumor suppressor in 
multiple cancers, Wnt5A functions as either a proto‑oncogene 
or a tumor suppressor depending on the cell type and receptor 
availability (53‑56). Zmarzly et al (57) reported that Wnt2, 
Wnt4 and Wnt5A were involved in the EMT process and were 
significantly decreased in EC. In addition, Wnt5A may also be 
regulated by miR‑370, miR‑432 and miR‑200b‑5p. However, 
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the role of calcium remains unclear and needs further investi‑
gation (Fig. 1).

Canonical Wnt/β‑catenin signaling pathway in EC. The 
activation of the β‑catenin‑dependent Wnt signaling pathway 
depends on the sequential action of its components. In brief, 
firstly, extracellular Wnt proteins, like Wnt1 and Wnt3a, bind to 
the transmembrane coreceptors, which are mainly comprised 
of FZD and low‑density lipoprotein receptor‑related protein 5 
or 6 (LPR5/6). With the ligation of both segments, the DVL 
scaffolding protein is recruited to the plasma membrane. Next, 
DVL phosphorylates LPR6 and dissociates the ‘destruction 
complex’, which consists of adenomatous polyposis coli (APC), 
AXIN, casein kinase 1 (CK1), and glycogen synthase kinase 
3 protein (GSK3), to stabilize β‑catenin. Then, the cytoplasm 
accumulated‑β‑catenin translocates to the nucleus and eventu‑
ally cooperates with the T cell‑specific factor (TCF)/lymphoid 
enhancer‑binding factor (LEF) transcription factors to induce 
the transcription of targeted genes, including CCND1, c‑MYC 
and MMPs. Conversely, β‑catenin is sequestrated by the 
‘destruction complex’ in the absence of Wnt. Subsequently, 
β‑catenin is phosphorylated by GSK3β and CK1α, promoting 
its ubiquitination and subsequent proteasomal degrada‑
tion (4,6,7,58) (Fig. 1).

As the hyperactivation of the Wnt/β‑catenin pathway is 
closely associated with the tumorigenesis of EC, mutations 
of CTNNB1 are linked to the carcinogenesis and progression 
of EC. Therefore, mutations to CTNNB1 translate to clinico‑
pathological and molecular characteristics of EC (10,12,14). 
In grade 1‑2, stage I‑II EECs, patients with a mutation to the 
tumor harboring CTNNB1 had lower‑grade tumours, lesser 
myometrial invasion, a lower incidence of lymphatic/vascular 

space invasion, and a lower frequency of co‑TP53 mutation. 
While these mutations are associated with more positive 
outcomes, they also increased the risk of recurrence (59).

Another study that included 218 low‑grade, early‑stage 
EECs confirmed that tumors with the CTNNB1 mutation 
are associated with reduced disease‑free survival, without 
impacting overall survival (60). Nevertheless, Kasoha et al (16) 
reported that patients with CTNNB1 mutations make up an 
aggressive subset of low‑risk EECs with both poorer progres‑
sion‑free survival and overall survival. Therefore, mutations 
to CTNNB1 have the potential to stratify EC into a prognostic 
group that requires additional therapeutic interventions.

The levels of sensitivity and specificity of immunohisto‑
chemical staining of β‑catenin as an effective surrogate to 
CTNNBI gene sequencing remains uncertain (10,13‑14,61). 
Individual hyperactivation of the Wnt/β‑catenin pathway is 
insufficient to stimulate the initiation of EC. The malignant 
transformation from endometrial hyperplasia to EC only occurs 
when alterations in the Wnt/β‑catenin and the loss of PTEN 
or unopposed estrogen are simultaneously present  (15,62). 
Moreover, β‑catenin also serves as an adhesion protein by 
linking E‑cadherin and the actin cytoskeleton (63). Although 
the dual function of β‑catenin appears to be independent of 
each other, they work together to maintain the balance of 
β‑catenin in the cytoplasm, cell membrane and nucleus.

The Wnt/β‑catenin is also recognized as a key regulator of 
EMT, by directly or indirectly regulating numerous EMT markers, 
including Zeb1, Twist, Snail1 and Slug (64). In another process, 
the transcription factors Twist, Snail1 and Zeb1 co‑suppress 
E‑cadherin expression (65,66). Loss of E‑cadherin and increased 
Wnt/β‑catenin induce EMT in carcinomas and the development 
of EC, with the exact mechanism yet to be fully understood. 

Figure 1. Pathway of the planar cell polarity/Wnt signaling, the calcium‑dependent Wnt signaling and the canonical Wnt/β‑catenin signaling pathways in 
endometrial cancer.
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Based on available evidence that the aberrant Wnt/β‑catenin 
signaling pathway is widely involved in the progression of EC, 
targeting the Wnt/β‑catenin pathway is a prospective choice for 
late‑stage and recurrent EC patients (67,68).

Crosstalk between ncRNA and the Wnt/β‑catenin signaling 
pathway in EC. ncRNAs (including lncRNAs, miRNAs and 
circRNAs) consist of >90% of the human transcripts and 
exhibit limited protein‑coding capacity  (69,70). However, 
these ncRNAs mainly participate in and regulate epigenetic 
modifications, cell differentiation, aging, and cell cycles 
by regulating the expression of target genes expression at 
post‑transcriptional level (71,72).

An increasing number of studies have indicated that 
aberrant expression and dysregulation of these ncRNAs are 
highly linked with a variety of malignant tumors in human 
through several mechanisms, including tumor autophagy, 
tumor resistance and tumor immunity  (73‑75). Therefore, 
ncRNAs have dual roles as oncogenes and tumor suppres‑
sors (76). Consequently, they have been identified as potential 
biomarkers for cancers including EC (77‑79).

The Wnt signaling pathway has been proven to func‑
tion as a key pathway participating in the carcinogenesis of 
EC  (7,80,81). A growing number of studies have revealed 
that ncRNAs could promote or inhibit EC tumorigenesis 
and progression by targeting the Wnt signaling pathway 
proteins  (81). To elucidate the specific role of crosstalks 
between ncRNAs and the Wnt signaling pathway in EC, the 
available literature was summarized. The role of ncRNAs and 
their target genes are listed in Table I.

miR‑15a‑5p was previously reported to be significantly 
decreased in human EC cells and tissues (82). Overexpression 
of miR‑15a‑5p could inhibit the proliferation of EC cells 
and downregulate Cyclin D1and p21 by binding the 

octamer-binding transcription factor 4 (OCT‑4), SRY‑box tran‑
scription factor 2 (SOX2) and Nanog. In addition, miR‑15a‑5p 
could inhibit Wnt3a expression by directly binding with 
Wnt3a's 3'untranslated region. These mechanisms indicated 
that miR‑15a‑5p acts as a suppressor in ECs by inhibiting the 
Wnt/β‑catenin signaling pathway.

Li  et  al  (83) reported that circ_0109046 was highly 
expressed in human EC tissues and the high expression of 
circ_0109046 was strongly associated with poor prognosis. 
Knockdown of circ_0109046 could inhibit metastasis and 
invasion of EC cells. circ_0109046 also served as a sponge for 
miR‑105 and regulated miR‑105 expression. Overexpression 
of miR‑105 could suppress proliferation and aggressiveness 
and promote apoptosis of EC cells by downregulating the 
expression of SOX9. SOX9 is proved to be a positive regu‑
lator of the Wnt/β‑catenin pathway by increasing the protein 
level of β‑catenin and c‑Myc. This mechanism has been also 
confirmed in gastric cancers (84).

Zmarzly et al (57) found Wnt2, Wnt4 and Wnt5A were 
significantly decreased in EC. Subsequent experiments 
indicated Wnt4 might be regulated by miR‑370, miR‑432 
and miR‑331‑3p  (57). However, there is still lack of data 
about the relationship between miRNAs and Wnt, which 
needs further investigation. Several studies have confirmed 
that circ_0002577 was upregulated and highly associated 
with the poor prognosis of patients with EC (85,86), while 
circ_0002577 inhibition suppressed the proliferation and 
invasion of EC cells. Additionally, circ_0002577 served as 
a sponge for miR‑197, which directly target CTNND1 and 
downregulated the expression of CTNND1, β‑catenin, cyclin 
D1 and c‑Myc. These results indicated that circ_0002577 
acted as an oncogene in EC.

More recently, lncRNA MIR210HG was found to be upreg‑
ulated in EC tissues compared with normal endometrial tissues 

Table I. Crosstalk of non‑coding RNA and Wnt/β‑catenin signaling proteins in endometrial cancer.

Non‑coding RNAs	 Expression	 Role	 Related factors	 (Refs.)

miR‑15a‑5p	 Downregulation	 Suppressor	 Wnt3a, β‑catenin, Cyclin D1, p21, OCT‑4, SOX2	 (82)
miR‑370	 Downregulation	 Unknown	 Wnt4, Wnt5a	 (57)
miR‑432	 Downregulation	 Unknown	 Wnt4, Wnt5a	 (57)
miR‑15a‑5p	 Downregulation	 Suppressor	 β‑catenin, c‑Myc, Gsk‑3β, VEGF	 (92)
miR‑202	 Downregulation	 Suppressor	 β‑catenin, E‑cadherin, N‑cadherin, Vimentin, FGF2	 (93)
circ_0109046	 Upregulation	 Oncogene	 miR‑105, SOX9, β‑catenin, c‑Myc	 (83)
miR‑331‑3p	 Upregulation	 Unknown	 Wnt4	 (57)
miR‑200b‑5p	 Upregulation	 Unknown	 Wnt5a	 (57)
circ_0002577	 Upregulation	 Oncogene	 miR‑197, CTNND1, β‑catenin, cyclin D1, c‑Myc	 (85,86)
Lnc MIR210HG	 Upregulation	 Oncogene	 miR‑337‑3p, miR‑137, TGF‑β, c‑Myc, Cyclin D1, HMGA2	 (49)
Lnc HOXB‑AS1	 Upregulation	 Oncogene	 miR‑149‑3p, Wnt10b β‑catenin, cyclin D1, c‑Myc	 (87)
Lnc LSINCT5	 Upregulation	 Oncogene	 Wnt10b, β‑catenin, cyclin D1, c‑Myc, HGMA2	 (90)
Lnc SRA	 Upregulation	 Oncogene	 β‑catenin, c‑Myc, Gsk‑3β, EIF4E‑BP1	 (91)
miR‑373	 Upregulation	 Oncogene	 β‑catenin, E‑cadherin, N‑cadherin, LATS2	 (94)
miR‑652	 Upregulation	 Oncogene	 RORA, β‑catenin	 (95)
Lnc NEAT1 	 Upregulation	 Oncogene 	 miR‑214‑3p, miR146b‑5p, c‑Myc, MMP9	 (22,23,96)

lnc, long non‑coding; miR, microRNA.
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and was associated with poor prognosis (49). Knockdown of the 
MIR210HG inhibits Wnt/β‑catenin and the TGF‑β pathway 
via the miR‑337‑3p/137‑HMGA2 axis. Liu et al (87) reported 
that lncRNA HOXB‑AS1 expression was significantly higher 
in EC than that in adjacent normal tissues. In addition, the 
overexpression of lncRNA HOXB‑AS1 promotes the prolif‑
eration, migration and invasion of EC cells and was associated 
with shorter survival. Through a certain mechanism, lncRNA 
HOXB‑AS1 also decreased Wnt10b, β‑catenin, cyclin D1, and 
c‑Myc expression by targeting miR‑149‑3p. Wnt3a is an impor‑
tant member of the Wnt family, which has been confirmed to 
participate in the development and progression of multiple 
cancers including EC (88‑90). A recent study has indicated that 
lncRNA LSINCT5 promoted the proliferation and invasion of 
EC cells by activating the Wnt3a/β‑catenin/c‑Myc signaling 
pathway via HGMA2 (90).

Park et al (91) further documented that the expression of 
lncRNA SRA (steroid receptor activator) was significantly 
higher in EC tissues. Overexpression of SRA upregulates 
the level of β‑catenin and c‑Myc mRNAs and downregulates 
the level of Gsk‑3β mRNA. As a result of these modulations, 
SRA promoted proliferation, migration and invasion of EC 
cells by activating the Wnt/β‑catenin signaling pathway. 
Wang et al (92) also reported that miR‑15a‑5p suppressed the 
viability, migration and invasion of EC cells by decreasing 
the expression levels of the Wnt signaling pathway‑related 
proteins, including β‑catenin, c‑Myc, Cyclin D1 and p‑GSK3β. 
miR‑15a‑5p also blocked EMT process by increasing expres‑
sion level of E‑cadherin, while decreasing vimentin and 
N‑cadherin expression  (92). Chen  et  al  (93) found that 
miR‑202 was downregulated in EC cells and tissues. In addi‑
tion, miR‑202 acted as a tumor suppressor by inactivating 
the Wnt/β‑catenin signaling pathway and blocking the EMT 
process, through the overexpression of FGF2.

Overexpression of miR‑373 also promotes the proliferation, 
migration and invasion of EC cells by directly targeting LATS2 
and upregulating β‑catenin (94). Sun et al (95) reported that 
the expression of miR‑652 was increased in human EC tissues, 
which promoted their proliferation, migration and invasion 
by targeting RORA (Retinoic acid receptor‑related orphan 
receptor A). The concurrent overexpression of miR‑652 and 
knockdown of RORA upregulates the expression of β‑catenin. 
These outcomes indicated that the activation of the miR‑652/
RORA/β‑catenin axis could promote EC.

A previous study indicated that lnc NEAT1 was overex‑
pressed in EC, which promoted the proliferation, migration 
and invasion of EC cells (23). Previous studies have indicated 
that lnc NEAT1 targets miR‑214‑3p and miR146b‑5p which 
are involved in EC by regulating the Wnt/β‑catenin signaling 
pathway  (22,96). Overexpression of lnc NEAT1 leads to a 
decreased amount of miR‑214‑3p and miR‑146b‑5p, which in 
turn upregulates c‑Myc and MMP9. In addition, progesterone 
could suppress EC progression by inhibiting c‑Myc and MMP9. 
These results indicated that lnc NEAT1 acts as an oncogene 
while miR‑214‑3p and miR‑146b‑5p serve as tumor suppressors.

3. Therapies targeting the Wnt/β‑catenin signaling 
pathway

It is thus evident that the Wnt/β‑catenin signaling pathway plays a 
vital role in the development and progression of EC. Therapeutic 
agents targeting the Wnt/β‑catenin signaling pathway have 
gradually become a research focus  (4,6,81). Based on their 
varied mechanisms of action, drugs targeting the Wnt/β‑catenin 
signaling pathway can be divided into several classes, including 
porcupine (PORCN) inhibitors, monoclonal antibodies against 
FZD, FZD8 decoy receptors, CBP/β‑catenin antagonists and 
DKN‑01 (81,97,98). These were illustrated in Table II.

Table II. Drugs/agents targeting the Wnt/β‑catenin signaling pathway.

		  Preclinical vs. clinical trial (phase) vs.		
Compound	 Mechanism	 FDA approved	 Manufacturer	 (Refs.)

LGK974	 PORCN inhibitors	 Phase I (NCT01351103) in Melanoma,	 Novartis	 (99‑101)
		  breast cancer and pancreatic CA		
ETC‑159	 PORCN inhibitors	 Phase I (NCTO2521844) in Refractory	 D3‑Institute 	 (103)
		  solid tumors, 10 patients (9 CRC, 1 Renal)	 experimental 	
			   therapeutics	
OMP‑18R5	 Monoclonalantibody against	 Phase 1 (NCTO1957007, NCTO2005315,	 Bayer,	 (104‑106)
	 FZD receptors	 NCTO1973309) in Breast cancer and	 OncoMed	
		  Solid tumors		
OMP‑54F28	 FZD8 decoy receptor	 Phase 1 (NCT01608867, NCT02092363,	 Bayer, OncoMed	 (109‑111)
		  NCT02050178) in Hepatocellular cancer		
		  and Solid tumors		
PRI‑724	 CBP/β‑catenin antagonist	 Phase 1 (NCT01606579, NCT01764477)	 Prism Biolab	 (81,112)
		  in acute and chronic myeloid leukemia,		
		  Colorectal cancers		
DKN‑01	 Monoclonal antibody against	 Phase I/II in Multiple Cancers	 Leap Therapeutics	 (113,114)
	 DKK1 	 (NCT01457417, NCT03395080, 		
		  NCT05761951) 		
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PORCN inhibitors (such as LGK974, ETC‑159 or 
CGX1321) prevent the palmitoylation of Wnt proteins, which in 
turn inhibits its secretion (7). LGK974 as a drug for numerous 
advanced solid tumors has completed phase I clinical trials 
(NCT01351103, NCT02278133). However, due to bone‑related 
toxicities, the efficacy and safety of LGK974 needs further 
study (99‑101). ETC‑159, another PORCN inhibitor, prevents 
the secretion and blocks function of Wnt proteins, suggesting 
that ETC‑159 could be an effective therapeutic agent for 
EC (81,102). A phase I clinical trial to evaluate the safety and 
tolerability of ETC‑159 (NCT02521844) for different solid 
malignancies is in progress (103).

OMP‑18R5 is a monoclonal antibody against FZD and 
inhibits the canonical Wnt signaling pathway. Similar to 
LGK974, concerns are emerging around the bone‑related 
safety of OMP‑18R5 which has become a major obstacle for 
future clinical use (NCT02050178, NCT02278133) (104‑106). 
OMP‑54F28 is composed of the IgG1 Fc and the extra‑
cellular ligand‑binding FZD8 domains and exhibits an 
antitumor effect in several cancers by sequestering secreted 
Wnts  (107,108). Several phase  I clinical trials have indi‑
cated OMP‑54F28 might be an effective agent to target 
the Wnt signaling pathway in advanced solid tumors, 
including colorectal and pancreatic cancer (NCT01608867, 
NCT02092363, NCT02050178) (109‑111).

PRI‑724, an inhibitor of the downstream Wnt/β‑catenin 
pathway, reduces the expression of β‑catenin‑TCF‑responsive 
genes by targeting the complex formation of β‑catenin and CBP 
(NCT01606579, NCT01764477) (81,112). Dickkopf ‑1(DKK‑1) 
is a Wnt signaling modulator overexpressed in gynecologic 
cancers. DKN‑01 is a humanized monoclonal antibody with 
DKK1 neutralizing activity. DKN‑01 was applied in multiple 
myeloma (NCT01457417) (113). On September 25, 2020, the 
Food and Drug Administration granted accelerated approval 
to DKN‑01 for gastric or gastroesophageal junction adenocar‑
cinoma. Notably, a phase II basket study indicated a promising 
clinical activity of DKN‑01 in EC patients with high DKK1 
expression (NCT03395080) (114). Meanwhile, a combination 
therapy consisting of DKN‑01 and pembrolizumab is currently 
being evaluated in clinical trials for advanced or recurrent EC 
(NCT05761951).

In addition, another study indicated that medroxy‑
progesterone acetate suppresses the proliferation of early 
endometrial carcinoma by inactivating the Wnt/β‑catenin 
signaling pathway (115), followed by the evidence that when 
therapy was halted, a marked recurrence was reported (116). 
Preclinically, niclosamide, salinomycin and curcumin have 
all been proven to interfere with the Wnt/β‑catenin signaling 
pathway in cancer cells (117‑119).

Based on these promising roles of ncRNAs, numerous 
ncRNAs are expected to become potential therapeutic targets 
in the near future  (120). Clinical trials of ncRNAs based 
therapies are currently underway and are already exhibiting 
prospective clinical applications (120,121).

4. Challenges and perspectives

Abnormal activation of the Wnt/β‑catenin signaling pathway 
and β‑catenin mutation contributes to the development and 
progression of various cancers including gynecological 

cancers. Numerous therapies that target the Wnt/β‑catenin 
signaling are currently tested in clinical trials in various 
cancers and have demonstrated promising outcomes.

Although the molecular mechanism of the Wnt/β‑catenin 
signaling pathway in EC remains unclear, accumulating 
evidence indicates that the crosstalk that occurs between 
ncRNAs and the Wnt/β‑catenin signaling pathway play signifi‑
cant roles in drug resistance, metastasis and recurrence (7,81). 
The present review focused on the interaction between the 
lncRNA/circRNA‑miRNA network and the Wnt/β‑catenin 
signaling pathway related proteins associated with EC. 
ncRNAs may serve as potential targets for EC treatments. 
However, there are still a large number of uncharacterized 
ncRNAs. The role of ncRNAs' interaction with the Wnt/β‑catenin 
signaling as targeting therapy still needs further investigation.
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