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Insights into the relationship between serum uric
acid and pulmonary hypertension (Review)
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Abstract. Pulmonary hypertension (PH) is a progressive
lethal disease, which is characterized by abnormal vascular
remodeling and persistently elevated pulmonary artery pres-
sure, eventually leading to right heart failure and even death.
Although great progress has been made in treating PH, the
mortality rate remains high. Metabolic disorders are one of the
important hallmarks of PH. Obesity, lipids, glucose tolerance
and insulin resistance are risk factors for numerous cardiovas-
cular diseases and are often accompanied by a considerable
increase in serum uric acid (SUA) concentrations. Uric acid
(UA) is the end product of purine nucleotide metabolism and
is closely related to cardiovascular diseases including PH.
Hyperuricemia promotes the development and progression of
PH through endothelial dysfunction, oxidative stress, inflam-
matory responses and activation of the renin-angiotensin
system. In the present review, the advancements in knowledge
about UA metabolism and PH, and the current understanding
of the potential interactions and mechanisms of SUA in PH
were systematically summarized, which may provide new
insights into the pathogenesis of PH.
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1. Introduction

Pulmonary hypertension (PH) is a serious health problem that
affects ~1% of the global population (1). In the United States
and Europe, pulmonary arterial hypertension (PAH) is found
in 15-50/million individuals (2). Among them, idiopathic, heri-
table and anorexigen-induced PH account for 52.6% of total
PH cases, of which 6-10% of patients have a family history of
PH (3.4). Furthermore, >70% of patients with PAH are women
aged 20-40 years, and its incidence is twice as high as that in
men (5-7). Although the advancement of medical treatments
has improved the survival rate, the prognosis of PH is still poor,
and its mortality rate remains high (8). The 5-year mortality
rates of patients diagnosed with idiopathic pulmonary arterial
hypertension (IPAH) or familiar PH were 31.8 and 46.3%,
respectively in China as of 2014 (9). Increasing evidence has
shown that a variety of systemic metabolic derangements are
associated with PH with a number of studies on this topic
focused on the role of obesity, dyslipidemia, insulin resistance
(IR), glucose intolerance and metabolic disorder in the progres-
sion of pulmonary circulation diseases (10-13). Hyperuricemia
is an important metabolic syndrome and is closely associated
with gout, coronary heart disease, hypertension, heart failure
and atrial fibrillation through oxidative stress, endothelial
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dysfunction, inflammatory reactions and activation of the
renin-angiotensin-aldosterone system (14-17). These condi-
tions may directly lead to the occurrence or development of
these diseases (18-25). Whether hyperuricemia is an indepen-
dent risk factor of PH and how hyperuricemia promotes the
occurrence of PH remains to be determined. To the best of
our knowledge, there has been no systematic analysis of these
issues to date. In the present review, the complex relationship
between hyperuricemia and PH is focused on providing a novel
viewpoint and strategy for the prevention and treatment of PH.

2. Search strategy

PubMed (https://pubmed.ncbi.nlm.nih.gov/), Web of Science
(webofscience.com/) and Science Direct (https:/www.scien-
cedirect.com/) databases were searched for PH and uric acid
(UA; hyperuricemia) relevant studies and systematic reviews
without language or time restrictions. The search subject
terms included: Pulmonary hypertension, pulmonary arterial
hypertension, IPAH, secondary PH, cardiovascular disease,
UA, serum UA (SUA), hyperuricemia, metabolic, inflamma-
tory responses, oxidative stress, renin-angiotensin system,
endothelial dysfunction, smooth muscle cell proliferation. No
artificial intelligence tools were used in the preparation of the
reviews or manuscripts.

3. Pathophysiological basis of PH

PH is a chronic progressive disease, which is related to meta-
bolic processes (26). PH is characterized by rising pulmonary
artery pressure and vascular remodeling, which eventually
lead to right heart failure and death (27). According to the 2022
European Society of Cardiology (ESC)/European Respiratory
Society (ERS) Guidelines for the Diagnosis and Treatment of
Pulmonary Hypertension, PH is defined on the basis of right
heart catheterization hemodynamic assessment. Pre-capillary
PH is defined as mean pulmonary arterial pressure (mPAP)
>20 mmHg at rest, pulmonary arterial wedge pressure (PAWP)
<15 mmHg and pulmonary vascular resistance (PVR) >2 Wood
units at rest. Postcapillary PH is defined as mPAP >20 mmHg
and PAWP =15 mmHg at rest. Exercise PH is defined as an
mPAP/cardiac output slope >3 mmHg/l/min between rest and
exercise (28,29). Currently, the clinical classification of PH
follows the 2015 ESC/ERS guidelines for the diagnosis and
treatment of PH (30,31) and the Proceedings of the 6th World
Symposium on PH (32). PH is divided into five categories
according to the etiology and hemodynamic parameters (33)
as follows: i) PAH, including idiopathic and hereditary PH;
ii) PH caused by left heart disease, including heart failure and
valvular heart disease with a maintained or decreased ejec-
tion fraction; iii) PH caused by pulmonary diseases and/or
hypoxia, including chronic obstructive pulmonary disease,
interstitial lung disease and other pulmonary diseases with
mixed restrictive and obstructive modes; iv) chronic thrombo-
embolic PH and other pulmonary artery obstructions; and v)
PH with unclear and/or multifactorial mechanisms, including
blood and systemic disease (31,34). PH is not a disease isolated
to pulmonary circulation but is considered a systemic disease
associated with notable metabolic dysfunction (35). Among
these, PH caused by left heart disease, lung disease and/or

hypoxia and connective tissue disease may be closely related
to metabolic disorders of the pulmonary circulation (36-38).
When pulmonary circulation metabolism is disordered,
circulating metabolic substances can induce dysfunction of
pulmonary artery endothelial cells (PAECs) and pulmonary
artery smooth muscle cells (PASMCs), and stimulate exces-
sive proliferation and anti-apoptosis of pulmonary vascular
cells (26). These conditions eventually lead to pulmonary
vascular remodeling and provide conditions for the develop-
ment of PH (39,40). UA, which is one of the products of purine
metabolism, can be affected in certain pathological states,
resulting in abnormal UA concentrations in the pulmonary
circulation. Although, increased UA in the pulmonary circula-
tion deteriorates PH, the associated molecular mechanisms
remain unclear (41). Before determining the effect of UA on
PH, the sources, metabolic pathways and biological properties
of UA need to be understood.

4. Metabolism and biological characteristics of UA

Source and metabolism of UA. UA can be derived exogenously
and endogenously. Exogenous UA, which accounts for 20% of
the total UA, originates from exogenous foods rich in purine
compounds, nucleic acids and nucleoproteins, such as animal
viscera, seafood, mushrooms, beans, wine and meat (42).
Endogenous UA accounts for 80% of the total sources and is
derived from purine products formed by the transformation,
decomposition and metabolism of amino acids, phosphori-
bosyl and nucleic acids in the body (43,44).

There are numerous enzymes involved in the conversion
of adenine and guanine to UA. Xanthine oxidase is the key
rate-limiting enzyme in this process and it plays an important
role in purine metabolism. Xanthine oxidase is involved in two
important stages in the conversion of purines to UA: i) The
conversion of hypoxanthine to xanthine; and ii) the conversion
of xanthine to UA (45). Hypoxanthine nucleotides (inosine
monophosphate) and guanine nucleotides are converted to
xanthine by oxidation of xanthine oxidase-hypoxanthine and
deamination of guanine by guanine deaminase (46). Finally,
xanthine is further oxidized to UA by xanthine oxidase (46-48).
In most mammals, uricase further oxidizes UA to allantoin,
but humans cannot convert UA into allantoin, which is more
soluble owing to the lack of uricase (Fig. 1) (49-51). Therefore,
human purine catabolism ends in the UA stage.

The metabolism of SUA in vivo requires an important
transporter called human urate transporter 1 (URAT1), which
is encoded by the gene, SLC22A12 (52). It is expressed in the
mural membrane of proximal renal tubular cells (53,54). Human
URAT1 acts as a urate/anion exchanger and is involved in the
reabsorption of urate in the kidneys (55). At a physiological pH,
UA mainly exists in the form of urate (46). Reportedly, ~70%
of UA is metabolized in the kidney, and after filtration by the
glomerulus, more than 90% of UA is reabsorbed and secreted
by the renal tubules, with ~10% excreted in the urine (46,56).
In addition, ~30% of UA is metabolized in the intestine (42).
Adenosine triphosphate binding cassette transporter 2, which
is another urate transporter, is widely expressed on the surface
of intestinal lumen cells and plays a major role in intestinal
excretion (Fig. 2) (57-60). Therefore, UA excretion occurs
mainly in the kidneys and intestines.
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Figure 1. Sources and metabolism of UA. Endogenous and exogenous purines are metabolized to UA by XO through the de novo and remedial synthesis
pathways of purines. Purine metabolism terminates at the UA stage owing to the absence of uricase in the human body. However, rodents have the enzyme
allantoinaise, which metabolizes UA into the more soluble allantoin, and further breaks it down into urea and ammonia. XO, xanthine oxidase; UA, uric acid;
IMP, inosine monophosphate; XDH, xanthine dehydrogenase; XOR, xanthine oxidoreductase.
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Figure 2. Excretion routes of UA. Endogenous and exogenous purines are
ultimately synthesized into UA through a variety of metabolic pathways. A
total of 30% of the body's UA is excreted through the intestines and 70%
in the kidneys. UA, uric acid; ABCG2, ATP-binding cassette superfamily
G member 2; HURATI human uric acid transporter 1; GLUT1, glucose
transporter 1.
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Normal SUA concentrations are 89-357 pmol/l
(1.5-6.0 mg/dl) in women and 149-417 ymol/I (2.5-7.0 mg/dl)

in men (46). However, impaired purine metabolism in the
body, such as excessive purine food intake and disease
(e.g., obesity, diabetes and tumor), can lead to increased
UA production and/or decreased excretion, which further
results in an increase in SUA concentrations and even
hyperuricemia (61). Hyperuricemia is usually defined
as an SUA concentration >417 ymol/l (7.0 mg/dl) in men
and postmenopausal women, or =357 gmol/l (6.0 mg/dl) in
premenopausal women with a normal purine diet (46). When
the average SUA concentration in humans is higher than its
solubility limit of 405 umol/1 (6.8 mg/dl), urate crystals are
formed and deposited in the kidneys, tissues and joints (62),
leading to renal calculi, gout and other diseases (e.g., gouty
arthritis).

The variability of SUA concentrations is multifactorial,
and it is also affected by genetic and non-genetic factors (63).
Genome-wide association studies have shown that the poly-
morphism and mutations of genes encoding SLC22A12,
SLC2A9 and adenosine triphosphate binding cassette trans-
porter 2 are related to hyperuricemia (64). In addition, the
transporters URATI, glucose transporter 9 (GLUT9) and
breast cancer resistance protein are associated with hyperuri-
cemia and gout (64-67). The concentration of UA is influenced
by non-genetic factors, mostly caused by excessive intake and
decreased excretion.
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Physiological characteristics of UA. Biologically, UA can
have not only pro-oxidative but also anti-oxidative proper-
ties (68-72).UA has antioxidant effects under physiological
conditions. The antioxidant mechanism of UA is mainly
driven by the fact that UA is an oxygen radical scavenger,
scavenging superoxide anions, hydroxyl groups, singlet
oxygen and other reactive substances in vivo (73,74). This
protects the cardiovascular system from oxidative stress
damage. UA acts as a pro-oxidant in states with high levels
of UA or low levels of other antioxidants (68). The oxidative
effects of UA mainly manifest in mediating the immune
response after cell injury (75), increasing pro-inflammatory
immune activation (76) and promoting low-density lipopro-
tein oxidation (77), the proliferation of smooth muscle cells
and activation and the adhesion of platelets (78). In the pres-
ence of Cu®" in the in vitro environment, UA is susceptible
to antioxidant-oxidant interconversion (79,80). In addition,
UA can react with other oxidants (ONOO~, OH") and form
pro-oxidants, which participate in lipid metabolism and
cause a chain reaction of lipophilic radical oxidation (81,82).
Therefore, UA exerts oxidative and antioxidant effects at
different concentrations (83,84). In cardiovascular disease,
UA is considered a ‘double-edged sword’ with beneficial and
detrimental effects on cardiovascular disease (17,85). So, is
there a similar association between UA and PH?.

5. Interaction of UA and PH

PH affects the level of UA metabolism. Hyperuricemia is
commonly found in patients with secondary PH. Patients with
PH and hemolytic diseases, such as thalassemia (86), sickle cell
anemia (87), spherocytosis (88) and paroxysmal sleep hemo-
globinuria (89,90), can develop erythrocyte lysis, adenosine
deaminase release (91), tissue and organ hypoxia, reduced
oxygen-carrying capacity and increased UA metabolism (92).
In patients with PH and metabolic syndrome (93), hyperinsu-
linemia enhances the reabsorption of urate in the proximal
tubules and UA concentrations increase (94). Inflammation,
hypoxia and endothelial damage caused by connective tissue
disease-related PH, such as systemic sclerosis, systemic lupus
erythematosus and Sjogren's syndrome, also play an impor-
tant role in the increase in UA concentrations (95). After
inflammation is activated, the release of cytokines promotes
pulmonary artery vessel remodeling and cell proliferation,
resulting in insufficient lung perfusion, tissue ischemia and
hypoxia (96,97). These findings suggest that patients with
secondary PH are closely associated with abnormal UA
metabolism, and the SUA concentration reflects the severity
of the illness to a certain extent. Therefore, UA may be useful
as a potential biological marker of PH and may be able to be
applied to the clinical setting and therefore, the importance of
the application of UA in clinical treatment is discussed in the
present review.

UA as a potential biomarker of PH. The relationship
between SUA and IPAH was first discovered in 1999 (98).
Nagaya et al (98) found that patients with IPAH have consid-
erably elevated SUA concentrations and the degree of SUA
increase was positively correlated with the severity of New
York Heart Association (NYHA)classification (99), negatively

correlated with cardiac output, positively correlated with total
pulmonary resistance, and correlated with the severity of
IPAH, which was also an independent risk factor for poor prog-
nosis of IPAH (98). The logarithm of SUA concentration was
closely related to MPAP and right atrial pressure (100-102).
When SUA concentrations are >339 pgmol/l (5.7 mg/dl), SUA
concentrations predict right ventricular dysfunction in patients
with IPAH (102,103). Baseline hyperuricemia and high vari-
ability in SUA concentrations at the first follow-up are strongly
associated with 5-year mortality in patients with IPAH (104).
Elevated SUA concentrations shorten the survival of patients
with IPAH, whereas low SUA concentrations improve survival
and delay clinical deterioration (105). Therefore, in the long
term, high SUA concentrations may be a good predictor
of survival in patients with IPAH. Close monitoring of UA
concentrations may be useful in assessing the disease severity,
clinical prognosis of patients with PH and early detection of
patients at high risk of death from IPAH.

Similar to IPAH, UA has high clinical value in connective
tissue disease-associated PH. In patients with PH secondary
to systemic sclerosis, elevated SUA concentrations are nega-
tively correlated with the 6-min walk test distance and linearly
correlated with pulmonary artery pressure (106-109). Serum
uric acid concentrations were significantly elevated in patients
with systemic lupus erythematosus (SLE) secondary to PH and
were significantly correlated with plasma NT-pro-B natriuretic
peptide (NT-pro-BNP) levels and resting pulmonary systolic
pressure (SPAP), as well as responding to the severity of SLE
disease (110). When SUA is above the critical concentration
of 6.5 mg/dl, the incidence of PH in patients with SLE can
be reasonably and accurately predicted. Therefore, SUA
concentrations can be used as an alternative marker to screen
for PH in patients with SLE (111). When the baseline SUA
concentration is =416 gmol/l (7 mg/dl), future development of
PH secondary to SLE can be predicted (112). A multifactorial
analysis showed that high UA concentrations were not only
associated with all-cause mortality from disease but also
strongly associated with death from PH and thus, UA concen-
trations may serve as an independent predictor of survival in
patients with connective tissue-related PH (113). Therefore,
dynamic observation of SUA concentrations may be useful for
assessing the severity of the condition and serve as a predictor
of prognosis in connective tissue disease-associated PH.

In conclusion, UA is not only a marker of metabolism but
also a representative independent risk factor and predictor of
PH. The aforementioned evidence suggests that UA is closely
associated with PH (114-117). However, the specific mecha-
nisms involved in hyperuricemia promoting the development
and progression of PH is unclear. In the present review, the
effects of high UA concentrations on PH and the molecular
mechanisms of the effects of high UA concentrations on endo-
thelial cells, smooth muscle cells and renin-angiotensin system
(RAS) activation are described.

6. Hyperuricemia promotes the development of PH

Hyperuricemia can mediate the development of cardiovas-
cular disease by inducing endothelial dysfunction, oxidative
stress, inflammatory responses and activation of the RAS
(Fig. 3) (118-122). On a pathophysiological basis, UA also
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Figure 3. High UA affects the development of cardiovascular disease through endothelial dysfunction, oxidative stress, inflammation and activation of the
RAS system. Disturbances in UA metabolism can cause hyperuricemia, which affects the development and progression of cardiovascular diseases through
endothelial dysfunction, oxidative stress, inflammation and activation of the RAS system. Pre-capillary PH: mPAP >20 mmHg, PAWP <15 mmHg and PVR
>2 Wood units at rest. Post-capillary PH: mPAP >20 mmHg and PAWP =15 mmHg at rest. PH, pulmonary hypertension; CHD, coronary heart disease; AF,
atrial fibrillation; HF, heart failure; RAS, renin-angiotensin system; UA, uric acid; mPAP, mean pulmonary arterial pressure; PAWP, pulmonary arterial wedge
pressure; PVR, pulmonary vascular resistance; NO, nitric oxide; eNOS, endothelial NO synthase; XOR, xanthine oxidoreductase.

induces pulmonary vascular endothelial dysfunction and
promotes the transformation of smooth muscle cell prolifera-
tion (123,124), thereby possibly promoting the development of
PH. The series of molecular mechanisms whereby UA affects
the course of PH through a series of molecular mechanisms
are described in the present review.

UA induces endothelial dysfunction. Endothelial cells are in
direct contact with blood flow and act as a permeability barrier
to maintain the exchange between the tissues of the vessel wall
and blood (125,126). Furthermore, endothelial cells secrete
vasoactive substances and cytokines, which also play an
important role in regulating vasoconstriction, vascular inflam-
mation, platelet aggregation and adhesion (127). Therefore,
the integrity of endothelial function plays a major role in
maintaining cardiovascular homeostasis.

Endothelial dysfunction is one of the main pathological
features of PH (128-130). Numerous studies have shown that
hyperuricemia causes endothelial dysfunction and may play
an important role in the vascular remodeling of PH (131).

However, the specific mechanisms by which UA affects
endothelial dysfunction are not fully understood.

Nitric oxide (NO) is an endothelium-derived relaxing
factor and it regulates vascular tension, inhibits platelet
activation and causes intimal hyperplasia (132). High UA
concentrations are hypothesized to result in endothelial
dysfunction by affecting the production of NO, which may
contribute to PH (133). UA may affect the formation of NO
in two ways. Firstly, UA can be directly oxidized with NO to
form superoxide anion, which consumes high levels of NO.
Secondly, there are various pathways by which UA inhibits
NO production which are described in the present review.

Endothelial NO synthase (eNOS) is a key enzyme for
NO synthesis in endothelial cells. This enzyme catalyzes the
hydrolysis of L-arginine to produce NO (134). UA can enter
endothelial cells through URAT1 on the cell membrane (135),
inducing intracellular reactive oxygen species production,
endoplasmic reticulum stress and protein kinase C activa-
tion (136). Activated protein kinase C inactivates the inhibitory
site of eNOS, Thr495, by phosphorylating it and rendering it
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unable to bind calmodulin and catalyzes NO synthesis (136).
In addition to regulating glucose homeostasis, insulin activates
the signal of phosphatidylinositol 3-kinase (PI3K)-protein
kinase B (Akt), which promotes the activation of eNOS
phosphorylation and NO production, thus inducing vaso-
dilation (137). Hyperuricemia antagonizes insulin receptor
substrates and blocks insulin-dependent eNOS phosphoryla-
tion in the PI3K/Akt/eNOS pathway, thereby inhibiting NO
production (137,138). Elevated UA concentrations in patients
with metabolic syndrome (MS) can trigger endothelial
dysfunction by decreasing endothelial NO bioavailability,
while reduced NO production in this pathway may be associ-
ated with hyperinsulinemia and insulin resistance (IR) (139),
which lead to increased monocyte adhesion and impaired
cellular energy metabolism (140,141).However, allopurinol
may restore the effect of insulin on NO production and vaso-
dilation by reducing SUA concentrations, thereby improving
the associated clinical symptoms (142,143).

UA also increases the expression of the inflammatory cyto-
kines interleukin-6 and interleukin-8, tumor necrosis factor-o
and miR-155 by activating nuclear factor- B (NF-kB) (144,145).
Overexpression of miR-155 leads to decreased eNOS stability,
reduced NO production and endothelial dysfunction (146).
By contrast, the use of NF-«B inhibitor II can prevent the
UA-induced decrease in NO and the inflammatory reac-
tion (145). Furthermore, arginase competes with eNOS to
bind L-arginine and catalyze its hydrolysis to ornithine and
urea (147). However, UA reduces NO production in endothelial
cells by increasing arginase activity and promoting competi-
tion between arginine and eNOS for L-arginine (41,147).
Mitochondrial damage is also a major feature of endothelial
dysfunction. UA can trigger mitochondrial calcium overload
and reactive oxygen species production by activating the mito-
chondrial Na*/Ca*" exchanger (148). This process can inhibit
the tricarboxylic acid cycle and damage mitochondrial DNA,
thus leading to endothelial dysfunction (149). These findings
suggest that UA induces reduced NO production and vascular
endothelial dysfunction, which in turn causes abnormal
pulmonary vasoconstriction and provides a pathophysiological
basis for the development of PH.

UA promotes smooth muscle cell proliferation. UA can
enter vascular smooth muscle cells (VSMCs) via URAT1
(SLC22A12, a member of the organic anion transporter
superfamily) (150,151), stimulating specific mitogen-activated
protein kinases (MAPKs), ERK 1/2 and p38 MAPK (152,153).
This stimulation induces cyclooxygenase-2 production and
local coagulation, promotes platelet-derived growth factor
(PDGF)-A and PDGF-C chain secretion and upregulates
PDGF-A receptor mRNA expression, promotes VSMC
proliferation, increases cell survival and reduces apop-
tosis (123,153-159). However, angiotensin II (Ang II) type
I receptor inhibits UA-induced activation of p38 MAPK
and ERK 1/2, thereby blocking the proliferative pathway
of VSMCs (153,160). In addition, UA may also regulate the
proliferation of smooth muscle cells by inducing inflamma-
tory responses and activation of the chemokine monocyte
chemoattractant protein 1, transcription factor activator
protein-1, NF-kB and inflammasome NOD-like receptor
protein 3 (153,161,162). Xanthine oxidase and URAT1 were

up-regulated in remodeled pulmonary artery walls in patients
of IPAH, monocrotaline (MCT) and Sugen-hypoxia rats,
increasing intracellular UA production, which promotes the
proliferation of pulmonary artery smooth muscle cells, leading
to further deterioration of PH (163). Thus, UA promotes
smooth muscle cell proliferation and may play an important
role in vascular remodeling in PH.

Activation of the RAS by UA aggravates pulmonary artery
pressure. The RAS is an important and complex endocrine
system in the body. It not only plays an important role in
regulating blood pressure and maintaining extracellular fluid
homeostasis, but also affects the normal development of the
cardiovascular system and maintains homeostasis of cardio-
vascular function (164). Several studies have shown that
elevated SUA concentrations may be associated with activa-
tion of the RAS (121,161,165-168). In animal studies, high UA
concentrations inhibited NOS-1 activity in glomerular dense
plaques, downregulated NO production and activated the
RAS (157,160,169-171), leading to elevated blood pressure.
These findings are consistent with human studies suggesting
that UA activates the RAS to mediate an elevation in blood
pressure (172,173). Usually, the activation of RAS begins
with the decrease of blood flow through renal artery (174).
The production of angiotensin peptides is first initiated by
the synthesis and processing of preprorenin in juxtaglomer-
ular cells neighboring the renal glomerulus with subsequent
proteolytic cleavage of the signal peptide, intracellular sorting
of prorenin to dense-core secretory vesicles, and cleavage
of the prosegment, producing catalytically active renin that
is secreted in the systemic circulation (164,175,176). Renin
hydrolyzes angiotensinogen secreted by the liver to produce
angiotensin I (Ang I) (177). In PAECs, Ang I is cleaved to
Ang II by angiotensin-converting enzyme (178). In the mech-
anism of high UA-induced endothelial dysfunction, excess
UA can be rapidly taken up by vascular smooth muscle cells,
and intracellular UA upregulates angiotensinogen mRNA
expression, thereby promoting Ang II production and Ang
IT type 1 receptor (main effector peptide of RAS) expres-
sion (179). These findings suggest that UA upregulates Ang
II expression, activates the RAS system, produces oxidative
stress, and leads to endothelial cell senescence and apop-
tosis (179,180). Ang II, which is a pleiotropic endocrine and
paracrine hormone, upregulates vasopressin released by the
central nervous system and induces VSMC contraction in
the pulmonary circulation and systemic arterial and venous
circulation (176,181). In addition, Ang II stimulates the
release of aldosterone, which stimulates mineralocorticoid
receptors in PAECs, inducing hypertrophy of PASMCs and
pulmonary artery vascular remodeling (182-185). However,
the vascular remodeling effects caused by UA and Ang II
stimulation of VSMC proliferation and hypertrophy is inhib-
ited by losartan [an angiotensin receptor blocker (ARB)]
and captopril [an angiotensin-converting enzyme inhibitor
(ACED)] (157,186). Ang II also promotes vasoconstriction,
proliferation, inflammation and fibrosis in the pulmonary
vascular system and lung parenchyma by stimulating ANG
IT type 1 receptor (187,188). All of these studies suggest
that UA mediates the relationship between the RAS and
PH, promoting pulmonary vascular remodeling, enhancing
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Figure 4. Investigation of the molecular mechanisms of the potential association between high UA concentrations and PAECs and PASMCs. After entering
endothelial cells, UA induces the production of ROS, activates mitochondria to trigger calcium overload and affects NOS activity or stability through various
pathways. The activation of these pathways causes reduced NO production and an inflammatory response, which leads to endothelial dysfunction and abnormal
pulmonary vascular constriction. UA can also directly act on smooth muscle cells, promoting smooth muscle cell proliferation. NO, nitric oxide, NO; PAECs,
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pulmonary vasoconstriction and ultimately exacerbating the
progression of PH.

7. Potential mechanisms by which PH affects UA
concentrations

PH affects UA concentrations in two main ways. First, an eleva-
tion in SUA concentrations in patients with PH is mainly due
to tissue ischemia/hypoxia and oxidative stress (30,189,190).
When oxygen metabolism is abnormal in the body, tissue
ischemia or hypoxia and oxidative stress can lead to elevated
UA concentrations (191,192). For example, PH is associated
with chronic heart failure and chronic obstructive pulmonary
disease, tissue hypoxia, increased anaerobic metabolism,
decreased adenosine triphosphate synthesis and accelerated
purine degradation, leading to increased uric acid produc-
tion (193-195). In addition, patients with heart failure are often
associated with renal insufficiency or even renal failure, which

can reduce UA excretion and lead to increased UA concentra-
tions (196). As SUA concentrations rise, free radicals released
by xanthine oxidase may activate inflammatory cells (197).
When UA concentrations exceed the threshold, hyperuricemia
enhances intracellular urate accumulation via down-regulation
of cell-surface BCRP/ABCG?2 expression in vascular endothe-
lial cells (198), leading to endothelial dysfunction, leukocyte
recruitment, cytokine release, and stimulation of activation
and proliferation of VSMCs, as well as vasoconstriction
and diastolic dysfunction (199) and ultimately, exacerbates
tissue hypoxia (200). Moreover, hyperuricemia is involved in
oxidative metabolism, platelet adhesion, blood rheology and
platelet aggregation (201,202). These processes can increase
platelet adhesion and make patients with PH more susceptible
to pulmonary vascular thrombosis (203). Hypoxia also leads
to impaired pulmonary vascular perfusion, and the release of
additional cytokines further accelerates vascular remodeling
and fibrosis (191,204,205). The effect of the use of drugs, such
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as diuretics in the setting of heart failure, on UA concentrations
should not be overlooked. Borghi et al (206) reported that tab
diuretics, thiazides and aspirin may increase SUA concentra-
tions. When PH is combined with underlying diseases, such as
renal insufficiency, hypermetabolic syndrome, obesity, hyper-
lipidemia, hypertension, coronary artery disease and diabetes
mellitus, it can also result in hyperuricemia (11,93,131). These
diseases mainly cause dysfunction of UA excretion/increased
UA synthesis (199). Additionally, the use of clinical medica-
tions in these conditions can interfere with UA concentrations.
Examples of these medications include calcium channel
blockers (e.g., amlodipine and cilnidipine) (207), angio-
tensin-converting enzyme inhibitors (e.g., captopril, enalapril
and ramipril) (208,209), angiotensin-converting enzyme II
receptor antagonists (e.g., losartan) (210), lipid-lowering agents
(e.g., atorvastatin, simvastatin, ezetimibe and fenofibrate) (211),
weight loss medications (e.g., orlistat) (212) and hypoglycemic
agents (e.g., metformin) (213). Additionally, sodium glucose
transporter protein 2 reduces UA concentrations (214,215).
Therefore, PH with hypoxia leads to elevated UA concentra-
tions. However, UA, as a risk marker, exacerbates the severity
of PH and increases the risk of death due to PH.

8. Protective effect of UA-lowering drugs on PH

Currently, UA-lowering drugs mainly include the following
categories: i) Drugs that inhibit UA production (xanthine
oxidase inhibitors, such as allopurinol and febuxo-
stat) (216,217); ii) drugs that promote UA excretion (drugs
that inhibit the production of the UA reabsorption proteins
URATI1 and GLUT?9, such as benzbromarone and proben-
ecid) (218,219); iii) drugs that promote UA catabolism (UA
enzymes, such as rasburicase and pegloticase) (220,221); and
iv) antihypertensive drugs (ACEISs such as enalapril, and ARBs
such as irbesartan and losartan) (208,210). Based on the role
of UA in PH, some of these drugs (e.g., allopurinol and benz-
bromarone) have been shown to reduce SUA concentrations
and has a certain protective effects against arterial hyperten-
sion (163,222-224). Therefore, lowering SUA concentration
has the potential to serve as a target for the treatment of PH.

9. Conclusions and prospects

Increasing evidence has shown that UA is inextricably
associated with PH and may serve as a circulating marker of
PH (189) (Fig. 4). UA may be involved in PH by mediating
inflammatory responses, oxidative stress, RAS activa-
tion and endothelial dysfunction (131). PH leads to tissue
ischemia/hypoxia and oxidative stress, and impaired UA
metabolism, which lead to an increase in SUA concentra-
tions (225,226). However, the causal relationship between
UA and PH is not completely clear. Hyperuricemia may
be considered a risk factor/independent risk factor for
PH and a predictor of disease onset, progression and
prognosis (115,116,227), but whether SUA can be used as
a circulating marker for PH needs to be validated by addi-
tional clinical and basic research. In addition, to determine
whether lowering SUA concentrations improves the clinical
symptoms of PH, further investigation and clinical studies
are required.
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