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Abstract. The incorporation of immune checkpoint inhibi‑
tors (ICIs) into cancer treatment has revolutionized oncology, 
providing marked advantages in managing various types of 
cancer. Nevertheless, the increasing use of ICIs has led to the 
emergence of immune‑related side effects, including autoim‑
mune diseases such as inflammatory arthritis. IL‑6 signaling 
is crucial in the development of inflammatory arthritis and is 
linked to both the benefits and adverse effects of ICIs. The 
present review summarizes the latest progress in the IL‑6 
pathway in inflammatory arthritis and discusses the thera‑
peutic potential of IL‑6 pathway inhibitors for ICI‑induced 
inflammatory arthritis.
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1. Introduction

Cancer immunotherapy activates the immune system by 
targeting tumor antigens, enabling recognition and destruc‑
tion of cancer cells (1). Immune checkpoint inhibitors (ICIs), 

particularly antibodies against cytotoxic T‑lymphocyte 
antigen‑4 (CTLA‑4) and programmed cell death protein 1 
(PD‑1)/programmed death ligand 1 (PD‑L1), have mark‑
edly improved outcomes in various types of cancer  (2‑6). 
CTLA‑4 inhibits T cell activation by competing with CD28 
for CD80/CD86 binding (7,8). Antibodies such as ipilimumab 
and tremelimumab block CTLA‑4, enhancing anti‑tumor 
immunity  (9‑12). PD‑1, expressed on multiple immune 
cells, suppresses T cell function through PD‑L1/PD‑L2 
binding  (13‑16). Blocking this pathway with agents such 
as nivolumab or pembrolizumab restores T cell activity 
and shows efficacy in melanoma, lung cancer and other 
malignancies (17‑22). 

Although ICIs represent a major breakthrough in cancer 
therapy (23,24), they are associated with a wide range of 
immune‑related side effects that can affect almost every 
organ, may lead to treatment discontinuation and compro‑
mise overall therapeutic efficacy (25,26). Immune‑related 
adverse events (irAEs) are common, with reports indicating 
they affect 90% of patients treated with anti‑CTLA‑4 and 
70% of those treated with anti‑PD‑1/PD‑L1 therapies (27). 
Anti‑CTLA‑4 therapy has been associated with a higher 
incidence of side effects compared to anti‑PD‑1 and PD‑L1 
treatments. Additionally, combination therapy showed a higher 
occurrence of adverse effects compared to monotherapy (28). 
ICI‑related irAEs are unique to certain organs, such as skin, 
liver, colon, thyroid, muscle and lungs (29). According to a 
previous report, endocrine irAEs were observed in 9.89% of 
patients, GI toxicities such as diarrhea and colitis occurred to 
8.4% of patients and hepatotoxicity occurred to 4.94% (30). 
Additional irAEs, including those affecting the joints, lungs, 
kidneys and central nervous system, were observed in 6.5, 
5.1, 2.56 and 2.01% of patients, respectively (26,30). Ocular 
toxicity, cardiotoxicity and inflammation were some of the 
rare adverse events reported  (30). They happened in 0.8, 
0.73 and 0.54% of patients, respectively (30). Overall, rheu‑
matologic manifestations, pneumonitis and gastrointestinal 
symptoms such as diarrhea and colitis were more prevalent 
than dermatologic adverse events. 

Rheumatic irAEs include arthritis, myositis and vasculitis. 
The most prevalent clinical symptom is arthritis, ICI‑induced 
inflammatory arthritis (ICI‑induced IA) among them (31). 
The incidence of ICI‑induced IA ranges from 1‑7%. However, 
ICI‑induced IA markedly effects overall quality of life and 
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persists longer than other irAEs. It is frequently overlooked 
due to its lower severity compared to life‑threatening events. 

Currently, there is no standardized diagnostic and assess‑
ment criteria for ICI‑induced IA. Moreover, consensus on 
optimal treatment strategies remains elusive and is the subject 
of continuing debate (32). For the initial therapy of ICI‑induced 
IA, patients received either non‑steroidal anti‑inflammatory 
drugs (NSAIDs) or steroids (such as glucocorticoids) for cases 
with moderate inflammation (31,33). When patients show no 
improvement or become resistant to NSAIDs or steroids, TNF 
inhibitors (TNFi) and IL‑6 receptor blockers are employed 
to manage ICI‑induced inflammatory arthritis  (34‑37). 
Nevertheless, TNFi may also impair ICI‑induced anti‑tumor 
immunity (38). In addition to being beneficial in the treatment 
of ICI‑induced IA, IL‑6 inhibitors have also demonstrated 
anti‑tumor effects (39,40). To provide more clinical insights on 
choosing biological agents, studies examining IL‑6 signaling 
inhibition in patients with ICI‑induced IA were reviewed.

2. ICI‑induced IA

Certain irAEs, such as colitis and pneumonitis, can be fatal, 
whereas others, including IA, impair an individual's quality of 
life. IA frequently goes unnoticed, probably due to its minimal 
effect on death rates, diagnostic irregularities that might be 
overlooked by cancer specialists and the extensive range of 
classification options in the Common Terminology Criteria for 
Adverse Events grading system used in clinical studies (41). 
Nevertheless, the importance of early detection of IA is increas‑
ingly recognized as a result of the functional loss of patients, 
reports of the rapid progression of erosions and the continued 
presence of joint complaints (34,35,42,43). Determining the 
exact frequency of IA due to irAEs is difficult; nonetheless, 
up to 43% of patients in immunotherapy trials reported joint 
pain and it is estimated that 3.0‑7.5% of those treated with 
ICIs develop IA (44‑47). Given the number of patients who 
acquire IA and the increasing use of ICI therapy, it is neces‑
sary to conduct further assessment of long‑term results. This is 
especially important in the context of improved survival with 
ICI treatment and prior findings indicating that symptoms can 
persist even after ICIs are discontinued (34,35,42,43).

ICI‑induced IA may demonstrate resistance to standard 
therapies and the management of severe and treatment‑resis‑
tant ICI‑induced IA is a topic of debate. The best way to treat 
ICI‑induced IA is to give prednisolone at a dose of 0.5‑1.0 mg 
per kilogram per day. If the use of glucocorticoid alone does 
not lead to improvement in ICI‑induced IA, it is advised to 
consider the use of a TNFi (32). The problem with this strategy 
is that it calls for giving high doses of glucocorticoids for a 
long time, which could lead to problems such as osteoporosis, 
diabetes, or infections (48). Additionally, TNFi has the poten‑
tial to reduce the immune response to malignant tumors (38). 
Given these limitations, more effective methods to treat 
ICI‑induced arthritis in patients with cancer are needed. 
Reports also indicate IL‑6 receptor antagonists have shown 
efficacy in managing ICI‑induced IA, aside from TNFi (36). 
Additionally, studies indicate that IL‑6 promotes cancer 
development and progression, whereas blocking IL‑6 hinders 
these processes  (39,40). Increased concentrations of IL‑6 
and C‑reactive protein (CRP, which has a strong association 

with IL‑6) are linked to decreased survival in patients treated 
with ICIs (49‑51). IL‑6 receptor antagonists are considered to 
work by inhibiting Th17 cells. The reduction of IL‑6 does not 
impede the activity of CD8+ T lymphocytes, which possess 
anti‑tumor properties. Consequently, it is considered that 
IL‑6 inhibition has a lesser impact on malignant tumors than 
ICIs (52,53). Notably, preclinical studies have demonstrated 
synergistic effects when combining IL‑6 receptor inhibitors 
with anti‑PD‑L1 therapies (54). Collectively, these findings 
suggest that IL‑6‑targeted therapies represent a viable strategy 
for the treatment of ICI‑induced IA. 

3. The effect of IL‑6 biologics on ICI‑induced IA

IL‑6 biological function. IL‑6 was first identified as 
B‑cell‑stimulating factor 2 (BSF‑2), secreted by peripheral 
blood mononuclear cells activated by mitogens or antigens (55). 
In 1986, the gene responsible for BSF‑2 was successfully 
cloned (56). BSF‑2 was later identified as the same as the 
hepatocyte‑stimulating factor, the hybridoma growth factor 
and IFN‑β2, which was found to have no antiviral proper‑
ties (55). The molecule was subsequently renamed IL‑6 (55). 
Human IL‑6 consists of 184 amino acids, featuring two 
potential N‑glycosylation sites and four cysteine residues (57). 
The fundamental protein weighs ~20 kDa and glycosylation 
increases the natural IL‑6 size to between 21 and 26 kDa (57).

IL‑6 is rapidly produced and triggers an immediate immune 
response in reaction to infections or tissue damage resulting 
from burns and traumas (58). IL‑6 promotes the conversion 
of activated B lymphocytes into plasma cells responsible 
for generating antibodies and stimulates the proliferation of 
hybridoma and myeloma cells (59). IL‑6 not only affects B 
cells, but also influences T cells by prompting the targeted 
transformation of immature CD4+ T cells into specialized 
subsets of effector T cells  (60). IL‑6, in conjunction with 
TGF‑β, uniquely encourages the differentiation of naïve CD4+ 
T cells into Th17 cells while inhibiting the TGF‑β‑driven 
development of regulatory T cells (Tregs) (61,62). Th17 cells 
are critical for host defense against extracellular pathogens, 
but their expansion, driven by IL‑6, may also contribute to 
the breakdown of immune tolerance and the development 
of autoimmune and inflammatory diseases  (58). In fact, 
in various autoimmune disease models, inhibiting IL‑6 
during the initial activation phase prevents Th17 and/or Th1 
cells from becoming the primary subsets over Tregs within 
antigen‑specific effector T‑cell groups (63). This additionally 
hinders the onset of autoimmune disorders, irrespective of the 
antigens employed for vaccination. Moreover, IL‑6 promotes 
the formation of T follicular helper cells and the production of 
IL‑21 (64), a key regulator of immunoglobulin synthesis.

IL‑6 also exerts multiple pathogenic effects in chronic 
inflammatory diseases. IL‑6 generated by bone marrow 
stromal cells triggers the receptor activator of NF‑κB ligand, 
a key driver of osteoclast differentiation and activation. 
Consequently, this process results in bone resorption and 
osteoporosis (65). IL‑6 promotes the production of VEGFs, 
thereby enhancing angiogenesis and increasing vascular 
permeability. These pathological features are commonly 
observed in both cancer and the inflamed synovial tissues of 
patients with rheumatoid arthritis (58). 



Molecular Medicine REPORTS  32:  250,  2025 3

Cell signaling pathway mediated by IL‑6 and its receptors. 
Various cell types generate IL‑6, which plays a vital role in regu‑
lating the acute phase response, inflammation, hematopoiesis, 
liver regeneration, metabolism, bone remodeling and cancer 
progression (66). Classic IL‑6 signaling is initiated when IL‑6 
binds to membrane‑bound IL‑6 receptor (IL‑6R), forming a 
complex that associates with the signal‑transducing subunit 
gp130 (67). The interaction of gp130 with the IL‑6/IL‑6R 
complex promotes the formation of gp130 dimers and leads 
to the assembly of a heterohexameric structure consisting of 
IL‑6, IL‑6R and gp130 in a 2:2:2 ratio (58). Traditional IL‑6 
signaling is largely limited to liver cells, immune cells such 
as macrophages and neutrophils, as well as inactive lympho‑
cytes, because it requires the presence of membrane‑bound 
IL‑6R (68). Nonetheless, IL‑6 can also trigger trans‑signaling 
in cells that have gp130 but lack IL‑6R. This mechanism 
includes IL‑6 binding to a soluble form of IL‑6R, which can 
be generated through either alternative splicing or proteolytic 
cleavage (58). The IL‑6/soluble IL‑6R complex can trigger 
IL‑6 signaling mechanisms in cells that have gp130. Since 
gp130 is present in all tissues (69), trans‑signaling enables 
a broader array of cells to react to IL‑6. Activation of the 
IL‑6 classic or trans‑signaling ligand‑receptor complexes 
triggers three intracellular signaling cascades: JAK‑STAT, 
PI3K‑Akt and Ras‑MAPK pathways (70,71). The Ras‑MAPK 
signaling network also includes the p38 MAPK, JNK MAPK 
and MEK‑ERK5 pathways (see Fig. 1). Then, IL‑6/IL‑6R 
signaling regulates downstream gene expression and inflam‑
matory responses by activating these downstream intracellular 
signaling pathways. IL‑6R is primarily found on liver cells 
and immune cells, restricting the specific targets of IL‑6 
classic signaling. The IL‑6 classic signaling route initiates the 
acute‑phase response and is associated with homeostatic and 
anti‑inflammatory effects (72). In contrast, trans‑signaling, 
due to the widespread expression of gp130, enables IL‑6 to 
exert pro‑inflammatory effects in a broad range of tissues (73).

The effect of IL‑6 on cancer development. IL‑6 is often 
overexpressed in various types of cancer, both at the local 
tumor site and systemically  (74). Elevated serum IL‑6 
levels are associated with poor prognosis and decreased 
survival rates in patients with cancer (75). Mechanistically, 
IL‑6 has been reported to downregulate the expression of 
CDK2, CDK4 and CDK6, while upregulating the expres‑
sion of p27Kip1 or p21WAF1/CIP1, thereby inducing G1 phase 
cell cycle arrest and contributing to the carcinogenesis of 
prostate cancer  (76), hepatocellular carcinoma (77,78) and 
melanoma  (79,80). Additionally, IL‑6 supports the prolif‑
eration of multiple myeloma cells by modulating CDK4 
and p16INK4A, affecting Rb phosphorylation and cell cycle 
progression (80). Upon binding to its receptor on malignant 
cells, IL‑6 activates several pathways that promote tumor 
growth, such as JAK/STAT3, PI3K/AKT and Ras/MAPK, 
leading to enhanced cell survival, proliferation, invasion, 
migration and angiogenesis (81). It further promotes tumor 
invasion through upregulation of matrix metalloproteinases 
(MMPs), which degrade extracellular matrix components 
and facilitate metastasis  (82,83). Within the tumor micro‑
environment, IL‑6 stimulates stromal and endothelial cells 
to secrete chemokines and cytokines, which support tumor 

growth and neovascularization (84). Additionally, it fosters 
an immunosuppressive milieu, marked by recruiting Tregs, 
myeloid‑derived suppressor cells and immunosuppressive 
M2 myeloid cells, which hinder robust anti‑tumor immune 
reactions and aid in tumor immune escape (85). Furthermore, 
the IL‑6/JAK2/STAT3 axis has been extensively studied in a 
wide range of malignancies, including liver, breast, colorectal, 
gastric and lung cancers, underscoring its role in tumorigen‑
esis and its potential as a therapeutic target (86,87). Several 
IL‑6‑targeted strategies have shown efficacy in preclinical 
and clinical studies, including monoclonal antibodies against 
anti‑IL‑6/IL‑6R or anti‑sIL‑6R, along with selective inhibitors 
targeting IL‑6 downstream signaling pathways such as STAT3 
or kinase inhibitors (such as JAK inhibitors) (81). Specifically, 
in medical research, treatments targeting IL‑6 such as tocili‑
zumab have proven effective in reducing cancer symptoms and 
preventing tumor growth (88). Clazakizumab (BMS945429, 
ALD518), a humanized monoclonal antibody targeting IL‑6, 
has demonstrated good tolerability and alleviates anemia and 
cachexia associated with non‑small cell lung cancer in both 
preclinical and Phase I/II trials (89). Overall, the strategy of 
targeting IL‑6 signaling represents a promising strategy for 
cancer therapy.

IL‑6 biologics in ICI‑induced IA. IA is among the most 
commonly observed irAEs in patients receiving ICIs therapy. 
Anti‑IL‑6 biologic agents have been recommended as a thera‑
peutic option for ICI‑induced IA in the current irAEs treatment 
guidelines. In fact, IL‑6 is crucial for the differentiation of 
naïve CD4+ T cells into Th17 cells, which are implicated in 
the pathogenesis of multiple autoimmune diseases and may 
also contribute to irAEs (52). At present, addressing irAEs, 
including ICI‑induced IA, can be effectively managed with 
anti‑IL‑6R therapies, which does not compromise antitumor 
immunity (90). Various therapeutics for ICI‑induced IA by 
blocking IL‑6 signaling were discussed below (Fig. 2).

IL‑6 direct inhibitors. According to previous reports, five IL‑6 
inhibitors are used to treat cancer and rheumatoid arthritis 
(RA) patients. These include Siltuximab (CNTO 328, Sylvant), 
Sirukumab (CNTO 136), Olokizumab (CP6038), mAb 1339 
(OP‑R003) and Clazakizumab (BMS945429, ALD518). 
However, none of them have been evaluated for treatment of 
ICI‑induced IA.

IL‑6R direct inhibitors
Tocilizumab (RoActemra or Actemra). Tocilizumab, a 
humanized monoclonal antibody targeting the IL‑6R, blocks 
both soluble (sIL‑6R) and membrane‑bound (mIL‑6R) forms 
of the receptor. It has been approved by the US Food and 
Drug Administration (FDA) for the treatment of RA (91). 
Tocilizumab's anti‑cancer properties have been shown in 
multiple forms of cancer, such as a colon cancer xenograft 
model  (92), kidney cancer  (93), lung carcinoma  (88) and 
breast malignancy  (94). Tocilizumab is thus a feasible 
therapy option for ICI‑induced IA. Holmstroem et al  (95) 
demonstrated that 84% of patients treated with tocilizumab 
(8 mg/kg, up to 800 mg) every four weeks for a minimum 
of two cycles achieved complete remission of ICI‑induced IA 
symptoms. Tocilizumab was shown to have favorable clinical 

https://www.spandidos-publications.com/10.3892/mmr.2025.13615


ZHAO et al:  BLOCKING IL-6 PATHWAY TO TREAT IA4

effectiveness and a controllable safety profile when used 
to treat ICI‑induced IA (95‑102). Kim et al (36) noted that 
three individuals, who experienced severe arthritis during ICI 
treatment and received tocilizumab, showed marked clinical 
progress; one individual sustained a lasting anti‑tumor 
response from checkpoint inhibition. Following methotrexate 
failure, five patients received tocilizumab, resulting in a 100% 
clinical response rate (103,104). Taken together, tocilizumab 
efficiently reduced symptoms of ICI‑induced IA in patients 
with cancer (Table I).

Sarilumab (SAR153191 or REGN88). Sarilumab 
(KEVZARA®), a human anti‑IL‑6R, was approved by FDA to 
treat RA on 22 May 2017 (91). Sarilumab has been reported to 
be effective in the treatment of ICI‑induced polyarthritis (37). 

A 61‑year‑old renal cell carcinoma patient received biweekly 
subcutaneous injections of 200  mg sarilumab following 
failed prednisolone and sulfasalazine treatment  (37). As a 
result, no recurrence of renal cell carcinoma was observed for 
2 years following sarilumab beginning, despite no anti‑tumor 
treatment  (37). Hence, sarilumab may represent a prom‑
ising therapeutic option for ICI‑induced polyarthritis that is 
refractory to conventional treatments.

Gp130 direct inhibitors. The soluble gp130‑Fc fusion protein 
(sgp130Fc or FE 999301), anti‑gp130 monoclonal antibodies 
and small molecule inhibitors such as madindoline A, SC144, 
bazedoxifene, Raloxifene and LMT‑28, have demonstrated the 
ability to inhibit IL‑6/JAK/STAT3 signaling. However, most of 

Figure 1. Cell signaling pathway mediated by IL‑6 and its receptors. IL‑6 and its receptors trigger the activation of three major intracellular signaling pathways, 
including the JAK‑STAT3 pathway, the Ras‑MAPK pathway and the PI3K‑Akt pathway. The activation of these signaling pathways resulted in the transcrip‑
tion of downstream target genes, subsequently leading to the induction of inflammatory responses. gp 130, glycoprotein 130; IL‑6R, interleukin 6 receptor; 
TYK2, tyrosine kinase 2; JAK, Janus kinase; STAT3, signal transducer and activator of transcription 3; GRB2, growth factor receptor‑bound protein 2; SOS, 
son of sevenless; MAPKKK, mitogen‑activated protein kinase kinase kinase; JNK, c‑Jun N‑terminal kinase; AP‑1, activator protein‑1; RAS, rat sarcoma; 
RAF, rapidly accelerated fibrosarcoma; MEK1/2, MAPK kinase 1/2; ERK1/2, extracellular signal‑regulated kinase1/2; PI3K, phosphoinositide 3‑kinase; Akt, 
protein kinase B; Blimp1, B‑lymphocyte‑induced maturation protein 1; RORγt, retinoic acid receptor‑related orphan receptor γt.
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these treatments require further evaluation in preclinical and 
clinical settings, particularly in the context of ICI‑induced IA.

JAK inhibitors. Research has shown that JAK inhibitors such 
as TG101209, CEP 3379, WP1066, sorafenib and AG490 are 
effective against various types of cancer (105). Nevertheless, 
none of these agents has been reported to be effective in 
treating ICI‑induced IA. Ruxolitinib, another JAK inhibitor, 
has shown clinical efficacy in managing ICI‑induced myocar‑
ditis  (106), but its therapeutic potential in ICI‑induced IA 
remains to be determined. Overall, the role of JAK inhibitors 
in the management of ICI‑induced IA is not well established 
and warrants further investigation.

STAT3 inhibitors. STAT3 inhibitors offer an alternative 
therapeutic strategy aimed at blocking IL‑6/JAK/STAT3 
signaling through the prevention of STAT3 phosphorylation. 
For example, JSI‑124 has been shown to suppress tumor 
growth and progression (107). S3I‑201, which is also referred 
to as NSC74859, binds to the DNA‑binding domain of STAT3, 
thereby inhibiting the proliferation and survival of human 
breast cancer cells (108). Nonetheless, the efficacy of STAT3 
blockers in managing ICI‑triggered IA remains largely unclear, 
necessitating additional studies to clarify this matter.

The underlying mechanism for treating ICI‑induced IA by 
IL‑6 signaling inhibitors
Blocking IL‑6 signaling reinstates T cell suppression 
through the PD‑1/PD‑L1 pathway. Immune checkpoint 

blockers, including anti‑PD‑1, anti‑PD‑L1 and anti‑CTLA‑4 
antibodies, lead to immune‑related side effects. This is due 
to the fact that PD‑1, PD‑L1 and CTLA‑4 are found not only 
in tumor cells but also in various other tissue cells (109). 
Dysregulation of these immune checkpoints has been 
strongly linked to the inflammatory responses. A previous 
study indicated that PD‑1 knockout mice develop more 
severe arthritis, whereas PD‑L1 Fc therapy was shown to 
prevent collagen‑induced arthritis (110). Additionally, PD‑1 
gene variations have been linked to a higher likelihood of 
rheumatic arthritis  (111). IL‑6 counteracts the suppres‑
sion of T cells mediated by PD‑1/PD‑L1. The introduction 
of the anti‑IL‑6 receptor antibody tocilizumab mitigates 
IL‑6‑driven inflammation and restores PD‑L1‑mediated T 
cell suppression (112). Therefore, biologic agents targeting 
IL‑6, which effectively treat ICI‑induced IA, might work by 
reinstating T cell suppression via the PD‑1/PD‑L1 pathway 
in the synovial tissue (Fig. 2). Conversely, reports indicate 
that anti‑IL‑6 biological agents can enhance the anti‑cancer 
efficacy of ICIs by improving the tumor‑fighting abilities 
of cytotoxic T cells  (113). Further underlying molecular 
mechanism is still required to be investigated. Overall, it 
seems plausible that the fundamental process behind using 
anti‑IL‑6 biologic medications to address ICI‑induced IA 
involves restoring T cell suppression in target tissues through 
the PD‑1/PD‑L1 pathway.

Targeting IL ‑ 6 signaling suppresses Th17/B cell 
differentiation. The symptoms of irAEs frequently indicated a 

Figure 2. Underlying mechanism for treating ICI‑induced IA by targeting IL‑6. Tumor cells upregulate PD‑L1 and CD80 to evade immune surveillance. Then, 
ICIs such as anti‑CTLA‑4 and anti‑PD1 reverse this, activating immune response against tumor cells. However, ICIs can also excessively enhance the immune 
system, resulting in the emergence of irAEs, including autoimmune diseases such as inflammatory arthritis. The IL‑6 receptor antagonists were demonstrated 
to be effectiveness against ICI‑induced IA, which was due to their inhibition of the PD‑1/PD‑L1 mediated T‑cell suppression and the differentiation of Th17/B 
cells. ICI‑induced IA, ICI‑induced inflammatory arthritis; ICIs, immune checkpoint inhibitors; PD‑L1, programmed death ligand 1; PD‑1, programmed cell 
death protein 1; irAEs, immune‑related adverse events; CTLA‑4, cytotoxic T lymphocyte‑associated antigen‑4; ACPA, anti‑citrullinated peptide antibody; 
APC, antigen‑presenting cell.
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widespread inflammatory reaction, evidenced by a significant 
increase in CRP levels. CRP, a downstream marker of IL‑6 
signaling, shows an elevation from baseline levels during the 
initial occurrence of irAE (114). The rise in circulating IL‑6 
is considered to result from T‑cell activation triggered by 
ICIs (115,116). High concentrations of IL‑6 in the bloodstream 
cause pro‑inflammatory responses via trans‑signaling. IL‑6 
attaches to a sIL‑6R, thereby triggering a broader spectrum 
of cells than traditional signaling (117). Classic IL‑6 signaling 
occurs under low IL‑6 concentrations and is restricted to cells 
expressing IL‑6R, such as Th17 cells in specific tissues (118). 
Increased IL‑6 levels have been observed in the tissues 
of irAEs among two distinct cohorts of 23  patients with 
solid tumors treated with anti‑CTLA‑4 and/or anti‑PD‑1 
therapies (119). This increase was associated with a boost in 
the expression of genes tied to Th17 cells, leading to a greater 
percentage of Th17 cells within the total T cell population 
in tissues, thereby contributing to the pathogenesis of 
irAEs (119). Tocilizumab, an IL‑6 inhibitor, has been shown 
to suppress the differentiation of naïve CD4+ T cells into Th17 
cells within synovial tissue (120). Moreover, Th17 cells further 
promote B cell differentiation into plasma cells that produce 
anti‑citrullinated protein antibodies and rheumatoid factor 
within the synovial tissue (121,122). Therefore, blockade of 
IL‑6 inhibited the development of ICI‑induced IA by inhibiting 
Th17 and B cell differentiation (Fig. 2).

4. Conclusions

The interplay between IL‑6 signaling and immune check‑
point inhibitor therapy highlights the delicate balance 
between maximizing anti‑tumor efficacy and minimizing 
irAEs. While targeting IL‑6 represents a promising strategy 
to mitigate irAEs, a more comprehensive understanding of its 
underlying mechanisms and interactions is crucial for devel‑
oping safe and effective therapeutic approaches. Emerging 
evidence underscores the complex and context‑dependent 
role of IL‑6 in tumor progression and immune modulation, 
suggesting that IL‑6 signaling is not only a contributor to 
cancer pathogenesis but also a potential therapeutic target. 
Future research should aim to elucidate the multifaceted roles 
of IL‑6 in oncogenesis and immunotherapy and to design 
more selective inhibitors that effectively modulate IL‑6 
pathways or their downstream effects. Such advancements 
could pave the way for personalized treatment strategies and 
ultimately improve clinical outcomes for patients with cancer 
with elevated IL‑6 activity.
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