
Abstract. A large number of analyses of a new form of genetic
variation, known as copy number variation (CNV), have been
published recently as a new tool for understanding the genetic
basis of complex traits such as diabetes, asthma, Crohn's
disease, autism and bipolar disorder. Through the use of
different types of genome-wide scanning procedures, CNVs
have been shown to be associated with several complex and
common disorders, including nervous system disorders. One
of the common features of the regions associated with the
complex and common disorders identified thus far is the
presence of CNVs and segmental duplications. Segmental
duplications lead to genome instability. Because of their
location and nature (several contain genes), many CNVs have
functional consequences, such as gene dosage alteration, the
disruption of genes and the modulation of the activities of
other genes. Therefore, these genetic variations have an
influence on phenotypes, the susceptibility of an individual to
disease, drug response and human genome evolution. These
types of variants (gain and loss of DNA) are not restricted to
humans, having also been identified in other organisms. Our
current knowledge regarding CNVs and their heritability is
still rudimentary, due to their location in regions of complex
genomic structure and to the technical limitations of assoc-
iation studies. Future advances in the technology will aid in
the construction of a new CNV map, used to find the genes
underlying common diseases and to understand familial
genetic conditions, severe developmental defects in humans
and other organisms, and genome evolution.
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1. Introduction

Structural chromosome abnormalities have for a long time
been known to exist at the cytogenetic and molecular level,
and are associated with what are now called genome disorders.
However, their importance became apparent only after the
completion of the human genome project due to the use of
several scanning technologies, including array-based compar-
ative genomic hybridization (CGH). DNA, the genetic material,
varies widely from person to person (1) and between human
populations worldwide (2). Some individuals have variation
in a single nucleotide, which is known as a single nucleotide
polymorphism (SNP). The term polymorphism generally refers
to genetic variants that have a minor allelic frequency (~1%)
in a given population. These changes are thought to be the
predominant form of the genetic variations responsible for
normal phenotypic differences (our uniqueness). However, it
has recently been discovered that there are individuals with
deletions or multiple copies of the same gene (Fig. 1). Such
changes (DNA fragments of ~1 kb or larger) are called copy
number variations (CNVs) or copy number polymorphisms
(3-5), and additionally appear to be widespread in normal
individuals. Although the true number of CNVs and their
frequency in human populations is unknown, they may result
in altered levels of gene expression and, as a result, may
account for significant normal phenotypic variation within a
species (as they often encompass genes), susceptibility or
resistance to disease, drug response, complex and common
disorders and the evolution of the genome itself (6-13). This
brief review summarizes some of the recent research in the
field of CNVs.

2. Properties and functions

The size of DNA variation in CNVs ranges from a few kilo-
bases to megabases (14-16). CNVs are not necessarily related
to genome disorders, and can in fact be observed in healthy
individuals who present no evidence of a genetic disorder (17).
At present, approximately 1447 CNVs have been identified
(http://projects.tcag.ca/variation). These cover 12% (of an
estimated 15%) of the human genome, although this number
could be slightly smaller for common human CNVs (18).
Additionally, somatic mosaicism has been reported for CNVs
in differentiated human tissue (19). This high degree of
variability in the human genome and somatic mosaicism
challenges the definition of normality (20), since it is generally
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believed that normal cells are genetically identical. Large
CNVs are often found to occur in regions containing large
homologous repeats or segmental duplication (15,21,22), while
smaller CNVs may occur because of non-homology driven
mutational mechanisms. A DNA replication-based mechanism
has been suggested to explain the formation of CNVs (23).
According to this mechanism, the presence of many nucleotide
repeats (which form an unusual structure) stalls the replication
fork and then switches to a different template in any region
of DNA, resulting in copy number changes. This kind of
stalling and template switching may play a role in evolution
by helping organisms to survive under environmental stress.
Widespread CNVs are not unique to humans; they have also
been identified in inbred strains of laboratory mice (24,25).
In these mice, a non-allelic homologous recombination mech-
anism may play a role in the genesis of CNVs (26). CNVs,
along with SNPs, also contribute to phenotypic variation
among mouse strains. In addition, different mouse strains
exhibit CNVs that are comparable to those observed in human
strains. However, such variation is more locally restricted
(27,28).

From an evolutionary standpoint, gene duplication is an
important long-term evolutionary force (e.g., the ß-globulin
gene). Supporting this is the finding that CNVs are present in
the homologous regions of other closely-related species (27).
This again suggests that non-allelic homologous recombi-
nation plays a role in the evolution of CNV. Interestingly, mice
seem to tolerate large-scale deletions of non-gene regions
much better than humans (29). When human and mouse
CNVs were compared, it was found that those of humans
were associated with an increased ratio of non-synonymous
to synonymous substitution rates (30), suggestive of positive
selection during evolution. Similarly, when the CNV regions
of chimpanzees and humans were compared, many CNVs
were found to occur frequently in both species, and were also
found to be rich in segmental duplication. This finding is
consistent with the hypothesis that CNVs are found in the
homologous regions of other closely-related species (27).
Furthermore, lineage-specific gene duplication and loss may
occur during evolution (31-33). Analysis of structural variation
in eight human genomes additionally suggests that different
mutational processes may have shaped the human genome
(34). It has been demonstrated, at least in the case of the
Drosophila system, that natural selection shapes the genome-
wide patterns of CNV (35,36). Since segmental duplications
lead to genomic instability, they are not only associated with
genome disorders, but are also involved in the continuing
evolution of the genome.

CNVs may alter gene dosage without abolishing gene
function, or may affect gene structure and regulation (37).
Because of their mild effect on gene function, it is possible that
some of the common CNVs alter phenotypes in complex and
sporadic diseases (38), including nervous system disorders
(39,40), and may also be behind inherited disorders (41).
For instance, in non-small cell lung cancer, the EGFR copy
number is found to be higher than normal (6). Additionally,
individual and population differences in copy number for the
gene encoding CCL3L1 (a suppressive chemokine and ligand
for the human immunodeficiency virus-1 coreceptor CCR5)
have been reported (7). Similarly, a lower copy number of
FCGR3B can increase susceptibility to immunologically-
related glomerulonephritis in humans and rats (8), with a
functional correlation between CNV and protein expression
(42). Copy number variation is also found to be associated
with autism spectrum disorders (9,13), Crohn's disease (43)
and bipolar disorder (44). A partial list of some of the other
disease-related chromosomal regions containing CNVs is
presented in Table I. However, the extent to which CNVs
cause genetic disease is unclear. According to the literature,
their contribution appears to be smaller than that of SNPs (37),
and their contribution to gene expression is also independent
of SNPs. 

3. Technical developments and limitations

At present, it is difficult to correlate the relationship between
CNVs and phenotype. This is due to insufficient collected
data, and existing techniques that are not accurate enough in
measuring the association between CNVs and phenotype. As
well, many CNVs are located in regions of complex genomic
structure. An effective genome-wide CNV genotyping method
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Figure 1. An example of CNV. A represents a normal pattern, while B
(duplication) and C (deletion) are CNVs. Numbers 1, 2 and 3 represent genes
in a chromosomal segment.
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is required. As was recently demonstrated, one possible
approach is to use SNPs as markers for CNVs throughout the
genome by means of the linkage disequilibrium (LD) method.
This approach relies on the low recombination rate found in
humans. Variants segregate on the haplotype and can hence
be tagged (45). However, the method still requires a large
collection of CNVs with dense SNP genotypes. Additionally,
since many CNVs are located in regions of complex genomic
structure, it may limit the extent to which these variants can
be genotyped using tagging SNPs. Although there have been
some successes in recent years (3,4,10,46), with certain of
the CNVs within the duplicated regions showing LD with
nearby SNPs (21,46,47) and a heritability value that did not
significantly differ among the loci tested, the extent of LD
between SNPs and CNVs is not at present clear (48). For
instance, a region of the genome may contain high-density
CNVs (21), but the density of SNPs that serve as potential
tags could be much lower. The high-density CNVs may
therefore not be well tagged by the SNPs (46). Markers also
determine whether to focus on common polymorphisms that
principally affect phenotype, or on the markers which have
modifying effects on other genes or environmental factors
(49). Additionally, non-Mendelian behavior may pose a
problem in the use of SNPs for tagging the inheritance of
CNVs.

Another equally important technical development are
hybrid oligonucleotide arrays containing both SNPs and copy
number probes. In this method, SNPs and CNVs are used
together for association studies (50,51). Recently, microarray
CGH has also been used. This method detects differences in
CNVs across diverse species (27), and also assesses CNVs at
multiple loci. Additionally, CNVs can be determined using
oligonucleotide expression microarrays (52), bacterial artificial
chromosome (BAC) arrays (17), SNP arrays and genotyping
data. A review concerning the different genotyping platforms
available was recently published (53). In addition, there are a
variety of fine mapping techniques that researchers use to test
for disease association (7,8,54,55) using a family-based
(traditional) or population-based model. These methods are
effective when CNVs are large, as such variations are usually
taken as functional and hence causative. However, smaller
CNVs that are mostly benign and can therefore not be deter-
mined as functional require statistical challenges to assess

their association with diseases. Similarly, other limitations,
such as insufficient recombination events, the requirement of a
large pedigree, low penetrance and population stratification,
must be considered in determining CNV and SNP association.
Some of the methods may not be able to detect the low-
penetrant variants associated with common diseases. Family-
based studies are the easiest way to prevent stratification, and
are therefore preferred by many investigators (49). Addition-
ally, the quality of DNA and the sensitivity of methods such as
CGH may introduce technical artifacts in association studies
(56). The maintenance of high standards throughout the
research process is therefore a necessity.

4. Summary and conclusion

In summary, by using array CGH and high-density customized
nucleotide arrays, several regions of chromosomes containing
CNVs have been identified. Research in the CNV field also
suggests that large-scale variation in the human genome could
be due to segmental duplications. These lead to genome
instability and are hence associated with genome disorders,
as well as with the evolution of the genome. They are also
the hotspots of chromosomal rearrangement (17). However,
our understanding of their organization and heritability is still
in its infancy. Although there are many technical advances to
be made in the future, the long-term goal of CNV research is
to prepare a comprehensive CNV map of the human genome.
This includes the correlation of variation to phenotypes and
to evolutionary and mutational aspects. Since CGH and high-
density oligonucleotide arrays (47,57) are cost effective and
rapid, they are at present the most valuable tools for CNV
research. As in many other experiments, numerous artifacts or
false-positives will be encountered in CNV research. These
must be minimized. In addition, high priority should be given
to validation. A suitable scanning technology must be
developed. When new technologies become available, primary
results must be verified. Although the field is technically
challenging and very expensive to accommodate within the
limited amount of available resources, in the coming years it
is hoped that CNV research will not only provide insight into
human genetic variation, but will also contribute to a better
understanding of the mechanisms of human genetic disease
and evolution.
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Table I. Examples of CNVs identified in genomic regions associated with diseasea.
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
Disorders Chromosomal regions Refs.
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
Bipolar 3q13.3 (44)
Spinal muscular atrophy 5q13.2 (14,15,21)
Crohn's disease 8p23.1 (43)
Prader-Willi and Angelman syndrome 15q11.3 (4,5,15)
Autism 16p11.2 (13)
Charcot-Marie-tooth Angelman syndrome 17p12 (4,21)
Autism 20p13 (9)
DiGeorge/Velocardiofacial syndrome 22q11.2 (4,5,21,58)
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
aIn some cases, these CNVs are also present in normal individuals.
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
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