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Abstract. Autophagy is a highly conserved intracellular 
degradation process and plays an important role in hepatocar-
cinogenesis. Available data show that autophagy is involved in 
anti-hepatocarcinoma (HCC) therapies. Autophagy regulation 
involves a novel target for overcoming therapeutic resistance 
and sensitizing HCC to currently therapeutic methods. This 
is a systematic review on the interface of autophagy and the 
development of HCC and outlining the role of autophagy in 
current anti‑HCC approaches. Understanding the significance 
of autophagy in anti-HCC therapy may offer a novel thera-
peutic target for improving anti‑cancer efficacy and prolong 
survival for HCC patients.
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1. Introduction

Autophagy is a conserved intracellular degradation process 
in which cellular organelles, proteins and invading microbes 
are degraded by lysosomes. According to the routines 
of target cargos delivered to lysosome, there are three 
types of autophagy: macroautophagy, mitoautophagy and 
chaperone-mediated autophagy (1). This review focused on 
macroautophagy, hereafter referred to as autophagy.

Autophagy is a multifaceted process, consisting of sequen-
tial stages, including initiation, elongation, maturation and 
degradation, which are regulated by a series of highly conserved 
autophagy-related genes (Atgs) involved in various signaling 
pathways (2-4). Autophagy is characterized by the formation 
of double-membrane vesicles, known as autophagosomes, 
which are engulfed by cytoplasmic molecules. Subsequently, 
the autophagosome fuses with the lysosome, which provides 
hydrolases and the sequestered contents undergo degradation 
and recycling. Autophagy contributes to the pathogenesis of 
diverse diseases, such as neuronal degeneration, inflammatory 
bowel disease, aging and cancer (5-8). Autophagy is involved 
in tumor development and progression, however, its exact 
role remains to be elucidated. Based on current information, 
autophagy plays a dual role in cancer initiation and develop-
ment. First, autophagy eliminates senescent and injured cells, 
thereby limiting chromosomal instability and suppresses 
tumor initiation. Deletion of Atgs in mice results in a high 
incidence of spontaneous tumors (9). Second, autophagy could 
provide energy by recycling damaged organelles, DNA, aggre-
gated proteins and pathogens to maintain energy balance, 
which promotes cancer cell survival. As a result, the inhibition 
of autophagy may be a novel strategy to improve the efficacy 
of anti-cancer therapy.

Primary liver cancer is the fifth most common cancer 
worldwide and the third most common cause of cancer-related 
mortality (10). Hepatocarcinoma (HCC) is the most common 
primary malignancy of hepatocytes which accounts for ~90% 
of primary liver cancers (11). Most cases of HCC (~80%) are 
associated with chronic hepatitis B virus (HBV) or hepatitis C 
virus (HCV) infection (11-13). In addition, non-alcoholic and 
alcoholic fatty liver disease contribute to the development of 
HCC (14). Surgical resection or liver transplantation remains 
the mainstay of treatment for early HCC patients. However, 
the majority of patients present at an advanced stage, and 
only a few newly diagnosed HCC patients are eligible for 
chemotherapy, targeted therapy, transcatheter arterial chemo-
embolization (TACE) or radiofrequency ablation.

Autophagy in HCC has been previously investigated. 
Dysregulation of autophagy is involved in hepatitis, fibrosis, 
cirrhosis and HCC (15-17). Modulation of autophagy can 
affect the efficacy of anti-HCC therapy. Therefore, it is 
crucial to understand the potential mechanisms underlying 
the involvement of autophagy in the development, progres-
sion and anti-cancer therapy of HCC, which may lead to 
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novel therapeutic approaches for liver cancer. This review 
aimed to provide an overview of current available information 
regarding the role of autophagy in the development of HCC 
and the effect of autophagy in anti-HCC therapy.

2. The role of autophagy in HCC

Since autophagy is a stress response, it is associated with the 
development of HCC (16). Thus, understanding the role and 
potential molecular mechanisms underlying the involvement 
of autophagy in HCC formation and development, which may 
provide novel therapeutic strategies for HCC, is crucial.

Autophagy is involved in the formation of HCC. The formation 
of HCC is a multi-stage process, which frequently develops in 
patients suffering from chronic liver injury caused by chronic 
alcohol consumption and hepatitis B or C infections (18). 
These conditions result in the death of healthy liver cells and 
the initiation of an inflammatory response that sequentially 
induces liver cell proliferation, subsequently compensating 
cirrhosis and eventually the development of HCC.

Recent studies have demonstrated that almost all factors 
leading to chronic liver injury or inflammation were capable 
of inducing autophagy. Autophagy is involved in hepatic lipid 
and alcohol metabolism (19,20). In Atg7‑specific knockdown 
mice, lipid was markedly deposited in hepatocytes (19). 
Ding et al (21) found that acute ethanol administration 
promoted the removal of lipid droplets and damaged mito-
chondria by the induction of autophagy in mouse hepatocytes. 
Suppression of autophagy exacerbated alcoholic liver injury.

Epidemiological, clinical and experimental studies have 
demonstrated that the relative risk of HCC in HBsAg carriers 
is >200 times that in matched non-carriers (22,23). HBV 
can enhance autophagy in Huh7 and HepG2 cells in mouse 
orthotopic liver cancer models (24,25). The HBV X protein 
sensitizes hepatoma cells to starvation-induced autophagy 
via the upregulation of Beclin-1 expression (24,26). In addi-
tion, HBV promotes viral replication by the binding of HBx 
and PI3KC3 (26). Recent findings suggest that autophagy is 
involved in HCV infection (27-29). Inhibition of autophagy 
abrogates the replication of HCV by siRNA-targeting 
Atgs (30). HCV induces the accumulation of autophagosome 
in hepatoma cells by unfolded protein response (UPR) (27).

Liver fibrosis is the final result of liver injury or chronic 
liver disease, which ultimately progresses to liver cirrhosis 
and cancer. Induction of autophagy promotes hepatic stel-
late cell (HSC) proliferation or activation, which is transited 
to myofibroblast when it is activated under the conditions 
of liver hepatitis, alcohol or non-alcohol liver diseases (31). 
Pharmacological inhibitors baflomycin A1, 3‑methyladenine 
(3-MA) or chloroquine (CQ) suppress the activation and 
proliferation of HSC in vitro and in vivo.

Collectively, autophagy is involved in chronic liver disease 
caused by non-alcoholic and alcohol factors, as well as HBV 
or HCV infection. Various potential signaling pathways are 
involved (Fig. 1).

Autophagy plays a dual role in hepatocarcinogenesis. Despite 
the literature available, the role of autophagy in hepato-
carcinogenesis remains controversial. Since autophagy is a 

stress response and survival mechanism, mouting evidence 
demonstrates that autophagy contributes to the survival 
of cancer (8,32). It has been reported that autophagy was 
increased in tumor interior rather than in cancer margins, 
contributing to the survival of interior tumor cells under an 
hypoxic-ischemic environment (32). Microtubule-associated 
protein light chain 3 (LC3) was significantly highly expressed 
in HCC compared with non-cancerous tissues, and was also 
significantly correlated with tumor size. In addition, LC3 was 
an independent predictor of HCC recurrence after surgery only 
in the context of large tumors (33). Similarly, increased levels 
of LC3-II were observed in HCC tissues with low glucose 
uptake and a high K-Ras expression (34). Collectively, these 
data support the hypothesis that autophagy serves to maintain 
tumor survival.

As an essential regulator for cellular homeostasis, 
autophagy plays an important role in carcinogenesis. It has 
been well-documented that autophagy is a tumor suppressor 
that acts as a housekeeping gene (35). Mice with homozygous 
Beclin-1 knockout have a high incidence of spontaneous tumors, 
such as HCC (36). Similarly, the deletion of Atg5 or Atg7 in 
liver, two key elements of autophagy elongation, resulted in the 
increasing incidence of HCC (37). The expression and activity 
of Atg5 or Atg7 are reduced in HCC cell lines compared with 
normal hepatocytes in vitro (38). Kotsafti et al (37) found that 
the decreased expression of Beclin-1 was observed in human 
HCC tissue and was correlated with recurrent disease and 
free‑disease survival (37). These findings establish a role for 
autophagy as a suppressor in HCC.

Autophagy is known to suppress tumorigenesis in healthy 
cells, albeit it contributes to the survival of an established 
tumor (Fig. 2).

3. Autophagy and anti‑HCC therapy

Due to the controversial role it plays in the initiation and 
development of HCC, autophagy has become an emerging and 
noteworthy field of study for identifying treatment for HCC. 
Appreciation of the function of autophagy in cancer treatment 
is critical, because anticancer therapies have been shown to 
initiate autophagy in vitro and in vivo.

Autophagy in chemotherapy. Currently, chemotherapy is almost 
ineffective for HCC because of the inherent or acquired chemo-
resistance and limitation of liver function. Autophagy is known 
to promote cancer resistance to chemotherapy. Guo et al (39) 
reported that cisplatin or 5-FU induced autophagy in HepG2, 
SMMC-7721 and Hep3B cells. Autophagy inhibition by 3-MA or 
the siRNA targeting Beclin-1 increased chemotherapy-induced 
apoptosis by causing significant damage of mitochondrial 
membrane in vitro and in vivo. Oxaliplatin-based combination 
chemotherapy has shown promising anti-tumor activities in 
patients with HCC (40). Ding et al (41) found that autophagy 
was activated by oxaliplatin in the HCC cells. Suppression of 
autophagy with pharmacologic inhibitors or siRNAs targeting 
essential autophagic genes enhanced cell death induced by 
oxaliplatin in HCC cells, which correlated with the generation 
of reactive oxygen species.

However, adriamycin, which is routinely used as a mono-
therapy for advanced HCC, induced autophagic cell death 
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rather than cytoprotective autophagy in Hep3B cells (42). It is 
known that the MAPK/ERK pathway, which is upregulated in 
HCC, can regulate autophagy (43). The potential mechanism 
of autophagic cell death induced by adriamycin is present in 
the sustained activation of the MAPK/ERK pathway, which 
leads to autophagic progression, followed by an irreversible 
stage and ultimately cell death.

Autophagy is known to serve as a protective mechanism 
under chemotherapeutics (39-41). Although autophagic cell 
death has been reported, this should be defined carefully in 
its particular context and the results should be elucidated 
prudently.

Autophagy in molecular‑targeted therapy. Molecular-targeted 
therapy is critical for advanced or recurrent HCC. Sorafenib, 
a multi-targeted receptor tyrosine kinase inhibitor (TKI) that 
targets Ras, VEGFR and PDGFR, was approved as the stan-
dard therapy for advanced unresectable HCC (44). However, 
sorafenib only provides modest effects, prolonging survival in 
patients with HCC from a median of 7.9 to 10.7 months (45,46). 
Sorafenib induced the accumulation of autophagosomes in 
HCC cells through inhibition of the mTORC1 pathway (47,48). 
The underlying molecular mechanisms of this process are: 
i) The PI3K/Akt/mTOR signaling pathway is capable of 
regulating autophagy. Besides the Raf/MEK/MAPK pathway, 
sorafenib inhibits activation of the mTORC1 pathway, which 
ultimately stimulates a series of signals to induce autophagy. 
ii) The endoplasmic reticulum (ER) is an essential intracel-
lular organelle required for the synthesis and quality control 
of proteins. Findings of recent studies have demonstrated 
that autophagosome membranes originate from ER, 
thereby suggesting a direct connection between the ER and 
autophagy (49). Shi et al (48) reported that sorafenib signifi-
cantly increased the mRNA and protein expression levels of 
the UPR target genes IRE-1 and CHOP as well as eIF2α phos-
phorylation. Thus, sorafenib-triggered ER stress is critical for 
autophagy activation. Briefly, autophagy conferred a survival 
advantage for sorafenib treatment in HCC, which may be an 
attractive strategy for HCC treatment. Similarly, autophagy 
exerts a cytoprotective effect in HCC cell lines treated 
with proteasome inhibitor carbobenzoxy-Leu-Leu-leucinal 
(MG-132), bortezomib, or bevacizumab, a humanized mono-
clonal antibody that binds VEGF-A (50-52).

It has, however, been demonstrated that autophagic cell 
death was a major contributor to molecular-targeted thera-
pies associated with the anti-proliferative effect on tumor 
cells. Tai et al (53) found that sorafenib and SC-59, a novel 
sorafenib derivative, disrupt myeloid cell leukemia-1 (Mcl-1) 
associated with Beclin‑1 and promote significant autophagic 
cell death. OSU-03012, a highly selective COX-2 inhibitor, 
induced reactive oxygen species-related autophagy to inhibit 
HCC cell proliferation (54). Nilotinib, a second-generation 
TKI for leukemia, induced autophagic cell death in HCC 
by deactivating phosphatase PP2A and increasing AMPK 
phosphorylation. Autophagy inhibition by hydroxychloro-
quine (HCQ) reduced the effect of nilotinib in vivo (55).

Collectively, molecular-targeted therapy activates 
autophagy in HCC cells and autophagy can function to 
promote either tumor cell survival or cell death.

Autophagy in radiotherapy. Conformal radiotherapy (RT) 
and stereotactic body radiation therapy are used to treat single 
or solitary liver metastases or unresectable HCC in some 
preferential patients. A phase II trial demonstrated that 48% 
of patients who had HCC or local metastases, unsuitable for 
or refractory to standard therapy and received palliative RT, 
exhibited improvement in symptoms such as pain, abdominal 

Figure 1. Autophagy is involved in the initiation of hepatocarcinoma (HCC). 
(A) Autophagy involvement in etiological factors of HCC. (a) Autophagy is 
induced by hepatitis B virus (HBV). Activating PI3K signal is one of the 
mechanisms in autophagy induced by HBV (25,26). (b) Autophagy is activated 
in hepatocytes infected with hepatitis C virus (HCV) through the activation 
of unfolded protein response signaling (27). (c) Autophagy is suppressed 
in obesity in hepatocytes possibly because the mTOR signaling pathway 
is overactivated by the metabolism of overnutrition (20). (d) Autophagy is 
inhibited by ethanol, which may be caused through the downregulation of 
AMPK activity (21). (B) A multi-stage process in the formation of HCC.

Figure 2. The dual role of autophagy in the development of hepatocarcinoma 
(HCC). Autophagy is activated as a response to stress, growth factors deple-
tion, starvation and anti‑tumor treatment. (A) Under autophagy‑deficient 
conditions, cells succumb to death when challenged with death stimuli. 
Thus, autophagy acts as a tumor suppressor. On the other hand, proteins 
scavenged by autophagy accumulate and result in genetic instability, which 
in turn promote hepatocarcinogenesis. (B) Under autophagy-competent 
conditions, cells succumb to survival when challenged with death stimuli. 
Autophagy removes damaged organelles, misfolded and aggregated proteins, 
both of which generate free fatty acids and amino acids that can provide 
energy to facilitate hepatocarcinogenesis. However, the sustained activation 
of autophagy leads to autophagic cell death, termed as type II programmed 
cell death. FFA, free fatty acids.

  A

  B
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discomfort, nausea, or fatigue (56). In recent studies, it was 
shown that genetic or pharmacological interference with 
autophagy can enhance the response to radiation in renal 
cell carcinoma, breast cancer, head and neck squamous cell 
carcinoma and glioblastoma (57-59). Iron radiation contributed 
to a cytoprotective autophagy that could be inhibited by CQ 
or by the silencing of autophagy-regulatory genes, with the 
consequent enhancement of radiation sensitivity in breast 
cancer (59,60). By contrast, Altmeyer et al (61) found that 
irradiation with fast neutrons, which are high-linear energy 
transfer (LET) particles, induced autophagic cell death in 
the human HCC SK-Hep1 cells (61). Furthermore, autophagy 
plays a pivotal role in cell death after high-LET irradiation 
in orthotopic human hepatocellular carcinoma (62). Briefly, 
autophagy can be induced by radiation therapy, which func-
tions to protect or promote cell death. However, the potential 
mechanism underlying this role remains to be determined.

Autophagy in TACE or photodynamic therapy. TACE is 
used in unresectable HCC, as well as pre- or post-operative 
adjuvant therapy in patients with resectable HCC to improve 
survival. Studies have shown that LC3 expression was 
significantly higher after TACE compared to tumors that had 
not undergone treatment in human HCC tissue samples (41). 
Autophagy inhibitor CQ combined with TACE represented 
better outcomes compared to TACE alone in a rabbit VX2 
liver tumor model (63).

Photodynamic therapy (PDT) is a process whereby the inter-
action between photodynamic agents localized in neoplastic 
tissues and oxygens in tissues was initiated by irradiation at 
appropriate wavelength (64). Using a murine hepatoma 1c1c7 
model, Andrzejak et al (65) found PDT-induced autophagy was 
cytoprotective since PDT efficacy was significantly enhanced 
in Atg7-knockdown cells.

Autophagy in immunotherapy. During the process of tumor 
development, tumor antigens are not visible to T cells thereby 
escaping immune surveillance (66). Thus, immunotherapy 
is considered a promising therapeutic option with the aim of 
inducing or increasing HCC‑specific immune response and 
overcoming immune escape, demonstrating the importance of 
autophagy in central aspects of the immune response, making 
it an attractive target for cancer therapy. Cytokines such as 
IFN-γ, IL-12 and TNF-β, are important effector components 
in the immune response (67). IFN-γ, which plays an important 
role in HCC immunotherapy, inhibited liver cancer cell growth 
by the induction of autophagic cell death. Knockdown of the 
Beclin-1 or Atg5 attenuated the inhibitory effect of IFN-γ (68). 
IL-2, a major regulator of immunotherapy that  was approved 
for advanced renal cancer and melanoma, can increase 
autophagy flux in murine liver (67). The combination of IL‑2 
with CQ prolonged survival in a murine metastatic liver tumor 
model. The potential mechanism involved is that CQ inhibited 
oxidative phosphorylation and ATP production and promoted 
apoptosis of cancer cells (67). Li et al (68) reported that toll-like 
receptor-2 (TLR-2) deletion sensitized liver cancer cells to 
diethylnitrosamine, a genotoxic carcinogen that can induce 
HCC. TLR-2 deficiency caused a decrease in the expres-
sion of IFN-γ, IL-6 as well as suppression of the autophagic 
flux. Restoring autophagic flux by treating TLR2‑deficient 

mice with IFN-γ, a T-helper 1 (Th1) cytokine and positive 
modulator of autophagy, attenuated the carcinogenesis and 
progression of HCC in TLR2‑deficient mice (68). Recently, a 
cancer vaccine originating from tumor cell-derived autopha-
gosomes (DRibbles) combined with dendritic cells (DCs) has 
shown a specific T‑cell response against HCC and resulted in 
the significant inhibition of tumor growth compared to mice 
treated with DCs alone (69).

Autophagy in liver transplantation. Liver transplantation is 
a widely accepted treatment for HCC patients and is the best 
available option for early HCC. Ischemia/reperfusion (I/R) 
injury occurs during the procedure of liver transplantation, 
which is the main cause of initial deficiencies and primary 
dysfunction of liver grafts (70). Accumulating evidence 
suggests that CQ administration worsens I/R injury via 
autophagy inhibition in kidney and heart after ischemia (71,72). 
It was also demonstrated that CQ treatment ameliorated liver 
I/R injury in the early phase of reperfusion but worsened liver 
I/R injury in the late phase via inhibition of autophagy on rat 
hepatic I/R injury (32). Hepatocytes that possessed abundant 
autophagosomes often underwent autophagic cell death which 
triggered liver graft dysfunction (73).

By contrast, Degli Esposti et al (74) demonstrated that 
ischemic preconditioning induces autophagy in human 
steatotic liver grafts and reduces rejection in recipients. 
Rapamycin, a key immunosuppressive drug and autophagy 
inducer, improved the survival of HCC patients with liver 
transplantation (75).

Thus, whether autophagy functions in cell survival or death 
in anti-HCC therapy is highly dependent on the cell type, 
mechanisms of agents and the signaling pathways (Table I).

4. Autophagy modulation and anti‑HCC therapy

Although the role of autophagy in hepatocarcinogenesis and 
treatment thereof has been outlined in detail, autophagy 
modulation based on its function may provide novel opportu-
nities for HCC treatment. Autophagy inhibition is an emerging 
strategy that enhances cytotoxicity in combination with 
anti-HCC therapies in the prosurvival function of autophagy. 
By contrast, the activation of autophagy is another method to 
facilitate the anti-tumor effect combination with current thera-
peutic methods in autophagic cell death.

Inhibiting autophagy in anti‑HCC therapy. Recent studies 
have reported that genetic or pharmacological interference 
with autophagy can enhance the response to chemotherapy, 
molecular-targeted and radiation therapy (50,52,59). CQ 
and HCQ, which are used in malaria, are commonly used 
as autophagy inhibitors in various tumor experiment 
models (76). In pre-clinical and clinical trials conducted, the 
role of autophagy inhibition through pharmacologic inhibitors 
such as CQ and HCQ was examined in various tumors (www.
clinicaltrials.gov). As mentioned above, autophagy inhibitors 
can enhance the effectiveness of oxaliplatin, cisplatin, 5-FU 
and sorafenib in HCC models (39,41,47). The coadministra-
tion of oxaliplatin and CQ induced a marked decrease in 
tumor volume compared with either agent alone in HCC 
xenografts (41). CQ interacted synergistically with bortezomib 
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to suppress tumor growth to a greater extent in HCC experi-
mental models (51). The concomitant inhibition of autophagy 
by CQ or genetic knockdown Atg7 sensitized hepatoma cells 
to sorafenib (47). Similarly, autophagy suppression by means 

of 3-MA and inactive Atg4B inhibited proliferation in Huh7 
cells (77). Thus, autophagy inhibition is an attractive strategy 
for overcoming therapeutic resistance in the protective func-
tions of autophagy.

Inducing autophagic cell death in anti‑HCC therapy. Sustained 
activation of autophagy may kill cancer cells with a high apop-
totic defect, termed autophagic cell death (78). Autophagic 
cell death has been observed in malignant glioma cells treated 
with arsenic trioxide or sodium selenite (79,80). Vorinostat, a 
histone deacetylase inhibitor, induced autophagic cell death in 
the U937 hematological cell line (81). Autophagy activation 
may serve as an alternative strategy for eliminating cancer 
cells, especially HCC cells with apoptotic defect. As discussed 
above, sorafenib induced autophagic cell death through the 
Mcl‑1 signaling pathway (53). Under context‑specific condi-
tions, the sustained upregulation of autophagy may benefit 
from sorafenib treatment. However, evidence from in vivo 
studies and clinical trials are relatively limited and whether 
the induction of autophagic cell death in tumor cell death can 
be sensitized to HCC therapy remains unclear.

Taken together, although connections between autophagy 
and anti-HCC therapies have been suggested, autophagy 
modulation provides new prospects in anti-HCC therapy. 
The complexity of autophagy in hepatocarcinogenesis and 
anti‑HCC therapies, however, makes it difficult to define how to 
regulate autophagy (inhibition or activation) in order to ensure 
maximum therapeutic advantage. A typical example is that 
sorafenib-induced autophagy is particularly context-dependent 
and exhibits an opposite function through different signaling 
pathways (Fig. 3).

5. Conclusions

The role of autophagy in cancer remains controversial and 
highly context-dependent. As outlined in this review, autophagy 
plays a dual role in multiple aspects to the sequential process of 
liver cancer initiation, promotion, progression and metastasis. In 
addition to this, autophagy is induced through various types of 
anti-HCC therapies. Previous studies (34,37) have demonstrated 
that autophagy plays an anti-tumor effect in suppression of the 
formation of HCC, while serving as a pro-survival mechanism 
to promote liver cancer development, and results in resistance 
to anti-HCC therapy. Thus, targeting autophagy is a promising 
strategy for liver cancer therapy.

Limitations to the clinical application of autophagy in 
anti‑HCC therapy should first be overcome.Although it is 
widely accepted that anti-tumor treatment induces autophagy, 
it remains to be determined whether this activation promotes 
cell survival as a response to stress, or leads to cell death 
under the condition of apoptotic defects. Therefore, obtaining 
the function status of autophagy in anti-HCC treatment 
may contribute to devising a rationale for the treatment of 
HCC. Additionally, whether autophagy modulation (inhibi-
tion or activation) increased the susceptibility to treatment 
in healthy cells or eradicated the balance of homeostasis 
should be clarified. As an autophagy inhibitor, CQ sensitizes 
the normal renal proximal tubular cells to cisplatin admini-
stration (82). Rapamycin, an autophagy inducer, is also an 
immunosuppressor (83). Selection of a suitable drug that 

Table I. The functional status of autophagy in hepatocarcinoma 
treated with different agents in experiments.

Agents Autophagy Function (Refs.)

Chemotherapy   
  Cisplatin ↑ Cell survival (39)
  5-FU ↑ Cell survival (39)
  Oxaliplatin ↑ Cell survival (41)
  Adriamycin ↑ Cell death (42)
Targeting therapy   
  Sorafenib ↑ Cell survival (47,48)
 ↑ Cell death (53)
  MG-132 ↑ Cell survival (50)
  Bevacizumab ↑ Cell survival (51)
  Bortezomib ↑ Cell survival (52)
  OSU-03012 ↑ Cell death (54)
  Nilotinib ↑ Cell death (55)
Immunotherapy   
  IFN-γ ↑ Cell death (68)
  IL-2 ↑ Cell death (67)
  DRibble ↑ Cell survival (69)

Figure 3. Sorafenib activates autophagy through different signaling pathways. 
Autophagic cell death is triggered by sorafenib by suppressing myeloid cell 
leukemia-1 (Mcl-1)-related signaling pathway in hepatocarcinoma (HCC) 
PLC5, SK-Hep1, HepG2 and Hep3B cells (53). Thus, inducers of autophagy 
may be used in combination with sorafenib to promote anti‑cancer efficacy. 
Cytoprotective autophagy is triggered by sorafenib through endoplasmic 
reticulum (ER) or the Akt/mTOR signaling pathway in MHCC97-L and 
PLC/PRF/5 cells (47,48). Inhibitors of autophagy may therefore be used in 
combination with sorafenib to promote anti‑cancer efficacy.
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targets autophagy in order to enhance the efficacy of anti‑HCC 
therapy remains a challenge. Subsequently, coadministration 
of the autophagy regulator with anti-HCC therapy may also 
aid in the elucidation of the antistatic effect. Thus, targeting 
autophagy remains a promising interventional strategy for 
the treatment of HCC.
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