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Abstract. Inflammatory responses are known to be correlated 
with cancer initiation and progression, and exploration of the 
route from inflammation to cancer makes a great contribution 
in elucidating the mechanisms underlying cancer develop-
ment. Pancreatic cancer (PC) is a lethal disease with a low 
radical‑resection rate and a poor prognosis. As chronic pancre-
atitis is considered to be a significant etiological factor for PC 
development, the current review aims to describe the molecular 
pathways from inflammation to pancreatic carcinogenesis, 
in support of the strategies for the prevention, diagnosis and 
treatment of PC.
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1. Introduction

Pancreatic cancer (PC), for which the overall 5‑year survival 
rate among patients is ~6% (1) , has the fourth highest incidence 
ratio of cancer‑related fatalities, with <10% of patients having 

the opportunity of radical surgery at diagnostic presentation. 
Current evidence has indicated that the associated risk factors 
include smoking, alcoholism, diabetes mellitus, genetic factors 
and chronic pancreatitis (CP) (2‑6). However, the causes and 
mechanisms of PC remain unclear.

Inflammatory responses play a significant role in cancer 
development, including the initial malignant conversion. The 
potential association between inflammation and cancer has 
been observed in various types of malignancies, including 
persistent Helicobacter pylori infection with gastric carci-
noma  (7), inflammatory bowel disease with colorectal 
cancer (8,9) and reflux esophagitis with esophageal adeno-
carcinoma (10). It is widely believed that tumor initiation is 
triggered by multiple mutational hits that induce DNA damage 
and genomic instability. The potential carcinogens produced 
from inflammatory cells, such as reactive oxygen species (ROS) 
and reactive nitrogen intermediates, are capable of inducing 
malignant initiation through accumulation of continuous DNA 
damage and subsequent abortive repair. Furthermore, the 
production of growth factors and cytokines during the inflam-
matory process can enhance the proliferation of initiated cells 
by eventually converting them to tumor cells (11). Assessing 
the link between chronic inflammation and tumorigenesis may 
provide a different approach to understanding the pathological 
mechanisms of tumor development. Accordingly, the present 
review discusses the molecular biology of CP to PC, which 
may contribute to furthering the clinical diagnosis and therapy.

2. Chronic pancreatitis and risk of pancreatic cancer

Several studies have demonstrated a strong link between 
antecedent CP and PC. The incidence is variable and the stan-
dardized incidence ratio (SIR) has been reported to be between 
3.8 (12) and 18.5 (13). In 1993, Lowenfels et al (14) launched an 
international cohort study with 2,015 patients, demonstrating 
that the SIR was 14.4. The risk of malignant transformation 
10 and 20 years after diagnosis was 1.8 and 4.0%, respectively. 
However, certain epidemiological factors, including cigarette 
smoking and alcohol (15), which are considered as cofactors 
in the development of pancreatitis, are also responsible for the 
increased PC incidence (6,16).

Additionally, two recent large‑sample case‑control studies 
of PC identified that a short temporal history of pancreatitis 
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was highly associated with PC (17), indicating that pancreatitis 
may be an early manifestation of PC in specific individuals. 
Patients with PC may be diagnosed with CP in the first diag-
nosis, while the differential diagnosis between early CP and 
PC is difficult. The misdiagnosis may elevate the correlation 
of the two.

However, with adjustments or matching variables, 
including smoking habit and alcohol consumption, the risk 
of PC increases in patients with CP  (18). In patients with 
hereditary pancreatitis, the lifetime risk of PC is ~40% (19), 
and similarly, for those patients with tropical pancreatitis, 
the risk of PC is also high  (20). Furthermore, a study by 
Talamini et al (13) analyzed 715 cases of CP with a median 
follow‑up of 10 years, observing that the risks of PC and 
non‑PC were increased as compared with the general popu-
lation. Notably, the clearly higher incidence of PC indicated 
that although cigarette smoking contributed to various tumors, 
there were certain other factors linked to the chronic inflam-
mation of the pancreas, which may be responsible for the 
increased risk.

In summary, CP is determinately considered as an inde-
pendent risk factor for PC. This risk is markedly increased in 
those patients with hereditary pancreatitis or tropical pancre-
atitis.

3. Molecular pathway between chronic pancreatitis and 
cancer of the pancreas

With the documented link between CP and PC, the molecular 
pathway from inflammation to cancer in the pancreas exhibits 
an increasing significance for deeper analysis. Novel molecular 
changes have been observed in CP and PC simultaneously, 
including K‑ras mutations (21,22) and serine protease inhibitor 
Kazal type  1 (SPINK1) gene N34S mutations  (23,24). In 
addition, the cyclooxygenase‑2 (COX‑2) enzyme and nitric 
oxide (NO), which are considered to be inflammatory media-
tors and have been found to be overexpressed in patients with 
CP (25,26), may act as key factors in the tumorigenesis in CP. 
Therefore, further discussion in the present review focuses on 
the roles of novel molecules in pancreatic tumorigenesis.

3.1. K‑ras

The Ras family, which consists of three members, known as H‑, 
N‑ and K‑ras, are proto‑oncogenes that encode a highly‑homol-
ogous group of 21‑kDa monomeric, membrane‑localized 
guanosine triphosphate (GTP)‑ases. The main function of 
these proteins is to transmit signals between the extracellular 
and intracellular environment, acting as a ‘molecular switch’. 
As downstream molecules with normal regulation sustaining 
the homeostasis associated with cell proliferation and apop-
tosis, the error state‑like point mutation, multiple expression, 
insertion and transposition of the Ras genes are responsible for 
the carcinogenesis of numerous organs.

The K‑ras gene is located on chromosome  12p12, and 
is ~45,000  bp in length. K‑ras is the most cancer‑related 
protein in the p21 Ras proteins, existing in two alternatively 
spliced forms, K‑Ras4A and K‑Ras4B, which have differing 
c‑terminal residues resulting in differential post‑translational 
modification. Mutations frequently detected in codon 12, 

13 and 61 of the K‑ras gene result in the subsequent transla-
tional product remaining in the GTP‑bound  (27), activated 
state, which may activate the downstream pathways, including 
Raf/MEK/extracellular signal‑regulated kinase (ERK) (28‑30) 
and Ras/phosphatidylinositol‑3‑kinase (PI3K)/Akt (31,32). The 
complex intracellular regulations originating from the K‑ras 
mutation finally result in a proliferation and apoptosis‑related 
malignant transformation in certain cells (32,33). Constitutive 
activation of K‑ras has been observed in specific pathological 
changes in the pancreas, including CP, pancreatic intraepithelial 
neoplasia (PanIN) and PC (34), among which the simultaneous 
overexpression of K‑ras exhibiting the potential linkage, has 
attracted widespread attention. Mu et al (35) investigated the 
clinical significance of K‑ras gene mutation detection in patients 
with CP and observed that screening for the K‑ras mutation may 
be useful in identifying patients with pancreatitis that are at a 
high risk for developing cancer. In 2007, Guerra et al (36) estab-
lished a mouse model with CP induced by caerulein treatment, 
and observed that the chronic inflammation in the pancreas 
could facilitate the differentiation of acinar/centroacinar or their 
precursor cells into ductal‑like cells, resulting in PanINs and 
pancreatic ductal adenocarcinoma (PDA) by the selective expres-
sion of an endogenous K‑RasG12V oncogene in adult mice. The 
formation of PanINs followed a defined progression from low‑ 
to high‑grade lesions that resulted in the appearance of invasive 
PDA by completely depending on K‑RasG12Vgeo expression, 
as reported similarly in other studies (21,37). Guerra et al (36) 
also assessed the cooperation between K‑RasG12V expression 
and p53 inactivation, observing that the additional mutation 
of p53 could strongly enhance the metastatic properties of 
K‑RasG12V‑induced PDA. As reviewed in these studies, it 
is now accepted that the K‑Ras oncogene forms the linkage 
between CP and PDA. Recently, Guerra et al (38) completed a 
further study to approach the molecular pathways from CP to 
PC with expression of a resident K‑ras oncogene in adult mice. 
The study demonstrated that the K‑ras mutation could initiate 
murine PanINs (mPanINs) and murine PDAC (mPDAC) in 
adult mice with pre‑existing pancreatic damage and an inflam-
matory response. Furthermore, the study also observed that 
the loss of p16Ink4a/p19Arf and Trp53 in adult acinar cells 
only contributed to the mPanIN and mPDAC development in 
the presence of K‑Ras oncogenes, which may confirm the key 
role of K‑ras in the carcinogenesis in the pancreas. Finally, 
oncogene‑induced senescence, a natural defense mechanism 
against tumor development (39), was observed to be repressed 
by the inflammatory response of pancreatitis, and may be one 
of the mechanisms by which pancreatitis‑induced inflammation 
contributes to PC, cooperating with simultaneous expression of 
the K‑ras oncogene.

Recent studies described a new signaling pathway, the 
epidermal growth factor receptor (EGFR) signaling pathway, 
which was indicated to be required for K‑ras‑driven tumori-
genesis and inflammation‑associated tumorigenesis in the 
pancreas  (40,41). In the mutant K‑ras‑driven PDA model, 
EGFR controls the differentiation of neoplastic precursors and 
induces tumor initiation, following which, EGFR promotes 
cancer progression by activating ERK. In addition, certain 
other signaling pathways are indicated in the participation of 
K‑ras‑induced pancreatic tumorigenesis, including the nuclear 
factor‑κB (NF‑κB) and Notch signaling pathways (42,43).
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The K‑ras oncogene is widely believed to be one of the 
initial components in pancreatic carcinogenesis, as of which 
several trials have been reported regarding the clinical appli-
cations (44,45). However, how the activated K‑ras oncogenes 
are induced by the inflammatory microenvironment remains 
unclear. More notably, to elucidate the precise timing at which 
the K‑ras mutations become detectable during the chronic 
inflammatory process will contribute to the early diagnosis of 
PC. Consequently, much more extensive work on the role of 
K‑ras in pancreatic diseases will be involved in future studies.

3.2. COX‑2

COX, also known as prostaglandin‑endoperoxide synthe-
tase, is the rate‑limiting enzyme responsible for converting 
arachidonic acid to prostaglandins, leukotrienes and 
thromboxanes, which are considered to be the proinflam-
matory cytokines (46). Two isoforms of COX exist. COX‑1 
is constitutively expressed in numerous tissues and always 
plays the ‘house‑keeping’ role in tissue homeostasis, whereas 
COX‑2 is an inducible isoform observed to be overexpressed 
in numerous pathological changes, including inflammation 
and tumorigenesis (47).

COX‑2 expression is elevated in response to a variety of 
proinflammatory stimuli, including interleukin‑1 (IL‑1), IL‑6, 
tumor necrosis factor‑α (TNF‑α) and transforming growth 
factor‑β  (TGF‑β)  (48,49). Several studies have observed 
the overexpression of COX‑2 in CP (25,50), and the COX‑2 
inhibitors attenuating the severity of acute pancreatitis in 
a rat model have indicated the correlation between COX‑2 
and the genesis of pancreatitis  (51). Additionally, COX‑2 
has been found to be upregulated in PanIN (52), intraductal 
papillary mucinous neoplasm (IPMN) (53) and human PC 
tissue (53,54). Early suppression of COX‑2 may contribute to 
preventing the progression of inflammatory and pre‑malig-
nant lesions to malignance in the pancreas (47‑49). COX‑2 
promotes cell proliferation (58), inhibits apoptosis (59) and 
facilitates angiogenesis by increasing vascular endothe-
lial growth factor  (VEGF) production  (60). Previously, a 
mouse model (61) was generated, in which the overexpres-
sion of COX‑2 was under the control of a bovine keratin 5 
promoter driving pancreatic acinar‑to‑ductal metaplasia, 
which revealed that the elevation of COX‑2 was significantly 
correlated with the metaplasia‑dysplasia progressing in the 
exocrine pancreas. However, the precise mechanism by 
which COX‑2 promotes PC growth is unclear.

Thus, COX‑2 conducts the definite linkage between 
inflammation and cancer in the pancreas. However, a number 
of laboratory and clinical studies, whose conclusions are 
controversial, have approached the therapeutic significance 
of targeting COX‑2 activity for PC (62‑67), and it requires 
more experimental evidence to confirm whether targeting 
COX‑2 can be applied in clinical treatment.

3.3. NF‑κB

NF‑κB is a family of transcription factors, including NF‑κB1, 
NF‑κB2, Rel A, c‑Rel and Rel B. These proteins are consti-
tutively expressed in the cytoplasm of eukaryotic cells in an 
unactivated state as a result of combining with an inhibitory 

protein, inhibitor κB (IκB). The exact mechanism of NF‑κB 
activation is complex and not completely clear. The impact 
of various pathogenic stimuli, including the proinflamma-
tory factors TNF‑α, IL‑1 and bacterial lipopolysaccharide, 
enabling phosphorylation of IκBα subsequently results in the 
degradation of IκBα and exposures the sequence for DNA 
binding and nuclear translocation in NF‑κB. Activated and 
nuclear translocated NF‑κB, as a transcription factor, plays a 
significant role in the transcriptional control of certain inflam-
matory and cancer‑related genes, including COX‑2  (68), 
IL‑8  (69), inducible NO synthase, cyclin D1  (68), c‑Myc 
and VEGF. These molecules, by which NF‑κB promotes 
PC growth, are upregulated and responsible for cell cycle 
control, angiogenesis and the inhibition of apoptosis in PC 
progression. Genetic mutations in NF‑κB, IκB kinase (IKK) 
or upstream components of its signaling system have rarely 
been observed. Otherwise, exposure to the proinflammatory 
microenvironment resulting in activation of NF‑κB in cancer 
has been widely hypothesized and demonstrated (70,71). The 
molecules for the activation of the IKK/NF‑κB signaling 
pathway include growth factors, cytokines, lymphokines and 
microRNA (72), most of which may bridge the gap between 
inflammation and cancer.

Constitutive activation of NF‑κB has been observed in 
several PC cell lines (73) and human PC tissue (74‑76). The 
proinflammatory cytokine‑paracrine loops established by 
inflammatory, immune and cancer cells potently activate 
NF‑κB in PC  (11,77). The autocrine secretion of IL‑1α, 
induced by activator protein‑1 activity, has been demon-
strated to play a key role in the activation of NF‑κB in 
metastatic PC cell lines (78). In turn, the activation of NF‑κB 
can enhance expression of IL‑1α, which results in a positive 
feedback loop for the constitutive NF‑κB activation in PC. 
Additionally, IL‑1α can enhance the expression of several 
NF‑κB‑regulated genes, including IL‑8 and VEGF, which 
are responsible for the metastatic processes and angiogenesis 
of cancer, in PC cells (79). In conclusion, the IL‑1α‑NF‑κB 
positive feedback loop makes great contributions to support 
the malignant phenotype in PC.

By contrast, previous studies have shown the essential 
role of the NF‑κB pathway in K‑ras‑mutant PCs (43,80). As 
there have been less therapeutic strategies of PC‑targeting on 
the K‑ras signaling pathway, the inhibition of NF‑κB is an 
attractive strategy for the treatment of K‑ras‑dependent PC.

3.4. SPINK1

SPINK1 has been identified as a trypsin inhibitor and is also 
known as a pancreatic secretory trypsin inhibitor (81). SPINK1 
is secreted by the acinar cells of the exocrine pancreas into 
the pancreatic juice and is able to bind to trypsin to inhibit 
its activity. SPINK1 protects the pancreas from the impact of 
prematurely activated trypsinogen, and SPINK1 mutations, 
particularly the N34S mutation (82), have also been reported 
to lower the threshold for pancreatitis from other genetic or 
environmental factors (83) instead of initiating the develop-
ment of CP.

SPINK1 mutations in patients with pancreatitis are firmly 
demonstrated in numerous studies  (82,84‑86). Notably, 
the intronic mutations, including N34S, IVS1‑37T>C and 
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IVS3‑69insTTTT, do not affect the mRNA expression of the 
SPINK1 gene, and these mutations have not been observed 
to be capable of affecting the binding affinity and inhibitory 
activity of SPINK1 to trypsin. Ohmuraya et al (87) created 
a mouse model with deficient SPINK3 (a mouse homologue 
gene of human SPINK1) and showed that excessive autophagy 
in pancreatic acinar cells could be induced by the loss of 
the regulation of SPINK3, indicating that SPINK3 may act 
as a suppressor of autophagy. Therefore, the pathogenesis of 
pancreatitis may be more complex, and further studies will 
be required to elucidate the role of SPINK1 in the onset of 
pancreatitis.

Previously, Rebours et al  (88) described the case of a 
CP‑diagnosed patient with an N34S mutation of SPINK1. 
Cystic fibrosis transmembrane conductance regulator minor 
mutations were found in the multifocal moderate‑dysplastic 
lesions of PanIN‑2 in the duct epithelium following a left 
pancreatectomy. Shimosegawa et al (89) examined whether 
the SPINK1 gene N34S mutation could be a risk factor for 
PC in patients with CP. The study investigated the develop-
ment of PC in three out of 16 CP patients with the N34S 
mutation (18.8%), while only three of 216 CP patients without 
the SPINK1 mutation (1.4%) developed PC, indicating that 
the N34S mutation of the SPINK1 gene may be a significant 
risk factor for the development of PC in patients with CP. 
By contrast, SPINK1 itself has been shown to have growth 
factor activity in various cell lines, including certain cancer 
cells (90,91). SPINK1 is described as a ligand for the EGFR. 
Ozaki et al (91) observed the increase in the cell numbers 
of PC cell lines following treatment with SPINK1. The 
results of their subsequent study demonstrate that SPINK1 
stimulates the proliferation of PC cells through EGFR and 
its downstream signal molecules. The immunohistochemical 
study showed that SPINK1 and EGFR are co‑expressed 
not only in pancreatic tubular adenocarcinoma, but also in 
PanINs (92). As EGFR is confirmed to be overexpressed in 
the tissues of CP and PC (93,94), and SPINK1 is produced by 
the acinar cells and is then secreted into the pancreatic duct, 
the interaction between SPINK1 and EGFR may be involved 
in the malignant transformation of normal pancreatic cells 
during the inflammatory process. A high level of SPINK1 
expression has been reported to be associated with cancer 
progression, tumor recurrence and patient survival rates in 
certain other cancers, indicating that SPINK1 has additional 
functions in extrapancreatic cancers (95,96).

In summary, SPINK1 is described as an inhibitor of the 
onset of pancreatitis, and the mutation of SPINK1 is able 
to lower the threshold for pancreatitis from other genetic 
or environmental factors. In addition, SPINK1 itself can 
promote PC development through the EGFR pathway, while 
the other roles of SPINK1 in inflammatory incidence and 
tumorigenesis remain unknown. More laboratorial and 
clinical studies are required to support the role of SPINK1 
between pancreatitis and PC.

3.5. ROS

ROS are highly reactive oxygen metabolites such as the 
superoxide radical (O2

‑) the hydroxyl radical (OH‑) hydrogen 
peroxide (H2O2) and trioxygen (O3). ROS are produced in 

mitochondria as by‑products of oxidative phosphorylation, 
and are part of the normal cellular metabolism. In inflamma-
tory processes ROS are produced by phagocytes. Additionally, 
inflammatory cells may use cytokines, including TNF‑α and 
TGF‑β (97), to stimulate ROS accumulation in surrounding 
epithelial cells. In cancer cells, comparatively high levels of 
ROS can also result from increased metabolic activity, mito-
chondrial dysfunction, oncogene activity and the increased 
activity of oxidases, COXs and lipoxygenases (99,99).

ROS can oxidize lipids in the cell membrane, oxidatively 
modify protein, depolarize the mitochondrial membrane and 
induce DNA fragmentation to directly damage DNA and 
induce genomic instability (100). In addition to ROS‑induced 
direct DNA damage, certain by‑products produced from 
ROS‑generated lipid peroxidation, including malondial-
dehyde (MDA) and 8‑oxodeoxyguanosine, also known as 
oxidized DNA adducts, can be potent carcinogenic mole-
cules (101). Varying levels of ROS always result in different 
effects on cell proliferation. ROS at acute high levels may act 
as potent cytotoxic molecules inducing cell apoptosis (102). 
Chronic low levels of ROS can affect genome stability and 
cause tumorigenesis (103,104), emphasizing the role of ROS 
in the initiation of malignancy in CP tissues.

Higher levels of oxidative DNA adducts and MDA have 
been found in patients with CP  (105) and also in human 
pancreatic tumor tissue (106). Identically, the primary intra-
cellular antioxidant enzymes, superoxide dismutase (SOD), 
catalase and glutathione peroxidase, are detected in the 
pancreas, and a gradually decreased expression of the three 
antioxidant enzymes has been shown in pancreatic cells 
from the normal pancreas to CP to PC (107). The upregu-
lation of SODs can effectively suppress PC growth in vitro 
and in  vivo  (108). It has been indicated that chronic low 
levels of ROS promote malignant initiation and cancer cell 
proliferation in the pancreas. By contrast, ROS can active 
several signaling pathways, including the mitogen‑activated 
protein kinase, PI3K/Akt NF‑κB signaling, protein kinase C 
and p53 signaling pathways (109‑111), which may tend to 
activate cell survival or cell death. ROS can participate in 
the apoptotic or anti‑apoptotic mechanisms in oxidative 
stress‑targeting therapeutics or oncogene‑induced malignant 
transformation (112‑115). Therefore, the actual role of ROS 
in pancreatitis‑derived PC was really determined by the 
extent of accumulation and the regulation of activity. The 
balanced regulation of ROS in pancreatitis and PC should 
be further investigated, which may also be regarded as the 
potential therapy target for PC.

3.6. Proinflammatory cytokines

Proinflammatory cytokines that are secreted by immune and 
inflammatory cells are significant components in the inflam-
mation and tumor microenvironment. Several cytokines, 
including IL‑1, TNF, IL‑6 and IL‑23, are critical for inflam-
mation and tumor growth. Varying cytokines affect certain 
downstream effectors, including NF‑κB, activator protein‑1, 
signal transducers and activators of transcription and SMAD 
transcription factors, to exhibit either promotion or inhibition 
effects in tumor progression (11,116). By contrast, oncopro-
teins, such as Ras and Myc, can also promote the secretion 
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of proinflammatory cytokines, which have direct effects on 
cancer cell growth and survival (117). Altogether, proinflam-
matory cytokines significantly mediate the mechanisms of 
inflammation‑related tumor initiation and promotion.

Significantly higher levels of TNF‑α, IL‑1, IL‑6 and IL‑8 
have been observed in patients with CP and PC compared 
with healthy controls (118‑121). IL‑1 acting through the IL‑1 
receptor type I can promote the invasion and angiogenesis 
of PC cells (123). The cyst fluid IL‑1 levels predict the risk 
of carcinoma in IPMN, indicating that IL‑1 may facilitate 
malignant transformation in the pancreas (123). TNF‑α is 
classically considered to be an inhibitor of the apoptosis of 
cancer cells by activating the expression of NF‑κB (124‑126). 
Additionally, the inflammatory‑derived TNFα is able to 
stimulate migration and induce the epithelial‑mesenchymal 
transition of human pancreatic carcinoma cells (127). IL‑6 
has been identified as a growth factor that enhances PC cell 
proliferation (118,128,129). An elevated IL‑6 level is corre-
lated with advanced PC, which is represented by cachexia 
and a poor‑life status (130). IL‑8, also known as chemokine 
(C-X-C motif) ligand 8 (CXCL‑8), is a CXC chemokine that 
is produced by numerous types of cells in response to inflam-
matory stimuli. IL‑8 plays a significant role in neutrophil 
chemotaxis and activation. In addition to its inflammatory 
role, IL‑8 has been found to be an autocrine growth factor 
in PC (131,132). The expression of IL‑8 is driven by NF‑κB 
activation (133), and numerous cytokines, including TNF‑α 
and leukemia inhibitory factor, can enhance the expression 
of IL‑8 (131). IL‑8 acts as a significant effector molecule 
bridging the gap between inflammation and cancer in the 
pancreas.

Recently, more cytokines have been identified that are 
correlated with the clinical stage and prognosis in patients 
with PC (134‑136). Cytokines, as molecules derived from 
inflammatory cells and immune cells, should be highlighted 
as prospects for the future exploration of the molecular 
mechanism from inflammation to cancer in the pancreas.

4. Conclusion

Despite advances in oncology and surgery, patients with 
PC frequently have a poor performance and clinical 
prognosis. Clinical evidence has confirmed the correla-
tion between inflammation and pancreatic tumorigenesis. 
Inflammatory responses play a significant role in PC initia-
tion and progression. In turn, cancer‑induced inflammatory 
microenvironment or secreted inflammatory molecules can 
enhance the proliferation of cancer cells and promote the 
inflammatory responses. Exploring the variation in molec-
ular expression and function from inflammation to cancer 
may aid in the development of a route to reveal the causes 
and mechanisms of PC. Inflammation‑targeted treatments 
and examinations exhibit an appealing perspective in the 
therapy and diagnosis (121) of inflammation‑related cancer 
in the pancreas (135,137‑139). In addition, great importance 
should be attached to the inflammatory responses in the 
process of assigning chemotherapies and surgeries for PC 
treatment. The treatment of inflammatory changes may 
be necessary for the preventive and therapeutic schedules 
of PC.
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