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Abstract. The aim of the present study was to determine the 
relative quantitative expression of hypoxia-inducible factor 
(HIF)-1α, -2α and -3α, and VEGF-A in laryngeal carcinoma. 
A total of 63 patients with carcinoma of the larynx were 
enrolled in the study. Total RNA was isolated from fresh, 
frozen normal and tumor tissues of each patient, and quantita-
tive polymerase chain reaction was performed. HIF-1α was 
upregulated in the majority of patients (44 patients; 69.84%). 
By contrast, only 7 (11.11%) patients from the whole group 
displayed HIF-2α overexpression, while the HIF-3α isoform 
was silenced in the majority of patients (48 patients, 76.19%). 
A small group of 5 (7.94%) patients exhibited significant 
overexpression of the HIF-3α isoform. VEGF-A expression 
was significantly higher (P<0.05) in patients with upregulated 
HIF-1α (2.72±1.41 RQ) compared with patients without upreg-
ulated HIF-1α (1.86±1.46 RQ). There was a moderate positive 
correlation between mRNA expression levels of HIF-1α and 
VEGF-A (rs=0.392; P<0.005). To the best of our knowledge, 
this study is first to report quantitative data with regard to the 
expression of all three HIF isoforms in malignant neoplasms. 
The findings suggest the existence of specific phenotypes of 
HIF expression in laryngeal carcinoma, where the HIF switch 
is absent.

Introduction

It is a well-established fact that rapid cell division in solid 
tumors leads to depletion of the oxygen levels and variable 

levels of hypoxia across the tumor. The latter is a major driving 
force for the process of endothelial proliferation and tumor 
angiogenesis. Squamous cell carcinoma of the larynx is the 
most common neoplasm of the head and neck. It is well‑known 
that the rapid proliferation of malignant cells and the irregular 
local vasculature jointly favor the formation of hypoxic areas 
within human solid tumors including laryngeal cancer. Despite 
the vast amount of papers, there is a lack of quantitative studies 
reporting the levels of expression of hypoxia-inducible factors 
in this neoplasm. Hypoxia-inducible factors (HIFs) are essen-
tial in the primary transcriptional responses to hypoxic stress 
in normal and neoplastic cells. These molecules are heterodi-
meric transcription factors that activate a large number of 
target genes, including phosphoglycerate kinase and vascular 
endothelial growth factor (VEGF) A. This leads to increased 
glycolysis, endothelial proliferation and angiogenesis, which 
facilitates the adaptation of the tumor to hypoxia. HIFs are 
composed of α and β subunits; three α isoforms exist, which 
are normally rapidly degraded in an oxygen-dependent 
manner (1-5), while the β subunit is expressed at constant 
level under normoxic conditions. HIF-1α and HIF-2α (also 
known as EPAS1) are structurally similar, and activate the 
transcription of target genes by binding to hypoxia response 
elements (HREs) or similar sequence elements. The presence 
of HREs has been demonstrated in a number of angiogenic 
genes, including VEGFA (6,7), VEGF receptor 1/fms-related 
tyrosine kinase 1 (8‑10), erythropoietin (2,11‑14) and endo-
thelial nitric oxide synthase (15‑18). Little is known about the 
third HIFα isoform. It has been demonstrated that a number of 
splice variants of HIF-3α may act as dominant-negative regula-
tors of the other two α isoforms; however, its primary function, 
and the regulatory mechanism through which HIF-3α and its 
variants exert their effects, remains unclear based on currently 
available evidence (19).

VEGF‑A is a key regulator of angiogenesis, but has also 
been identified to be a multi-functional factor involved in 
tumor progression, immunosuppression and immune toler-
ance (20). Endothelial cells are the primary targets of VEGF-A, 
which acts as a survival factor for these cells, and prevents 
endothelial apoptosis induced by serum starvation (21-25). In 
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addition, VEGF induces expression of Bcl-2, an anti-apoptotic 
protein (22).

Materials and methods

Patient recruitment and assessment. The study was conducted 
in the Ear, Nose and Throat Department of University Hospital 
‘Queen Jovanna’ (Sofia, Bulgaria), in cooperation with the 
Molecular Medicine Center at the Medical University of Sofia 
(Sofia, Bulgaria), over the period between 2010 and 2013. A total 
of 63 patients with histopathologically verified carcinoma of the 
larynx were enrolled in the study. Informed consent was obtained 
from each patient, and the protocol of the study was approved 
by the Ethics Committee of the Medical University of Sofia. 
A standardized history was obtained for each patient. Detailed 
descriptions of the endoscopic/microscopic direct laryngoscopy 
findings were recorded, in addition to the computed tomography 
examination results. All patients underwent surgical interven-
tion consisting of total laryngectomy or organ saving surgery, 
depending on the extent of the disease. Tumor and normal laryn-
geal tissue samples were obtained from each patient during the 
surgery and immediately frozen in liquid nitrogen. The tissue 
samples were stored at ‑80˚C until use.

Genetic testing
Total RNA extraction and cDNA synthesis. Total RNA was 
isolated from normal and tumor fresh frozen tissue samples of 
each patient using an RNeasy Mini kit (Qiagen, Inc., Valencia, 
CA, USA) according to the manufacturer's protocol. The 
quality of RNA was assessed by denaturing electrophoresis 
on a formaldehyde gel. The amount of RNA was determined 
spectrophotometrically using a NanoDrop 1000 spectropho-
tometer (Thermo Fisher Scientific, Wilmington, DE, USA).

From each sample, 1 µg RNA underwent reverse transcrip-
tion using a High-Capacity cDNA Reverse Transcription (RT) 
kit (Applied Biosystems Life Technologies, Foster City, CA, 
USA) according to manufacturer's recommendations. In brief, 
2X RT master mix, prepared according to the manufacturer's 
instructions, was added to RNA in a total volume of 20 µl. 
Reverse transcription was performed in three steps: 25˚С for 
10 min, 37˚С for 120 min and 85˚С for 5 min. 

Quantitative polymerase chain reaction (PCR). In the 
present study, the expression of four genes, HIF-1α, HIF-2α, 
HIF-3α and VEGF-A, was analyzed. Quantitative PCR was 
performed in a 25-µl total volume of 1X RotorGene SYBR 
Green PCR Mix (Qiagen), 1X QuantiTect Primer Assay 
(Qiagen) for the respective gene (Hs_HIF1A_1_SG, Hs_
EPAS1_1_SG, Hs_HIF3A_1_SG, Hs_VEGFA_1_SG) and 
100 ng cDNA. The conditions were as follows: Initial denatur-
ation at 95˚С for 5 min, followed by 45 cycles of denaturation 
at 95˚С for 15 sec, primer annealing at 55˚С for 30 sec, and 
synthesis with data acquisition at 72˚С for 30 sec. Each sample 
was examined in triplicate, and the mean threshold cycle (Ct) 
values from the three repeats were used for the data analysis. 
Negative and no template controls were also evaluated. β-actin 
(Hs_ACTB_1_SG; QuantiTect Primer Assay) was used as a 
reference gene for normalization. To determine the relative 
expression of each gene in the tumor, the 2-ΔΔCt method was 
applied (26). Briefly, mean Ct values for the gene of interest 
(GOI) and a reference gene in tumor (CtT,GOI and CtT,Ref, 

respectively) and normal (CtN,GOI and CtN,Ref, respectively) 
tissues were used to calculate ΔCt (CtGOI - CtRef) for each tissue, 
and then to derive the relative quantity (RQ) of the gene in the 
tumor compared with the normal tissue: RQ = 2ΔΔCt, where 
ΔΔCt = ΔCtT - ΔCtN. An RQ of >2 was defined as overexpres-
sion, and an RQ of <0.5 was defined as underexpression of the 
gene, in agreement with previous studies (27,28). 

Statistical analysis. IBM SPSS Statistics 21 (IBM SPSS, 
Armonk, NY, USA) was used for all statistical analyses. A 
two‑sided t‑test was used to calculate the statistical significance 
of the results. The χ2 test was used to evaluate differences in 
mRNA expression levels of HIF‑1α and VEGF‑A. Spearman 
analysis was used to determine correlations. P<0.05 was 
considered to indicate a statistically significant difference.

Results

The mean age of the study group was 60.5 years, with a stan-
dard deviation of 7.8 years (range, 41-84 years). The cohort 
comprised 2 female and 61 male patients, all of whom had 
histologically verified squamous cell carcinoma of the larynx. 
Distribution according to tumor‑node‑metastasis classification 
was as follows: Stage T1, 2 patients (3.17%); T2, 7 patients 
(11.11%); T3, 23 patients (36.51%); and T4, 31 patients 
(49.21%) (29). Histologically verified lymph node metastases 
were present in 14 patients (22.22%) at the time of surgery. 

HIF-1α was upregulated (RQ>2) in the majority of patients 
(44 patients, 69.84%) and normally expressed (0.5<RQ<2) in 
the remaining 19 (30.16%) patients. By contrast, HIF-2α over-
expression (RQ>2) was only identified in 7 patients (11.11%); of 
the remaining 56 (88.89%) patients, 24 patients exhibited almost 
silenced HIF-2α expression (RQ<0.5), and the other 32 patients 
exhibited expression similar to that of the matched normal 
laryngeal samples (0.5<RQ<2). The HIF‑3α isoform was 
markedly downregulated (RQ<0.5) in the majority of patients 
(48 patients, 76.19%). Normal levels of HIF-3α mRNA expression 
(0.5<RQ<2) were registered in 10 (15.87%) patients and a small 
group of 5 (7.94%) patients exhibited significant overexpres-
sion of the HIF-3α isoform (RQ>2). For VEGF-A, 61.90% (39 
patients) showed overexpression (RQ>2), 6.35% (4 patients) 
displayed low expression (RQ<0.5) and 31.75% (20 patients) 
exhibited normal expression levels (0.5<RQ<2) (Fig. 1).

Quantitative analysis of the study group revealed mean 
values of HIF-1α mRNA expression that were 2.71 times higher 
than the corresponding normal laryngeal epithelium, while the 
expression levels of HIF-2α, HIF-3α and VEGF-A were 0.92, 
0.50 and 2.98 times that of the normal epithelium, respectively. 
One patient was excluded as an outlier after the mRNA expres-
sion level of VEGF-A was measured to be 955 times higher 
in the tumor tissue compared with the corresponding normal 
laryngeal tissue (testing was repeated five times).

A χ2 test for association was conducted between patients 
with upregulated and without upregulated mRNA expression 
of HIF-1α and VEGF-A. There was a statistically signifi-
cant association between the overexpression of HIF-1α and 
VEGF-A (χ2

1=7.246, P=0.008).
Spearman's rank correlation coefficient was used to assess 

the correlation between mRNA expression levels of HIF-1α 
and VEGF‑A. Preliminary analyses revealed the association 
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to be monotonic, as assessed by visual inspection of a scatter-
plot. Pearson's correlation could not be used, as the variables 
were not normally distributed, as assessed by a Shapiro‑Wilk 
test (P>0.05). Six outliers were recognized and removed from 
the analyzed group. There was a moderate positive correlation 
between mRNA expression levels of HIF-1α and VEGF-A 
(rs=0.392, P<0.005).

An independent-samples t-test was conducted to determine 
whether expression levels of VEGF‑A differed significantly 
between patients with and without upregulated HIF-1α. 
VEGF‑A expression was significantly higher (P<0.05; Fig. 2) 
in patients with upregulated HIF-1α (2.72±1.41 RQ) compared 
with patients without upregulated HIF-1α (1.86±1.46 RQ). 
There was homogeneity of variances, as assessed by Levene's 

test for equality of variances (P=0.813), while no significant 
differences in VEGF-A levels between patients with and 
without upregulated HIF-2α were identified. Finally, an 
analysis of VEGF-A levels between patients with and without 
upregulated HIF-3α revealed a statistically significant differ-
ence (7.61±2.14 vs. 2.66±2.13, respectively; Fig. 3).

A one-way analysis of variance was conducted to deter-
mine whether the levels of VEGF-A mRNA expression 
differed between patients of different T stages. Participants 
were classified into four groups: T1 stage (n=2), T2 stage (n=7), 
T3 stage (n=22) and T4 stage (n=31). Six outliers were recognized 
and removed from the analyzed group. There was homogeneity 
of variances, as assessed by Levene's test of homogeneity of 
variances (P=0.120). Data is presented as the mean ± standard 

Figure 1. mRNA expression of hypoxia-inducible factors (HIFs) and vascular endothelial growth factor A (VEGF-A): Qualitative group distribution.

Figure 2. Vascular endothelial growth factor A (VEGF-A) expression levels in patients with and without upregulated hypoxia inducible factor 1α (HIF-1α).
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deviation. The VEGF-A expression rate was significantly 
different between the groups (F=4.79, P=0.005). VEGF‑A 
expression increased from T1 stage patients (0.77±0.03), to T2 
stage patients (1.11±0.61), to T3 stage patients (2.37±1.46) to T4 
stage patients (2.98±1.40) (Fig. 4).

Discussion

To the best of our knowledge, the presents study is the first to 
investigate the mRNA expression levels of all three isoforms 

of the HIF family in carcinoma tissue samples. Following 
a review of the literature, only 13 studies on the topic of 
laryngeal carcinoma and HIF were identified (Table I). These 
studies all examined the expression of HIF-1α only, and none 
investigated HIF-1α mRNA expression levels from in vivo 
samples (30‑42). The current study is the first to present full 
quantitative data regarding the mRNA expression levels of 
HIF-1α and HIF-2α in laryngeal carcinoma samples, and is 
the first to report on the mRNA expression levels of HIF‑3α in 
an in vivo study of a malignant neoplasm.

Figure 3. Vascular endothelial growth factor A (VEGF-A) expression levels in patients with and without upregulated hypoxia inducible factor 3α (HIF-3α) 
expression.

Figure 4. Vascular endothelial growth factor A (VEGF-A) expression levels according to tumor stage.
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Analysis of the results revealed a distinctive expression 
pattern among the majority of the patients: Overexpression of 
HIF-1α (69.84%), normal or downregulated levels of HIF-2α, 
and normal or downregulated levels of HIF-3α (92.06%). 
HIF-2α was demonstrated to be stabilized at moderate oxygen 
levels (2-5% O2), whereas HIF-1α is upregulated only at 
lower oxygen levels (0-2% O2) (reviewed in 43). Additionally, 
Holmquist-Mengelbier et al (30) demonstrated that HIF-1α is 
most active during short periods (2-24 h) of intense hypoxia 
or anoxia (<0.1% O2), whereas HIF-2α may be active for a 
longer period of mild hypoxia (<5% O2). This phenomenon is 
described in the literature as the HIF switch: HIF-1α drives 
the initial response to hypoxia, and HIF‑2 subsequently takes 
over the major role during chronic hypoxic exposure (44-46). 
The HIF switch is particularly evident during the develop-
ment of renal cell carcinoma, where there is a gradual shift 
from HIF-1α to HIF-2α expression with increasing tumor 
grade (46‑48). In contrast to these findings, the results of the 
present study display a lack of such a HIF switch in laryngeal 
carcinoma: Of the 7 patients with upregulated HIF-2α, 4 also 
exhibited an upregulation in HIF-1α levels. Thus only three 
patients demonstrated a distinct HIF switch, despite 85.7% of 
the cohort having advanced-stage disease (T3 or T4 stage).

The statistically significant association between over-
expression of HIF-1α and VEGF-A is expected, as this is 
consistent with the canonical HIF pathway: Overexpression of 
HIF-1α triggers the expression of VEGF-A (49). This is also 
supported by the fact that VEGF-A levels in the current study 
were significantly higher in patients with upregulated HIF‑1α 
expression compared with those without upregulated HIF-1α 
expression. Additionally, there was a statistically significant 

correlation between the levels of expression of the two mole-
cules, i.e., there was a quantitative association between the 
level of mRNA expression of HIF-1α and VEGF-A.

Another notable result from the present study was with 
regard to the mRNA expression of HIF-3α. HIF-3α is the most 
poorly studied isoform of the three, and in the review of the 
literature, no other studies were found that investigated in vivo 
expression in any malignant neoplasm. In the present study, the 
majority of the patients display silenced expression of HIF-3α, 
with the exception of a small group of five patients who exhib-
ited upregulated mRNA expression levels. Compared with 
the remaining patients, significantly higher levels of VEGF‑A 
expression were detected in this group (mean RQ, 7.61±2.14 
vs. 2.66±2.13; Fig. 3). Various possible effects of HIF-3α have 
been reported due to its multiple splice variants. Of major 
significance is the downregulatory function of HIF-3α on 
HIF-1α and HIF-2α activity (reviewed in 43). This indicates that 
the overexpression of VEGF-A may be a driving force for the 
upregulation of HIF-3α, as the latter would act a negative feed-
back regulator of the canonical HIF pathway. Despite this, there 
were also a few cases in the present cohort of patients in which 
a significant upregulation of VEGF‑A plus silenced HIF‑3α was 
detected; other regulatory factors must play a role in these cases. 

Finally, the clinical correlation between VEGF-A expres-
sion and the stage of the tumor may be explained by the 
growing size of the lesion and the expansion of the process of 
neoangiogenesis, in which VEGF-A is essential (49).

The present study reports, for the first time, full quantita-
tive data on the expression of all three isoforms of the HIFs in 
malignant neoplasms. The findings indicate a specific pheno-
type of HIF expression in laryngeal carcinoma, where the HIF 

Table I. Summary of previous studies regarding HIF expression and laryngeal carcinoma.

    Isoforms 
First author (ref.) Year n Type of studied specimen studied Method

Moreno-Galindo et al (30) 2014   41 Paraffin‑embedded surgical tissue specimens HIF‑1α IHC
Wachters et al (31) 2013   60 Paraffin‑embedded surgical tissue specimens HIF‑1α IHC
Li et al (32) 2013 - Laryngeal cancer cell line culture HIF-1α RT‑PCR and western
     blotting
Xie et al (33) 2013   86 Paraffin‑embedded surgical tissue specimens HIF‑1α IHC and RT‑qPCR
   and laryngeal cancer cell line culture
Wu et al (34) 2013   49 Paraffin‑embedded surgical tissue specimens HIF‑1α IHC
Li et al (35) 2013   86 Paraffin‑embedded surgical tissue specimens HIF‑1α IHC, RT‑qPCR and
   and laryngeal cancer cell line culture  western blotting
Douglas et al (36) 2013 286 Paraffin‑embedded surgical tissue specimens HIF‑1α IHC
Wu et al (37) 2010   40 Paraffin‑embedded surgical tissue specimens HIF‑1α IHC
Moon et al (38) 2009 - Laryngeal cancer cell line culture HIF-1α Western blotting and
     immunofluorescence
Cabanillas et al (39) 2009 106 Paraffin‑embedded surgical tissue specimens HIF‑1α IHC
Wildeman et al (40) 2009   26 Paraffin‑embedded surgical tissue specimens HIF‑1α IHC
Kyzas et al (41) 2005   81 Paraffin‑embedded surgical tissue specimens HIF‑1α IHC
Yu et al (42) 2004 N/A Paraffin‑embedded surgical tissue specimens HIF‑1α IHC

HIF, hypoxia inducible factor; IHC, immunohistochemistry; RT, reverse transcription; PCR, polymerase chain reaction; q, quantitative; N/A, 
not available.
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switch is absent. Further investigations are required to uncover 
the obscure nature of HIF-3α, and the factors that determine 
which isoform, HIF-1α or HIF-2α, would be the major driving 
force of the canonical HIF pathway in neoplasms.
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