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Abstract. A major obstacle of successful chemotherapy is 
the development of multidrug resistance (MDR) in the cancer 
cells, which is difficult to reverse. Metabolomic analysis, 
an emerging approach that has been increasingly applied 
in various fields, is able to reflect the unique chemical 
fingerprints of specific cellular processes in an organism. 
The assessment of such metabolite changes can be used to 
identify novel therapeutic biomarkers. In the present study, 
1H nuclear magnetic resonance (NMR) spectroscopy was 
used to analyze the extracellular metabolomic spectrum of 
the Tca8113 oral squamous carcinoma cell line, in which 
MDR was induced using the carboplatin (CBP) and ping-
yangmycin (PYM) chemotherapy drugs in vitro. The data 
were analyzed using the principal component analysis (PCA) 
and partial least squares discriminant analysis (PLS-DA) 
methods. The results demonstrated that the extracellular 
metabolomic spectrum of metabolites such as glutamate, 
glycerophosphoethanol amine, α-Glucose and β-Glucose for 
the drug‑induced Tca8113 cells was significantly different 
from the parental Tca8113 cell line. A number of biochemicals 
were also significantly different between the groups based 
on their NMR spectra, with drug-resistant cells presenting 
relatively higher levels of acetate and lower levels of lactate. 
In addition, a significantly higher peak was observed at 
δ 3.35 ppm in the spectrum of the PYM‑induced Tca8113 

cells. Therefore, 1H NMR-based metabolomic analysis has a 
high potential for monitoring the formation of MDR during 
clinical tumor chemotherapy in the future.

Introduction

Chemotherapy is important in the treatment of various 
human cancer types; however, numerous patients do not 
exhibit a satisfactory outcome following treatment (1,2). A 
major obstacle to successful chemotherapy is the develop-
ment of multidrug resistance (MDR) in response to the 
treatment (1,2). An underlying mechanism of MDR is 
cellular overexpression of P-glycoprotein (P-gp), which is a 
170-kDa transmembrane glycoprotein encoded by the MDR1 
gene, functioning as an efflux pump for numerous anticancer 
drugs (3). P‑gp overexpresses on tumor cell surfaces, thus 
promoting the efflux of cytotoxic drugs out of these cells 
in an energy‑dependent manner. Therefore, drug accumula-
tion in the cells is reduced and MDR is increased. Upon the 
development of MDR, tumor cells are resistant to multiple 
chemotherapeutic drugs and reversing this process is diffi-
cult (4,5). A number of researchers have attempted to design 
novel approaches in order to monitor the development of 
MDR throughout the chemotherapeutic process (3,6,7).

Following the completion of the Human Genome Project, 
the biotechnology sector entered a novel, post‑genomic era. 
Certain researchers emphasized on genomics, transcrip-
tomics and proteomics, in succession; however, combining 
these methods did not provide answers to numerous important 
problems (8). A number of studies have attempted to develop 
novel approaches in order to explain these problems, giving 
rise to metabolomics, which may be a more comprehensive 
method for the interpretation of experimental data (9). 
Creating quantitative databases of metabolites may suffi-
ciently reflect the metabolic systems in action and provide 
an understanding into how metabolism is functioning in 
each individual (10). Metabolomic analysis is applicable 
to various fields of biotechnology; although this method is 
novel, it has received increasing attention and its role in the 
post‑genomic era is important. Metabolomics can provide a 
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chemical ‘snapshot’ of an organism's metabolic state through 
the measurement of small molecule metabolites (11,12).

Nuclear magnetic resonance (NMR) spectroscopy is a 
powerful tool in the rapidly growing field of metabolomics, since 
it does not damage the structure and nature of the samples and 
can be detected dynamically (13). Testing biological samples 
using NMR provides a large amount of information on various 
biomarkers. In order to fully extract the potential information 
in the data, chemometric and multivariate statistical analyses 
are required. Unsupervised principal component analysis (PCA) 
and supervised partial least squares discriminant analysis 
(PLS‑DA) are the main methods used in this field (14). Previous 
studies have used PCA to investigate metabolic differentia-
tion, as well as the description and recognition of the dynamic 
multivariate metabolism (14,15). Similarly, PLS‑DA has been 
previously used for the analysis of metabolic changes (16). 
Currently, NMR-based metabolomics is applied in several 
fields, including the study of plants (17‑19), blood plasma (20,21), 
urine (22) and cancer (23‑26). In the present study, carboplatin 
(CBP) and pingyangmycin (PYM) were used to induce MDR of 
the oral squamous cell line, Tca8113, by applying an increasing 
concentration for a period of six months. The extracellular 
metabolic differences of drug resistant and parental cells were 
assessed by 1H NMR-based metabolomic analysis to provide a 
novel approach for monitoring the development of MDR during 
chemotherapy.

Materials and methods

Drugs and chemicals. CBP was purchased from Qilu Phar-
maceutical Co., Ltd. (Jinan, China), while PYM was obtained 
from Tianjin Taihe Pharmaceutical Co., Ltd. (Tianjin, China). In 
addition, paclitaxel (≥97%) was purchased from Sigma‑Aldrich 
(St. Louis, MO, USA), doxorubicin was obtained from Shenzhen 
Main Luck Pharmaceuticals Inc. (Shenzhen, China), deuterium 
oxide (D2O; ≥99.8%) was purchased from Norell®, Inc. (Landis-
ville, NJ, USA), and fetal calf serum (FCS) was a product of 
Lanzhou National Hyclone Bio‑Engineering Materials Co., 
Ltd. (Lanzhou, China). All the other chemicals were of the 
highest grade commercially available. Furthermore, drugs were 
adjusted to appropriate concentrations in the culture medium 
and stored at 0˚C until further use.

Cell culture. The human oral squamous carcinoma cell line, 
Tca8113, was obtained from the State Key Laboratory of Oral 
Diseases (Chengdu, China). Cells were cultured by seeding the 
culture flask (Corning® T‑75; Corning Incorporated, Corning, 
NY, USA) at a density of 104 cells/ml in RPMI 1640 medium 
(Hyclone Laboratories, Logan, UT, USA), supplemented 
with 10% heat‑inactivated FCS and penicillin/streptomycin 
(100 U/ml; GE Healthcare Life Sciences, Logan, UT, USA) in 
a humidified atmosphere of 5% CO2 at 37˚C. The medium was 
refreshed every 2 or 3 days and the cells were trypsinized using 
0.25% trypsin (GE Healthcare Life Sciences) and 0.02% EDTA 
when the cells reached 80‑90% confluence. The FCS and other 
media used in this study were from the same batch.

In vitro selection of drug resistant Tca8113/CBP and 
Tca8113/PYM cells. The Tca8113 cell line was maintained 
in culture medium supplemented with 0.3 µg/ml CBP  

(Tca8113/CBP) or 0.3 µg/ml PYM (Tca8113/PYM) as the 
starting concentration. Upon reaching a density of 5x106 cells/ml, 
the samples were resuspended in a 75 cm2 culture flask and the 
drug dose was increased. After ~6 months and 40 passages, this 
intermittent means of increasing the drug concentration led to a 
final concentration of 10 µg/ml CBP and 5 µg/ml PYM.

Immunohistochemical analysis. Parental cells (Tca8113) 
and the chemotherapy resistant cell lines (Tca8113/CBP and 
Tca8113/PYM) were seeded at a density of 5x104 cells/well in 
6‑well plates containing preplaced coverslips and grown for 72 h. 
The coverslips were fixed in 4% paraformaldehyde for 30 min, 
followed by 0.25% Triton X‑100 (Amresco, LLC, Solon, OH, 
USA) for 15 min. Next, the samples were treated with 3% H2O2 
for 30 min and rinsed three times in phosphate buffered saline 
(PBS; pH 7.4) for 5 min each time. The coverslips were then 
incubated with monoclonal mouse anti-human P-gp primary 
antibodies (1:100; cat. no. sc‑13131; Santa Cruz Biotechnology, 
Inc., Dallas, TX, USA) in a humidified chamber at 37˚C for 2 h. 
Subsequent to washing with PBS, the coverslips were incubated 
with secondary polyclonal goat anti‑mouse or anti‑rabbit IgG 
(cat. no. SA1020; Wuhan Boster Biological Engineering Co., 
Ltd., Wuhan, China) antibodies for an additional 30 min at 37˚C. 
Finally, the cells were visualized using 3,3'-diaminobenzidine 
(Thermo Fisher Scientific Inc., Rockford, IL, USA) and lightly 
counterstained using Mayer's hematoxylin (Beijing Taize 
Technology Development Co., Ltd., Beijing, China). The cover-
slips were then mounted with Permount™ mounting medium 
(Thermo Fisher Scientific Inc., Fair Lawn, NJ, USA) and images 
were captured using a microscope (Eclipse 80i; Nikon Corpora-
tion, Tokyo, Japan) (3).

Drug sensitivity assay. Parental cells and the two chemotherapy 
resistant cell lines were seeded at a density of 2x104 cells/well 
in 96‑well plates. After culturing overnight, the medium was 
replaced with maintenance medium containing 10 µg/ml CBP, 
5 µg/ml PYM, 2 nM paclitaxel and 4 µg/ml doxorubicin. Cell 
viability was assessed after 72 h using an MTT colorimetric 
assay. Briefly, the cells were washed with 300 µl PBS, followed 
by incubation with 20 µl MTT (5 mg/ml) in 200 µl RPMI 1640 
medium at 37˚C for 3 h. The formazan product was dissolved 
in 200 µl dimethyl sulfoxide and quantified by measuring the 
optical absorbance (OA) at 570 nm using an ELISA plate reader 
(Thermo Electron Type 1500; Thermo Fisher Scientific Inc.). 
Cell viability was expressed as the percent ratio of OAtreated 
vs. OAuntreared control. Subsequently, the concentration curve 
was constructed by plotting the percentage of viable cells at 
each point against the drug concentration. The 50% inhibiting 
concentration (IC50) values were calculated using linear regres-
sion analysis and IC50 values were considered to indicate the 
drug sensitivity, where low IC50 values indicate high drug sensi-
tivity and high IC50 values indicate low drug sensitivity (3).

Extraction of extracellular metabolites. Parental cells and 
the two chemotherapy resistant cell lines were cultured at 
a density of 5x104 cells/ml in a humidified atmosphere of 
5% CO2 at 37˚C. The medium was collected and centrifuged 
three times at 15,900 x g at 4˚C for 10 min after the cells 
reached 80‑90% confluence. The supernatant (1 ml) and 
0.5 ml 0.2 M sodium phosphate buffer were mixed and left to 
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stand for 10 min at 4˚C. Next, a 500 µl mixture was reconstituted 
into 750 µl with D2O (250 µl), following further centrifugation 
at 15,900 x g for 10 min at 4˚C. Subsequent to vortexing, each 
sample was imbibed for 500 µl and then pipetted into a 5 mm 
NMR tube. All the samples were stored at ‑80˚C prior to the 
1H NMR analysis.

1H NMR spectroscopy. Data from the original free induction 
decay (FID) signal were acquired at 37˚C using a Bruker 
Avance II 600 spectrometer (Bruker Biospin GmbH, Rhein-
stetten, Germany), which was operated at 600.13 MHz with a 
5‑mm PATXI probe. The spectra were obtained using a pulse 
sequence (Bruker Biospin GmbH), which attenuated the broad 
protein signals in the samples, producing spectra with flat base-
lines. A Carr‑Purcell‑Meiboom‑Gill (CPMG) pulse sequence 
modification was used in this study to suppress the residual 
water signal (27), and this sequence was CPMGPR1D.

Next, one-dimensional (1D) 1H NMR spectra were collected 
for each sample, consisting of 64 K data points, 64 scans and 
15‑ppm spectral width. Further acquisition parameters included 
a 5-sec relaxation delay, 8 dummy scans, 400 µsec fixed echo 
time for elimination of J-mod and 400 CPMG loops for T2 
filter (28). Subsequently, the NMR spectra acquired were manu-
ally corrected with lactate doublet as a reference at 1.33 ppm for 
the phase and baseline, using the TopSpin 1.3 software (Bruker 
Biospin GmbH).

These FID data were processed using MestReC software 
(version 4.8.1.1; Mestrelab Research, Santiago de Compostela, 
Spain) to obtain the original and satisfactory 1D NMR spectra 
by Fourier transformation, phase adjustment and baseline 
adjustment. Each 1H NMR spectrum was automatically reduced 
to 242 integrated segments of equal width (0.04 ppm). Spectra 
with a range of 0.00‑10.00 ppm, with the exception of residual 
water resonance (4.5‑4.8 ppm), were segmented into 0.04 ppm 
wide bins, followed by importing the achieved integral values 
into Microsoft® Excel (Microsoft Corporation, Redmond, WA, 
USA).

PCA. PCA is an unsupervised analysis method that transforms 
multi-index into several irrelevant indicators by linear transfor-
mation using an idea of dimension reduction in order to reduce 
the complexity. The integral data were grouped and sorted, 
and then the spectral intensity was normalized to a unit area 
with the appropriate weighting coefficients in Microsoft® Excel 

spreadsheets prior to importing into the SIMCA‑P v11.0 soft-
ware package (Umetrics AB, Umeå, Sweden) for multivariate 
data analysis. PCA was conducted for the entire dataset using 
mean‑centered data. The score plot revealed that the separation 
and clusters associated with the three groups: Tca8113 cells, 
Tca8113/CBP and Tca8113/PYM.

PLS‑DA. PLS-DA, a variant of the partial least squares (PLS) 
regression, is a supervised chemometric method (29). PLS‑DA 
indicated the presence of group separation, as well as helped 
establish whether the separation between the clusters was 
significant through the plots of PLS‑DA coefficient and the 
variable influence on projection (VIP). This method is more 
advantageous compared with PCA, as it can reduce the noise of 
two blocks of variables, identify the missing data and handle the 
colinearity among the variables (30,31).

Statistical analysis. Data are expressed as the mean ± standard 
deviation. Statistical analysis of the results was performed using 
analysis of variance and post-hoc multiple comparison tests 
with the SPSS version 10.0 software (SPSS, Inc., Chicago, IL, 
USA). P<0.05 was considered to indicate a statistically signifi-
cant difference.

Results

Immunohistochemical analysis. Compared with the 
parental cells (Fig. 1A), the drug‑induced Tca8113/CBP and 
Tca8113/PYM cell lines expressed high levels of P-gp, which 
was loaded into the cytoplasm and membrane (Fig. 1B and C). 
In addition, the morphology of the drug‑induced cells revealed 
an increased cytoplasmic area (Fig. 1)

Drug sensitivity of Tca8113 cells. Drug sensitivity was repre-
sented by the IC50 values. Drug‑induced cells had a significantly 
higher IC50 value for the drugs compared with parental cells 
(Table I). Furthermore, these cells demonstrated primary‑drug 
resistance, as well as cross‑resistance. Therefore, considering 
the immunohistochemical results and IC50 values, these 
drug‑induced cells appear to present MDR (Fig. 2; Table I).

Characteristics of the 1H NMR spectra. The 1H NMR spectra of 
the extracellular metabolites demonstrated abundant and signif-
icant information regarding the cell lines (Fig. 3). Regions of 

Figure 1. Immunostaining with P‑gp. The parental Tca8113 cells were induced with increasing concentrations of CBP or PYM for six months. Cells were then 
stained by immunohistochemistry and visualized under magnification of x10 (stain, Mayer's hematoxylin). (A) Parental, (B) CBP‑induced and (C) PYM‑induced 
Tca8113 cells. The figures are representative of three independent experiments. P‑gp, P‑glycoprotein; CBP, carboplatin; PYM, pingyangmycin.

  A   B   C
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most significant metabolite signals were typically in the range of 
δ 0‑5.4 ppm, whereas the region of chemical shift δ 5.5‑10.0 ppm 
revealed relatively weak signals. In addition, the acetate content 
was higher compared with the lactate levels in the drug-resistant 
cells (Fig. 3B and C); however, the opposite was true in the 
parental Tca8113 cells (Fig. 3A). The content of δ 3.35 ppm 
(arrow; Fig. 3C) was also relatively higher and this substance 
was tentatively identified as a type of myo‑inositol (32). Studies 
regarding low-molecular weight metabolites have already been 
published (33,34). To further determine any differences between 
the drug-resistant and parental Tca8113 cells, specialized soft-
ware was used for chemometric analysis.

PCA of extracellular metabolites. Subsequent to analyzing 
the data by PCA, new principal component (PC) variables 

were created, which explained >85% of the original data that 
were considered to be meaningful (Fig. 4A‑C). The score 
plot obtained from the PCA displayed how the samples in the 
same group were situated with respect to each other. Adjacent 
observations were similar, while distant observations indicated 
their similarity was much worse. As shown in Fig. 4, the scores 
of PC1 and PC6, as well as of PC1 and PC4, were completely 
independent (Fig. 4A and B). However, the three cell lines were 
not completely separated using the PCA method (Fig. 4C). 
Thus, in order to obtain further information from the data, 
supervised PLS‑DA was performed.

PLS‑DA of extracellular metabolites. In total, six PLS compo-
nents, which represented an R2 value of 0.77 (original data) 
and a cross-validated R2 value (Q2) of 0.909, were obtained by 

Table I. Sensitivity of cell lines to anticancer drugs, observed by quantification of the drug IC50 values for the three cell lines.
 
 IC50 value
 --------------------------------------------------------------------------------------------------------------------------------------------------------------------
Drug Tca8113/ut Tca8113/CBP Tca8113/PYM
 
CBP (µg/ml) 6.99±0.34 22.63±0.15a 28.02±0.17b,c

PYM (µg/ml) 1.19±0.27 15.29±0.26a 14.16±0.08b,c

Paclitaxel (nM) 1.07±0.14 6.35±0.24a 4.69±0.11b,c

Doxorubicin (µg/ml) 3.54±0.13 4.48±0.19a 5.45±0.23b,c

 
aP<0.05 vs. Tca8113/ut; bP<0.05 vs. Tca8113/ut; cP<0.05 vs. Tca8113/CBP. Data are presented as the mean ± standard deviation of three 
independent experiments for each cell line. IC50, 50% inhibiting concentration; ut, untreated; CBP, carboplatin; PYM, pingyangmycin.
 

Figure 2. Drug sensitivity of Tca8113 cells against chemotherapeutic drugs. Dose‑response curves for the three cell lines in the presence of chemotherapeutic  
drugs. Parental cells and chemotherapy‑resistant Tca8113/CBP and Tca8113/PYM cell lines were treated with desired concentrations of chemotherapeutic 
drugs. Cell viability was assessed after 72 h using the MTT colorimetric assay. Data are presented as the mean ± standard deviation of three independent 
experiments. CBP, carboplatin; PYM, pingyangmycin.
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PLS-DA of the 1H NMR spectra data for the three cell lines. 
An improved separation of the first two PLS components was 
observed (Fig. 5A) compared with the PCA (Fig. 4C) This 
result was also confirmed by the plot of the actual class value 
against the fitted class value (Fig. 5B), which demonstrated 
good separation between the different groups. The horizontal 
distance between the groups was an indicator of the group 
separation state (horizontal distance between the control and 
test groups, ~0.35; Fig. 5B). Considering the results of PCA 
(Fig. 4A and B), the drug‑resistant cell lines and parental 
cells were found to be significantly separated. Notably, the 
two different drug-resistant cell lines were also found to be 
separated following PLS‑DA (Fig. 6).

The VIP plot (Fig. 5C) depicts the most important regions 
of the 1H NMR spectra. The VIP of each spectrum was 
normalized and the average squared VIP value was found 
to be 1; thus, a VIP value >1 in this model was considered 
sufficient for group discrimination. Fig. 5D shows the coef-
ficient plot for the predictive component and indicates that 
variables are the key components that separate one cell line 
from the other. Along with the VIP plot, the variables play a 
key role in the separation of the three cell lines.

In addition, the validation plot (Fig. 5E) may be used to 
assess the risk of the PLS‑DA model. The two regression 
lines display a correlation coefficient between the original Y 
and permuted Y vs. the cumulative R2 and Q2 values. R2 
describes how well the derived model fits the data, while Q2, 
which is a proportion of R2, describes the predictive ability 
of the derived model (35). A perfect model should have a 
high Q2 value and an R2 value that is lower compared with 
values at the original point on the upper right of the plot in 
Fig. 5E, indicating validation of the original model. The 
three dimensional score plot (Fig. 5F) dynamically reveals 

an enhanced cluster and separation of the three cell lines in 
the space. 

A previous study (36) has demonstrated that the major 
regions of the NMR spectra for specific compounds 
were as follows: δ 0.598‑1.022 ppm (methyl compounds), 
δ 1.056‑1.286 ppm (methylene compounds), δ ~2.00 ppm 
(acetate), δ 3.200‑3.90 ppm (glycosyl compounds), 
δ 3.21‑3.23 ppm (choline compounds), δ 4.500‑4.800 ppm 
(water peak) and δ 6.92‑7.76 ppm (aromatic compounds). In 
the present study, the portion of extracellular metabolites 
(Table II) in PLS‑DA was assigned by analyzing the VIP 
list obtained from the VIP plot and comparing the obtained 
chemical shifts with previously reported values (32,37‑39). 
Table II depicts the corresponding chemical shifts of the 
identified metabolites, which presented VIP values of >1.

Discussion

MDR is a severe complication occurring during chemothera-
peutic treatment of cancer and represents a major obstacle 
to successful therapy. Avoiding the development of MDR 
and reversing this effect once it is formed is difficult during 
the process of chemotherapy. A previously used strategy 
to counteract MDR was the increase of the drug or multi-
drug combination doses; however, this results in a greater 
number of side‑effects. Therefore, the implementation of 
novel approaches to monitor the development of MDR at 
the early stages of chemotherapy is crucial (4,5). During 
the dosing process in the present stduy, the passage number 
of drug‑induced cells was  ~40 times. Although the cell 
passage number has also been found to affect numerous of 
the cell line features, including growth in culture, viability 
and efflux protein expression (40), a certain passage range 

Figure 3. 1H NMR spectra of extracellular metabolites of the three groups. (A) Parental, (B) CBP‑induced and (C) PYM‑induced Tca8113 cells. HOD, 
water/D2O.  NMR, nuclear magnetic resonance; CBP, carboplatin; PYM, pingyangmycin.

  A

  B

  C
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(such as passage 30-40) is normally used in laboratory experi-
ments (41).

Metabolomics offers a platform for the development of 
scientific research (42). Pattern recognition and multivariate 
statistics are effective methods used to determine differ-
ences in cells, individuals and treatments (43,44). PCA and 
PLS‑DA are two types of pattern recognition analyses. In 
the present study, these methods were used to analyze the 
extracellular metabolomic differences of parental Tca8113 
cells and two chemotherapy resistant cell lines, Tca8113/CBP 
and Tca8113/PYM. The preliminary results revealed that the 
1H NMR-based metabolomic analysis was able to distinguish 
the drug-induced Tca8113 cell lines from the parental cells 
(Figs. 4 and 5). Furthermore, a strong separation was observed 
between the two drug‑resistant cell lines (Fig. 6). During 
analysis, the CPMGPR1D pulse sequence was selected to filter 
the molecules with high metabolic concentration, since small 

molecule metabolites are likely to provide more pertinent 
information regarding an organism (45-47) and may poten-
tially be novel biomarkers in cancer research.

The current study verified that the relatively high level of 
acetate and low level of lactate may play an important role in 
the drug resistance of cells (Fig. 3). Acetate is able to generate 
large numbers of HCO-

3, which can counteract a portion of 
lactate, attenuating the toxicity caused by lactate (48). In addi-
tion, acetate may generate acetyl coenzyme A (CoA), which 
is involved in energy metabolism in vivo (49). Furthermore, 
the present study detected a significantly higher peak at 
δ 3.35 ppm in the spectrum of Tca8113/PYM (Fig. 3) and this 
metabolite was tentatively identified as a type of myo‑inositol. 
Myo-inositol, which is synthesized from D-glucose (50), is 
the precursor of second messengers and the phospholipid 
synthesis (51,52). As previously reported, inositol derivatives 
are critical in membrane biogenesis, signal transduction and 

Figure 4. Score plots of PCA. (A) Plot of PC1 vs. PC6 from the parental cells and CBP‑induced Tca8113 cells. (B) Plot of PC1 vs. PC4 from the parental cells 
and PYM‑induced Tca8113 cells. (C) Plot of PC1 vs.PC2 from the parental cells, CBP‑induced Tca8113 cells and PYM‑induced Tca8113 cells. PCA, principal 
component analysis; PC, principal component; CBP, carboplatin; PYM, pingyangmycin.

  A   B   C

Figure 5. PLS‑DA revealing the extracellular metabolomic differences of the three cell lines. (A) PLS1 vs. PLS2 plot of the three groups demonstrates strong 
separation. (B) Score plot of actual value against the fitted class value. (C) Plot of VIP. (D) Coefficient plot for the predictive component. (E) Internal validation 
of the aforementioned model. (F) Three dimensional score plot, demonstrating where the three groups were located in space. PLS‑DA, partial least squares 
discriminant analysis; ut, untreated; CBP, carboplatin; PYM, pingyangmycin; VIP, variable influence on projection.

  A   B   C

  D   E   F
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stress tolerance in plant cells (53). The increased content of 
inositol may also be an indicator sign of enhanced tolerance 
in drug‑resistant tumor cells.

Furthermore, the present study demonstrated that meta-
bolic differences not only exist between generate acetyl CoA, 

drug-resistant cells and parental cells, but also between the 
drug-resistant cells that are resistant to different types of 
drugs. This further illustrates why clinical chemotherapy 
often fails, since different drugs have different pharmaco-
logical and toxicological properties. In cells, these drugs may 
produce different metabolites and content changes of these 
metabolites may directly influence the physicochemical 
cellular properties. The three cell lines investigated in the 
current study exhibited certain significant metabolites 
accountable for discrimination, which had a VIP value >1. 
Thus, these findings support the hypothesis that these 
metabolites must be involved in the formation of MDR; 
however, the specific underlying mechanism requires further 
investigation.

In conclusion, the metabolic changes observed in the 
present study provide new clues for understanding the poten-
tial metabolic effects of chemotherapeutic drugs on disease. 
Future studies will investigate the metabolomic analysis 
of intracellular metabolites from these three groups. The 
1H NMR-based metabolomic technique is considered to have 
a significant value for the research of molecular disease prop-
erties. This novel technique has the potential of becoming a 
useful tool for early detection of tumor MDR in response to 
traditional chemotherapy.
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Table II. Significant metabolites accountable for the discrimi-
nation of the three groups in the PLS‑DA.

Metabolite δ 1H ppm (multiplicitya)
 
Glutamate (bonded) 1.95, 3.78
Glutamate 2.15
Glycerophosphoethanol amine 4.11
Lactate 4.11, 1.33 (d)
α‑Glucose 3.39, 3.71, 3.83 (ddd)
β‑Glucose 3.47, 3.24 (d), 3.91 (dd)
Arginine 1.68, 3.24 (t), 3.79, 1.91
Acetate 1.91 (s)
Citrulline 1.87
Lysine 3.03 (t)
Lysine (bonded) 1.55
Methionine 3.87 (dd), 2.64 (t)
Phenylalanine 7.39 (m), 3.27 (dd), 7.42 (m)
Taurine 3.43 (t)
Proline 4.14
Proline (bonded) 3.83
Isoleucine 1.99, 1.27, 1.47 (s)
Threonine (bonded) 1.22 (d)
Threonine 3.59 (d)
Leucine 0.96 (d), 1.71 (m)
Creatine 3.03 (s)
Aspartate 2.81 (dd)
Formate 8.43 (s)
β‑Hydroxybutyrate 1.20 (d)
Myo‑inositol 3.62, 3.35, 3.56 (dd)
Serine 3.95 (dd)
Unsaturated Lipid 5.27
Alanine 1.46 (d), 3.78 (q)
Fatty acyl chain peak 1.59
Fucose 1.31 (d)
Lipid (mainly VLDL) 0.87 (t)
Polyamines 1.79
Isobutyrate 1.13 (d)
Albumin lysyl 2.99 (t)
2‑Oxoglutarate 2.47 (t)
Trimethylamine 2.83 (s)
Glyceryl of lipids 5.20 (m)
Valine 0.99 (d), 1.04 (d)

aChemical shifts were referenced against the 1H shift of lactate 
(1.33 ppm). The listed metabolites had a VIP value >1. PLS‑DA, 
partial least squares discriminant analysis; VIP, variable influence 
on projection; VLDL, very low-density lipoprotein; (s), singlet; (d), 
doublet; (dd), double doublet; (ddd), doublet of doublets of doublet; 
(t), triplet; (q), quartet; (m), complex multiplet.
 

Figure 6. Score plots of the drug‑resistant cells obtained following PLS‑DA. 
(A) PLS1 vs. PLS2 plot of the drug‑resistant cells. (B) Score plot of actual 
value against the fitted class value. PLS‑DA, partial least squares discrimi-
nant analysis.
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  B



WANG et al:  METABOLOMIC ANALYSIS OF MDR TUMOR CELLS2558

References

 1. Fardel O, Lecureur V and Guillouzo A: The P-glycoprotein 
multidrug transporter. Gen Pharmacol 27: 1283‑1291, 1996. 

 2. Goldstein LJ: MDR1 gene expression in solid tumours. Eur J 
Cancer 32A: 1039‑1050, 1996.

 3. Chen J, Lu L, Feng Y, et al: PKD2 mediates multi-drug resistance 
in breast cancer cells through modulation of P-glycoprotein 
expression. Cancer Lett 300: 48‑56, 2011. 

 4. Teodori E, Dei S, Scapecchi S and Gualtieri F: The medicinal 
chemistry of multidrug resistance (MDR) reversing drugs. 
Farmaco 57: 385‑415, 2002.

 5. Yan S, Ma D, Ji M, et al: Expression profile of Notch‑related 
genes in multidrug resistant K562/A02 cells compared with 
parental K562 cells. Int J Lab Hematol 32: 150‑158, 2010.

 6. Varma MV, Ashokraj Y, Dey CS and Panchagnula R: 
P-glycoprotein inhibitors and their screening: a perspective from 
bioavailability enhancement. Pharmacol Res 48: 347‑359, 2003.

 7. Kars MD, Iseri OD, Gündüz U, Ural AU, Arpaci F and Molnár J: 
Development of rational in vitro models for drug resistance in 
breast cancer and modulation of MDR by selected compounds. 
Anticancer Res 26: 4559‑4568, 2006.

 8. Schmidt C: Metabolomics takes its place as latest 
up‑and‑coming‘‘omic’’ science. J Natl Cancer Inst 96: 732‑734, 
2004.

 9. Ai JY, Smith B and Wong DT: Bioinformatics advances in saliva 
diagnostics. Int J Oral Sci 4: 85‑87, 2012. 

10. German JB, Bauman DE, Burrin DG, et al: Metabolomics in the 
opening decade of the 21st century building the roads to indi-
vidualized health. J Nutr 134: 2729‑2732, 2004. 

11. Lindon JC, Holmes E and Nicholson JK: So what's the deal with 
metabonomics? Anal Chem 75: 384A‑391A, 2003. 

12. Ratajczak‑Wrona W, Jablonska E, Antonowicz B, Dziemianczyk D 
and Grabowska SZ: Levels of biological markers of nitric oxide 
in serum of patients with squamous cell carcinoma of the oral 
cavity. Int J Oral Sci 5: 141‑145, 2013. 

13. Goodacre R, Vaidyanathan S, Dunn WB, Harrigan GG and 
Kell DB: Metabolomics by numbers: acquiring and under-
standing global metabolite data. Trends Biotechnol 22: 245‑252,  
2004.

14. Nicholson JK, Lindon JC and Holmes E: ‘Metabonomics’: 
understanding the metabolic responses of living systems to 
pathophysiological stimuli via multivariate statistical analysis of 
biological NMR spectroscopic data. Xenobiotica 29: 1181‑1189, 
1999. 

15. Bathen TF, Jensen LR, Sitter B, et al: MR-determined metabolic 
phenotype of breast cancer in prediction of lymphatic spread, 
grade and hormone status. Breast Cancer Res Treat 104: 181‑189, 
2007. 

16. Pec J, Flores‑Sanchez IJ, Choi YH and Verpoorte R: Metabolic 
analysis of elicited cell suspension cultures of Cannabis sativa L. 
by 1H‑NMR spectroscopy. Biotechnol Lett 32: 935‑941, 2010. 

17. Seger C and Sturm S: Analytical aspects of plant metabolite 
profiling platforms: current standings and future aims. J Proteome 
Res 6: 480‑497, 2007. 

18. Kim HK, Choi YH and Verpoorte R: NMR-based metabolomic 
analysis of plants. Nat Protoc 5: 536‑549, 2010. 

19. Allwood JW, Clarke A, Goodacre R and Mur LA: Dual 
metabolomics: a novel approach to understanding plant-pathogen 
interactions. Phytochemistry 71: 590‑597, 2010. 

20. Sheedy JR, Ebeling PR, Gooley PR and McConville MJ: A sample 
preparation protocol for 1H nuclear magnetic resonance studies of 
water‑soluble metabolites in blood and urine. Anal Biochem 398: 
263‑265, 2010. 

21. Barton RH, Waterman D, Bonner FW, et al: The influence of EDTA 
and citrate anticoagulant addition to human plasma on information 
recovery from NMR‑based metabolic profiling studies. Mol 
Biosyst 6: 215‑224, 2010. 

22. Holmes E, Nicholls AW, Lindon JC, et al: Development of a 
model for classification of toxin‑induced lesions using 1H NMR 
spectroscopy of urine combined with pattern recognition. NMR 
Biomed 11: 235‑244, 1998. 

23. Beckonert O, Monnerjahn J, Bonk U and Leibfritz D: Visualizing 
metabolic changes in breast-cancer tissue using 1H-NMR spec-
troscopy and self‑organizing maps. NMR Biomed 16: 1‑11, 2003. 

24. Yokota H, Guo J, Matoba M, Higashi K, Tonami H and Nagao Y: 
Lactate, choline and creatine levels measured by vitro 1H-MRS 
as prognostic parameters in patients with non-small-cell lung 
cancer. J Magn Reson Imaging 25: 992‑999, 2007. 

25. Griffin JL and Kauppinen RA: Tumour metabolomics in animal 
models of human cancer. J Proteome Res 6: 498‑505, 2007. 

26. Tiziani S, Lopes V and Günther UL: Early stage diagnosis of 
oral cancer using 1H NMR‑based metabolomics. Neoplasia 11: 
269‑276, 2009. 

27. Lucas LH, Larive CK, Wilkinson PS and Huhn S: Progress toward 
automated metabolic profiling of human serum: comparison of 
CPMG and gradient‑filtered NMR analytical methods. J Pharm 
Biomed Anal 39: 156‑163, 2005. 

28. Levitt MH: Spin Dynamics. Basics of Nuclear Magnetic 
Resonance. 2nd edition. John Wiley & Sons, New York, NY, 2008. 

29. Jackson JE: A User's Guide to Principal Components. John Wiley 
& Sons, Inc., New York, NY, pp20‑150, 1991.

30. Zhou J, Xu B, Huang J, et al: 1H NMR-based metabonomic and 
pattern recognition analysis for detection of oral squamous cell 
carcinoma. Clin Chim Acta 401: 8‑13, 2009.

31. Gavaghan CL, Wilson ID and Nicholson JK: Physiological 
variation in metabolic phenotyping and functional genomic 
studies: use of orthogonal signal correction and PLS‑DA. FEBS 
Lett 530: 191‑196, 2002. 

32. Rocha CM, Barros AS, Gil AM, et al: Metabolic profiling of human 
lung cancer tissue by 1H high resolution magic angle spinning 
(HRMAS) NMR spectroscopy. J Proteome Res 9: 319‑332, 2010.

33. Tang H, Wang Y, Nicholson JK and Lindon JC: Use of 
relaxation-edited one-dimensional and two-dimensional nuclear 
magnetic resonance spectroscopy to improve detection of small 
metabolites in blood plasma. Anal Biochem 325: 260‑272, 2004. 

34. Ala-Korpela M: 1H NMR spectroscopy of human blood plasma. 
Prog Nucl Magn Reson Spectrosc 27: 475‑554, 1995. 

35. Wang L, Chen J, Chen L, et al: 1H-NMR based metabonomic 
profiling of human esophageal cancer tissue. Mol Cancer 12: 25, 2013.

36. Lenz EM, Bright J, Wilson ID, Morgan SR and Nash AF: A 1H 
NMR-based metabonomic study of urine and plasma samples 
obtained from healthy human subjects. J Pharm Biomed Anal 33: 
1103‑1115, 2003.

37. Nicholson JK, Foxall PJ, Spraul M, Farrant RD and Lindon JC: 
750 MHz 1H and 1H-13C NMR spectroscopy of human blood 
plasma. Anal Chem 67: 793‑811, 1995. 

38. Ulrich EL, Akutsu H, Doreleijers JF, et al: BioMagResBank. 
Nucleic Acids Res 36 (Database): D402‑D408, 2008.

39. Wishart DS, Tzur D, Knox C, et al: HMDB: The human metabolome 
database. Nucleic Acids Res 35 (Database): D521‑D526, 2007. 

40. Briske‑Anderson MJ, Finley JW and Newman SM: The influence 
of culture time and passage number on the morphological and 
physiological development of Caco‑2 cells. Proc Soc Exp Biol 
Med 214: 248‑257, 1997. 

41. Siissalo S, Laitinen L, Koljonen M, et al: Effect of cell differen-
tiation and passage number on the expression of efflux proteins in 
wild type and vinblastine‑induced Caco‑2 cell lines. Eur J Pharm 
Biopharm 67: 548‑554, 2007.

42. Goldsmith P, Fenton H, Morris-Stiff G, Ahmad N, Fisher J and 
Prasad KR: Metabonomics: A useful tool for the future surgeon. J 
Surg Res 160: 122‑132, 2010.

43. Holmes E, Foxall PJ, Nicholson JK, et al: Automatic data 
reduction and pattern recognition methods for analysis of 1H 
nuclear magnetic resonance spectra of human urine from normal 
and pathological states. Anal Biochem 220: 284‑296, 1994.

44. Fauvelle F, Dorandeu F, Carpentier P, et al: Changes in mouse 
brain metabolism following a convulsive dose of soman: a proton 
HRMAS NMR study. Toxicology 267: 99‑111, 2010. 

45. Schroeder FC: Small molecule signaling in Caenorhabditis 
elegans. ACS Chem Biol 1: 198‑200, 2006.

46. Schroeder FC, Gibson DM, Churchill AC, et al: Differential 
analysis of 2D NMR spectra: New natural products from a 
pilot‑scale fungal extract library. Angew Chem Int Ed Engl 46: 
901‑904, 2007. 

47. Bédouet L, Rusconi F, Rousseau M, et al: Identification of low 
molecular weight molecules as new components of the nacre 
organic matrix. Comp Biochem Physiol B Biochem Mol Biol 144: 
532‑543, 2006.

48. Vinay P, Prud'Homme M, Vinet B, et al: Acetate metabolism and 
bicarbonate generation during hemodialysis: 10 years of obser-
vation. Kidney Int 31: 1194‑1204, 1987.

49. Zhu Y, Eiteman MA, Lee SA and Altman E: Conversion of 
glycerol to pyruvate by Escherichia coli using acetate- and 
acetate/glucose‑limited fed‑batch processes. J Ind Microbiol 
Biotechnol 37: 307‑312, 2010.

50. Meng PH, Raynaud C, Tcherkez G, et al: Crosstalks between 
myo-inositol metabolism, programmed cell death and basal 
immunity in Arabidopsis. PLoS One 4: e7364, 2009.



ONCOLOGY LETTERS  9:  2551-2559,  2015 2559

51. Downes CP, Gray A and Lucocq JM: Probing phosphoinositide 
functions in signaling and membrane trafficking. Trends Cell 
Biol 15: 259‑268, 2005. 

52. Malan TP Jr and Porreca F: Lipid mediators regulating pain 
sensitivity. Prostaglandins Other Lipid Mediat 77: 123‑130, 
2005.

53. Loewus FA and Murthy PP: Myo‑Inositol metabolism in plants. 
Plant Sci 150: 1‑19, 2000.


