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Abstract. Src is a tyrosine kinase that is of significance in 
tumor biology. The present review focuses on Src, its molecular 
structure, and role in cancer, in addition to its expression and 
function in sarcoma. In addition, the feasibility of Src as a poten-
tial drug target for the treatment of sarcoma is also discussed. 
Previous studies have suggested that Src has essential functions 
in cell proliferation, apoptosis, invasion, metastasis and the 
tumor microenvironment. Thus, it may be a potential target for 
cancer therapy. Src has been found to enhance proliferation, 
reduce apoptosis and promote metastasis in certain subtypes of 
sarcoma, including osteosarcoma, chondrosarcoma and Ewing's 
sarcoma. Furthermore, a number of novel effective therapeutic 
agents, such as SI-83, which target Src have been investigated 
in vitro and in vivo. Bosutinib and dasatinib, which inhibit Src, 
have been approved by the U.S. Food and Drug Administration 
for the treatment of chronic myelogenous leukemia. In addition, 
vandetanib is approved for the treatment of medullary thyroid 
cancer. Furthermore, the Src inhibitor, saracatinib, is currently 
in clinical trials for the treatment of a variety of solid tumors, 
including breast and lung cancers. Thus, Src is considered to 
be an important factor in sarcoma progression and may present 
a novel clinical therapeutic target. This review demonstrates 
the importance and clinical relevance of Src in sarcoma, and 
discusses a number of small molecular inhibitors of src kinase, 
such as dasatinib and sarcatinib, which are currently in clinical 
trials for the treatment of sarcoma patients.
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1. Introduction

Sarcoma is a soft‑tissue and bone malignancy of mesenchymal 
origin, which accounts for ~1% of adult cancers and 15‑20% of 
pediatric cancers in the USA (1,2). In the USA, ~11,280 soft 
tissue tumors and 2,650 bone tumors are diagnosed annu-
ally (3). Due to the heterogeneity of sarcoma, >100 distinct 
subtypes have been described to date, with new subtypes 
frequently reported (4). Synovial sarcoma, a soft‑tissue tumor, 
is characterized by a reciprocal t(X;18) translocation, in which 
the SS18 gene on chromosome 18 fuses with the SSX1, SSX2 or, 
less commonly, SSX4 gene on the X chromosome (5,6). Ewing's 
sarcoma has a relatively simple genetic signature, consisting of 
a t(11;22) translocation (7,8). However, certain other sarcomas, 
including osteosarcoma, chondrosarcoma and undifferentiated 
sarcoma, are characterized by more complex genetic abnormali-
ties (9).

The clinical outcomes of sarcoma are dependent upon 
the subtype, and current therapies are limited to radiation, 
chemotherapy and surgical resection. Although radiation may 
prevent local recurrence, and chemotherapy can temporarily 
delay the progression of sarcoma, complete surgical resection 
is the only curative treatment method (10,11). As the rate of 
complication and of chemotherapy resistance are considerable, a 
more effective therapy is urgently required (12). During the last 
two decades, many of the molecular mechanisms of sarcoma 
genesis have been elucidated; novel insights into such mecha-
nisms, and the identification of the involved genes may lead to 
the development of more effective therapies targeted against the 
driving events in sarcomas (13).

In the current review, the structure of Src and its function as 
an oncoprotein are described, with a detailed discussion of the 
role of Src in sarcoma. In addition, potential drug therapies for 
the treatment of sarcoma are also evaluated.

2. Src

Src structure and regulation of Src activity. SRC is a proto‑onco-
gene encoding a non‑receptor tyrosine kinase, similar to the 
v‑Src gene of the Rous sarcoma virus (14), which was initially 
discovered by Bishop and Varmus (15). The Src protein is 
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formed of seven functional regions: i) N‑terminal Src homology 
domain 4 (SH4) containing a myristic acid moiety, essential for 
its localization to the inner surface of the cell membrane; ii) a 
unique domain providing functional specificity to each member 
of the Src family; iii) SH3 domain, which binds proline‑rich 
sequences to mediate intra‑ and intermolecular interactions; 
iv) SH2 domain, which binds phosphorylated tyrosine residues 
on Src and other proteins; v) a catalytic domain (SH1); and 
vi) C‑terminal tail containing negative‑regulatory Tyr530 (in 
humans) (16‑18) (Fig. 1).

The activity of Src is regulated by the structural changes 
that occur following phosphorylation and dephosphoryla-
tion of its tyrosine residues, which is determined by the 
relative activities of protein kinases and phosphatases (19). 
The enzymatic activity of the 60 kDa human c‑Src tyrosine 
kinase is predominantly regulated at two phosphorylation 
sites: Tyr527 and Tyr416. Phosphorylation at Tyr527 reduces 
the activity of Src, while dephosphorylation of phospho-
tyrosine 527 increases activity; autophosphorylation of 
Tyr416 also enhances activity (20,21). Phosphatases that 
may interact with phosphotyrosine 527 include cytoplasmic 
protein tyrosine phosphatase (PTP) 1B, Shp1 and Shp2, and 
transmembrane enzymes including CD45, PTPα, PTPε, and 
PTPκ (22,23). Furthermore, PTP‑BL and PTP‑BAS have 
been shown to dephosphorylate phosphotyrosine 416 to 
decrease Src kinase activity (24) (Fig. 2).

Functions of Src in cancer. Src has been identified as an 
important factor in several human malignancies, and in the 
promotion of tumor progression during the multistep process 
of cancer pathogenesis (25). Src deregulation primarily 
involves protein overexpression and abnormalities in Src 
kinase activity. Differences in Src expression have been 
observed in lung, breast, pancreatic, colon and prostate cancer 
cells, compared with normal adjacent tissue, fibroblasts 
or normal mucosal cells (26‑31). In the tumor microenvi-
ronment, Src activation has been observed in cancer and 
inflammatory cells, and may serve as a critical mechanistic 
link between inflammation and cancer. Src propagates a 
cycle between immune and tissue cells, ultimately leading 
to the development and progression of cancer (32,33). The 
abnormal activation of Src may result in the promotion of 
survival, angiogenesis, proliferation and invasion pathways 
observed in tumors cells (34,35). However, despite the 
evidence indicating a major role for Src in the development 
and progression of cancers, its mechanism of action is not 
fully understood.

A number experimental studies have proposed that Src 
may be involved in the transmission of signals from extra 
and intracellular stimuli. Interactions between the Src 
pathway and Signal Transducer and Activator of Transcrip-
tion (STAT) 5, STAT3, N‑cadherin and basic fibroblast 
growth factor receptors and β‑catenin have been reported 
in melanoma cells (36,37). It may also be of value to 
understand the effect of Src inhibition on a number of the 
environment‑sensing and growth‑promoting pathways 
known to be aberrant in cancer cells, including the phos-
phoinositide 3‑kinase/protein kinase B/mammalian target of 
rapamycin (PI3K/Akt/mTOR), Ras/mitogen‑activated protein 
kinase (MAPK), platelet‑derived growth factor (PDGF), 

Erb1/Erb2 and vascular endothelial growth factor (VEGF) 
pathways (38‑40). Currently, the complex interactions 
between Src and other pathways remain to be established. 
The crosstalk signaling mechanisms that link inflammatory 
cells with cancer cells, including SDF‑1‑CXCR4‑Src and 
Src‑IL‑6 signaling axes, result in a cycle leading to cancer 
development and progression (41‑43). In leukemia, SDF-1 has 
been found to induce ‘inside-out’ signaling, which involves 
CXCR4 and Lyn, leading to aberrant adhesive responses. 
Furthermore, previous studies have shown that Src and Hck, 
the Src family members, are involved in the production of 
IL-6 in osteoblasts and inflammatory macrophages (42,43).

3. Function of Src in sarcoma

Src aberrant expression in sarcoma. Src was the first 
transforming protein and the first gene product with protein 
tyrosine kinase activity to be discovered and isolated (44). 
With the use of immunohistochemistry and Western blotting, 
the total Src and phosphorylated Src (Y419) were found to 
be activated in human sarcoma tissues (leiomyosarcoma, 
high‑grade osteosarcoma and liposarcoma) and sarcoma cell 
lines (osteosarcoma, Ewing's sarcoma, leiomyosarcoma and 
rhabdomyosarcoma) (45). Furthermore, Src was identified as 
one of the most strongly phosphorylated kinases in synovial 
sarcoma cells (46). Src activity was demonstrated to be 
upregulated in anoikis-resistant human osteosarcoma cells, 
SAOS‑2, compared with their parental population (47).

With regard to different subtypes of sarcoma, Src is 
thought to be the most reliable discriminator to distin-
guish high‑grade leiomyosarcoma from undifferentiated 
pleomorphic sarcoma, based on gene expression profiling 
and meta‑analysis (48). Due to its aberrant expression in 
sarcoma, Src has been proposed to be important in signal 
transduction in human sarcomas, including osteosarcoma, 
rhabdomyosarcoma, leiomyosarcoma, fibrosarcoma and 
Ewing's sarcoma (49). 

Src in sarcoma proliferation and apoptosis. A fundamental trait 
of cancer cells is their ability to sustain chronic proliferation. 
The overexpression of Src in U2OS and MG63 osteosarcoma 
cells significantly enhances proliferation and reduces apoptosis 
of these cells (45,50). In human osteosarcoma cells SAOS‑2, Src 
was revealed to be activated in anoikis resistance (47). Further-
more, Src was identified in 0-20% chondrosarcoma specimens. 
However, its expression had no prognostic significance, particu-
larly in serving as an indicator of cell proliferation (51). Src and 
its downstream signaling via the p38 MAPK‑AKT pathway may 
be activated by the signaling adaptor protein, Crk, to promote 
proliferation of human synovial sarcoma cells (52,53). Inhibi-
tion of Src signaling in Ewing's sarcoma cells was observed to 
induce apoptosis (45).

These findings indicate that Src may increase sarcoma 
proliferation and reduce apoptosis. However, in some subtypes 
of sarcoma, there is conflicting evidence with regard to the 
expression of Src. For example, high Src expression has been 
identified in high-grade leiomyosarcoma, while Src expression 
has been found to be variable in chondrosarcoma (48). Addi-
tionally, the mechanisms of proliferation and apoptosis require 
further investigation.
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Src in sarcoma invasion and metastasis. Despite continual 
research and increasing knowledge of the biology of sarcoma, 
invasion and metastasis remain poorly understood, and are the 
predominant cause of sarcoma-related mortality. The ability 
of cancer cells to leave their primary site of growth, move into 
different tissue compartments, and survive and proliferate in 
these foreign environments, defines the biological program 
known as ‘invasive growth’ (54). Invasive growth is important 
for cancer progression and thus, presents a target for the treat-
ment of sarcoma. In mouse models of osteosarcoma, depletion 
of Src phosphorylation in SaOS‑2 cells has been shown to 
decrease tumor mass (55). However, other reports indicate that 
inhibition of Src phosphorylation in HOS and SaOS‑2 cells 
may only decrease the metastatic potential of osteosarcoma 
cells in vitro, and not in vivo (56). The effect of Src on the 
metastasis of osteosarcoma cells is therefore controversial. A 
number of studies reported that inhibition of c‑Src signaling 

was able to reduce metastasis of chondrosarcoma (57,58). 
Other studies found that Src inhibition could overcome chemo-
resistance to induce apoptosis and to inhibit migration (59). In 
Ewing's sarcoma cells, inhibition of c‑Src was also observed to 
reduce migration and metastasis (45).

It has been established that epithelial cells may acquire 
migratory capability, a feature typical of the mesenchymal 
cells, and gain invasive ability, resistance to apoptosis and 
the ability to disseminate (60), in a process known as the 
epithelial‑mesenchymal transition (EMT). EMT is a compli-
cated process, whereby cancer cells acquire migratory and 
invasive abilities, which are influenced by the tumor micro-
environment and intercellular communication. Src activity 
affects metastatic progression, suggesting that Src‑induced 
EMT may be associated with enhanced metastatic poten-
tial (61). However, the effect of Src-related EMT has yet to be 
investigated in sarcoma.

Figure 1. Structure of human c‑Src, comprising seven functional domains. SH, Src homology.

Figure 2. Schematic representation of Src in the inactive (left) and active (right) states. The N‑terminus binds to the cell membrane. The SH3 domain forms 
interactions with the linker between the SH2 and the SH1 domain. The SH2 domain binds the phosphorylated C‑terminal tail, and these two alterations prevent 
the SH1 domain from being phosphorylated at Y419 and reduce the potential for substrate interactions. SH, Src homology; CSK, C-Src kinase; PTP, protein 
tyrosine phosphatase.
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4. Src signaling networks in sarcoma

A number of studies have provided insight into how Src over-
expression and activation may contribute to cancer. CD99, 
a transmembrane glycoprotein, may exert anti-oncogenic 
effects, reducing the growth and metastatic ability of osteo-
sarcoma cells by regulating Caveolin-1 (Cav‑1) and inhibiting 
Src kinase activity. Cav-1 is a caveolar domain associated with 
the plasma membrane, which is involved in numerous cellular 
functions, including molecular transport, cell adhesion and 
signal transduction and thus, the role of Cav-1 in cancer 
development and progression has been investigated (62,63). 
Cav‑1 may act as an onco-suppressor and inhibit Src to reduce 
osteosarcoma metastasis (64,65). However, other studies have 
demonstrated that CD99 isoforms, CD99wt (full‑length CD99 
isoform) and CD99sh (short form) have opposing effects in 
osteosarcoma malignancy and metastasis, and may activate or 
inhibit Src kinase activity (66).

In osteosarcoma, when Src was inhibited, the down-
stream components of Src signaling, including focal adhesion 
kinase (FAK) and a partnership and Crk‑associated substrate 
(p130CAS) were also inhibited at the protein level. In rhabdo-
myosarcoma, targeting the Src-α-type platelet-derived growth 
factor receptor-Raf‑MAPK axis has been shown to be effective 
in inhibiting mouse and human tumor cell growth (67). 

5. Clinical development of Src inhibitors

Src has recently become an active target for drug develop-
ment and a number of Src inhibitors, including dasatinib 
(BMS354825), sarcatinib (AZD0530) and bosutinib (SKI‑606), 
are at various stages in the development process (68). Dasat-
inib has been approved for the treatment of chronic myeloid 
leukemia and Philadelphia-positive acute lymphoblastic 
leukemia (69), saracatinib has been used in a phase II trial for 
the treatment of extensive stage small cell lung cancer (70), and 
bosutinib has been used in a phase II trial for the treatment of 
adults with recurrent glioblastoma (71).

Dasatinib is a dual Src‑AbI kinase inhibitor, which is 
already approved by the Food and Drug Administration for 
the treatment of chronic myeloid leukemia and Philadelphia 
chromosome positive acute lymphoblastic leukemia (72). 
Several studies have demonstrated the therapeutic benefit of 
dasatinib in preventing the growth and metastasis of sarcomas. 
In osteosarcoma cell lines, wound-healing, cell migration and 
TUNEL assays indicated that dasatinib may block cell motility 
and invasion, and induce apoptosis (45,73). In chondrosar-
coma, dasatinib was also capable of decreasing tumor growth, 
however, it was unable to reduce invasion (73).

A new pyrazolo[3,4‑d] pyrimidine derivative Src‑Y416 
inhibitor (SI‑83) was found to impair osteosarcoma SaOS‑2 
cell viability and decrease osteosarcoma tumor mass in vivo, 
and exhibited less toxicity in primary human osteoblasts when 
compared with osteosarcoma cells. Additionally, SI‑83 was 
shown to induce apoptosis in SaOS‑2 cells (55). These results 
indicate that SI‑83 may be a novel effective therapeutic agent, 
with the advantage of low toxicity in nonneoplastic cells. A 
number of tyrosine kinase inhibitors that target Src tyrosine 
kinase have also been developed for therapeutic use (74), such 
as the pan-RAF inhibitors, CCT196969 and CCT241161 (75).

6. Conclusion

Compared with normal tissue, Src expression is significantly 
higher in tumor tissue, including gastrointestinal stromal 
tumors and renal clear cell carcinomas (76,77). A number 
of studies have found that Src signaling is important in 
attracting immune cells to tumor cells (32). The activation 
of Src, mediated by inflammatory cytokines and chemokines 
within the tumor microenvironment, occurs in cancer cells 
and immune inflammatory cells (78,79).

However, due to the intra‑ and inter‑tumor heterogeneity, 
targeting a single genetic event in sarcoma is unlikely to 
produce favorable clinical outcomes. Furthermore, under-
standing the role of Src in the initiation and progression of 
sarcoma is at an early stage, and the mechanisms by which 
Src affects the sarcoma microenvironment and the immune 
system remain to be investigated. Optimal treatment may 
include surgical resection combined with therapies that 
target the functional processes involved in tumor biology 
and metastasis, including chemotherapy and immunomodu-
lation (80,81). The Src protein exhibits high specificity and 
a positive predictive value, highlighting its potential as a 
diagnostic marker for certain types of sarcoma, such as 
osetosarcoma and Ewing's sarcoma. Thus, Src inhibitors may 
present a novel type of chemotherapeutic drug for the treat-
ment of sarcoma, however, preclinical studies to determine 
the optimal protein sequence for Src-targeted treatments 
and methods to monitor the theapeutic effects of such are 
required.
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