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Abstract. The present study aimed to investigate the radio-
sensitizing effects of tamoxifen (TAM), a non-steroidal 
anti-estrogen drug, in human glioma A172 and U251 cells 
in vitro. A colony-forming assay revealed that TAM 
enhances radiosensitivity in A172 and U251 cells. Treatment 
with TAM also increased the percentage of apoptotic cells 
subsequent to ionizing radiation, and increased the expres-
sion of apoptotic markers, including cleaved caspase-3 and 
poly(ADP-ribose) polymerase. Ionizing radiation induced 
G2/M phase arrest, which was alleviated within 24 h when 
the radiation-induced DNA damage was repaired. However, 
flow cytometry analysis revealed that TAM treatment delayed 
the recovery of cell cycle progression. Additional examination 
demonstrated that TAM-mediated protein kinase C-ι (PKC-ι) 
inhibition may lead to the activation of pro-apoptotic B-cell 
lymphoma 2-associated death promoter, and the dephosphory-
lation of cyclin-dependent kinase 7, resulting in increased cell 
apoptosis and sustained G2/M phase arrest following exposure 
to radiation. The present data indicate that the radiosensitizing 
effects of TAM on glioma cells are partly due to the inhibition 
of PKC-ι activity in vitro.

Introduction

Glioma is the most lethal primary brain tumor, with a median 
survival time of only 12 months. This tumor is incurable due 
to the aggressive proliferation and rapid infiltration of glioma 
cells. Despite advances in surgery and novel modalities in 

radiotherapy and chemotherapy, the prognosis for patients 
suffering from this disease remains poor, and even the etiology 
of glioma remains unclear (1,2). Ionizing radiation is the 
primary form of therapy subsequent to an optimal surgical 
resection or biopsy, prolonging median survival for a maximum 
of 6-8 months (3). However, curative treatment remains poor in 
spite of the fact that novel methods have increased the thera-
peutic potential of radiation in tumor therapy. The application 
of sub-lethal doses of radiation may result in local failure, and 
may promote the migration and invasion of glioma cells (4).

Tamoxifen (TAM) is a well-known non-steroidal 
anti-estrogen agent with low toxicity that is widely used to 
treat estrogen-dependent breast cancer. There have been an 
increasing number of studies reporting that this agent may 
also inhibit the growth of estrogen receptor-negative tumors, 
such as melanoma, malignant peripheral nerve sheath tumors, 
bladder cancer and glioma (5-8). This indicates that TAM may 
exert anti-tumor effects in an estrogen receptor-independent 
manner. Furthermore, the ability of TAM to penetrate the 
blood-brain barrier facilitates its utilization in treatment 
of malignant diseases in the central nervous system (9). 
Although certain intracellular signal transduction pathways, 
such as protein kinase C (PKC), transforming growth factor-β, 
calmodulin, transcription factor c-Myc, mitogen-activated 
protein kinase p38 and c-Jun NH2-terminal kinase, have been 
implicated in TAM-induced apoptosis, the exact molecular 
mechanism remains elusive (10-13). It has been reported that 
TAM interferes with the activity of the catalytic subunit of the 
PKC (14-16), and the activity of PKC is associated with the 
growth rate of malignant gliomas in vitro (17,18). Therefore, 
TAM may exert a synergistic effect with radiotherapy and the 
mechanism may be associated with the activity of PKC.

Studies have revealed that the activity of PKC is signifi-
cantly upregulated in glioma, and this increase is concordant 
with the malignant growth rates (19-21). The PKC family 
contains 12 subtypes classified in three classes based on their 
requirement for specific activators and cofactors (22‑24). 
PKC-ι, a member of the atypical PKC family, was of particular 
interest as this kinase is involved in cell growth, prolifera-
tion, survival and apoptosis. PKC-ι has been demonstrated 
to promote survival and prevent apoptosis in non-small-cell 
lung cancer and gastric carcinoma (25,26), and is highly 
activated and overexpressed in glioma. The kinase also plays 
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a key role in cell cycle progression and proliferation (27,28). 
These findings indicated that PKC‑ι is overexpressed in the 
hyper-proliferative state of gliomas, and is also associated 
with the resistance of gliomas to apoptosis in response to treat-
ment with cytotoxic agents or ionizing radiation. Therefore, 
pharmacological manipulation of PKC-ι activity may restrain 
tumor cell proliferation and restore susceptibility to apoptosis, 
presenting a promising method for the treatment of glioma.

In the present study, the radiosensitizing effects of TAM 
in human glioma A172 and U251 cells were examined 
in vitro and the mechanisms of TAM-enhanced radio-
sensitization were also investigated. The present results 
demonstrated that the inhibition of PKC-ι activity by TAM 
may, at least in part, radiosensitize glioma cells.

Materials and methods

Cell culture and irradiation. Human glioma A172 and 
U251 cells (Cell Bank of Chinese Academy of Sciences, 
Shanghai, China) were cultured as a monolayer in 
Dulbecco's modified Eagle's medium supplemented 
with 10% fetal bovine serum, 100 µg/ml streptomycin 
and 100 units/ml penicillin at 37˚C under a humidified 
atmosphere containing 5% CO2. TAM was purchased from 
Sigma-Aldrich (St. Louis, MO, USA) and was dissolved 
in dimethyl sulfoxide at a concentration of 10 mM. The 
cells were irradiated by 160 kV X-rays at a dose rate of 
1.15 Gy/min using a RS-2000 Pro Biological Irradiator 
(Rad Source Technologies, Inc., Alpharetta, GA, USA).

Colony‑forming assay. The A172 and U251 cells were plated 
in triplicate into six-well plates and irradiated with various 
doses of X-rays 24 h subsequent to plating. The cells were 
treated with TAM immediately following irradiation. After 
48 h, the TAM-containing medium was replaced with fresh 
growth medium. Subsequent to being cultured for 12 days, 
the cells were fixed and stained with 1% crystal violet and 
colonies containing >50 cells were counted. The survival 
fraction was calculated as the fraction of colonies divided by 
that of the control group. The cell survival curves were then 
fitted using single hit multi‑target radiobiological models.

Flow cytometry analysis. A172 or U251 cells were irradi-
ated with 4 Gy X-ray and treated with TAM immediately 
following irradiation. After 24 or 48 h, the cells were 
harvested and fixed with 70% ice-cold ethanol. Subse-
quent to incubation with RNase A, the cells were stained 
with 25 µg/ml propidium iodide (PI) for 30 min on ice. 
The distribution of the cell cycle was analyzed using a 
FACSCalibur flow cytometer (BD Biosciences, San Jose, 
CA, USA). For apoptosis analysis, cells were washed with 
ice-cold phosphate-buffered saline (PBS) and stained using 
an Annexin V-phycoerythrin/7-aminoactinomycin D 
apoptosis detection kit (BD Biosciences). The percentage 
of apoptotic cells was measured by f low cytometry. At 
least 10,000 cells were measured for each sample.

Western blotting. The cells were rinsed with ice-cold PBS 
and lysed by RIPA lysis buffer with protease and phosphatase 
inhibitors for 20 min on ice. The cells were then centrifuged 

at 12,000 x g for 10 min at 4˚C. Cell lysates containing equal 
amount of protein were resolved on 10% SDS-PAGE, and elec-
trically transferred to polyvinylidene difluoride membranes 
(Bio-Rad Laboratories, Hercules, CA, USA). Non-specific 
binding was blocked with Tris-buffered saline containing 5% 
(w/v) skim milk for 2 h at room temperature. The membranes 
were subsequently incubated with the following antibodies: 
Rabbit anti-caspase-3 (1:1,000), rabbit anti-poly(ADP-ribose) 
polymerase (PARP; 1:1,000; Proteintech Group, Chicago, IL, 
USA), rabbit anti-B-cell lymphoma 2-associated death promoter 
(Bad; 1:1,000; Epitomics, Burlingame, CA, USA), rabbit anti-
phosphorylated PKC-ι (p-PKC-ι; 1:1,000), mouse anti-PKC-ι 
(1:1,000), rabbit anti-cyclin-dependent kinase 7 (cdk7; 1:2,000), 
rabbit anti-phosphorylated cdk7 (p-cdk7; 1:500) (Abcam, 
Cambridge, MA, USA) and mouse anti-β-actin (1:2,000; Santa 
Cruz Biotechnology, Inc., Dallas, TX, CA). The membranes 
were then incubated with a horseradish peroxidase-conjugated 
secondary antibody. Immunoblotting signals were detected 
using by using an enhanced chemiluminescence kit (Thermo 
Fisher Scientific, Inc., Foster City, CA, USA).

Statistical analysis. The data were expressed as the 
mean ± standard deviation. Statistical analysis was performed 
using one-way analysis of variance subsequent to multiple 
comparisons using the S-N-K method using SPSS 18.0 soft-
ware (SPSS, Inc., Chicago, IL, USA). P<0.05 was considered 
to indicate a statistically significant difference.

Results

Treatment with TAM enhances the radiosensitivity of 
A172 and U251 cells. TAM has been reported to increase 
the radiosensitivity of several glioma cell lines (18,29). In 
the present study, the radiosensitizing effects of TAM on the 
human malignant glioma A172 and U251 cells were explored. 
The cells were irradiated with various doses of X-rays, and 
treated with 10 µM TAM for 2 days subsequent to irradiation. 
A colony-forming assay was performed to examine the effects 
of TAM on the radiosensitivity of A172 and U251 cells. As 
shown in Fig. 1, treatment with TAM radiosensitized A172 and 
U251 cells. The sensitivity enhancement ratios were 1.24 and 
1.46 in A172 and U251 cells, respectively.

TAM increased radiation‑induced apoptosis. In order to 
investigate the roles of apoptosis in the radiosensitizing effects 
of TAM, the A172 or U251 cells were stained with phycoer-
ythrin-conjugated Annexin V and flow cytometry analysis 
was performed. As shown in Fig. 2A, combined treatment 
consisting of radiation and TAM induced a substantial increase 
in the apoptotic rate compared to the group treated with radia-
tion alone. Subsequently, western blotting was performed to 
assess the activation of the apoptosis signaling pathway. It was 
found that TAM upregulated the expression levels of cleaved 
caspase-3 and cleaved PARP in A172 and U251 cells (Fig. 2B).

TAM enhanced radiation‑induced G2/M arrest. In order 
to investigate the effect of TAM or TAM combined with 
radiation on cell cycle progression, flow cytometry analysis 
was performed to reveal the cell cycle distribution at various 
time points. G2/M phase arrest was induced by radiation and 
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the percentage of G2/M phase cells was gradually reduced at 
24 h (Fig. 3), indicating the completion of DNA damage repair 
and reentering of cell cycle progression. Treatment with TAM 
did not increase radiation-induced G2/M phase arrest, but 
did maintain G2/M phase arrest, therefore postponing cell 
cycle progress. Notably, treatment with TAM alone induced 
G0/G1 phase arrest, suggesting the inhibition of DNA synthesis.

TAM suppressed the activation of PKC‑ι signaling. The 
estrogen-independent antitumor activity of TAM may be partly 
due to the inhibitory effects of TAM on PKC (11). It has been 

reported that the expression and function of atypical PKC-ι is 
highly upregulated in glioma cells (28). In the present study, 
western blot analysis revealed that the expression levels of 
p-PKC-ι (T555) were decreased by TAM treatment in A172 and 
U251 cells (Fig. 4). In glioma T98 G and U87MG cells, PKC-ι 
may act as a Bad kinase, thereby phosphorylating and nega-
tively regulating the pro-apoptotic function of Bad. Similarly, 
combined administration of TAM and radiation induced a 
significant increase in the levels of Bad protein in A172 and 
U251 cells (Fig. 4). In addition, PKC-ι may phosphorylate 
Cdk7 in a cell cycle-dependent manner (27). As shown in Fig. 4, 

Figure 1. TAM enhances the radiosensitivity of the glioma A172 and U251 cell lines. The A172 and U251 cells were treated with various doses of X-ray 
irradiation and 10 µM TAM for 48 h. A clonogenic survival assay was then performed. *P<0.05 vs control (n=3). TAM, tamoxifen.

Figure 2. TAM enhances radiation-induced apoptosis in A172 and U251 cells. (A) Flow cytometry was used to determine A172 and U251 cell apoptosis 
following treatment with either 4-Gy X-rays or 10 µM TAM alone or in combination for 24 h or 48 h. *P<0.05 and **P<0.01 vs. IR group. (B) Western blot 
analysis was performed to evaluate the expression of activated apoptotic markers. β-actin was used as the loading control. TAM, tamoxifen; IR, irradiation; 
PARP, poly(ADP-ribose) polymerase.

  A

  B
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the expression of p‑cdk7 was significantly decreased in glioma 
cell lines subsequent to treatment with TAM. These results 
suggested that the increased radiation-induced cell apoptosis, 
as well as the prolonged cell cycle arrest, may be in part due 
to the downregulation of PKC-ι signaling by TAM treatment.

Discussion

In the present study, the colony-forming assay revealed the 
radiosensitizing effects of TAM on the human malignant 

glioma A172 and U251 cells. The number of apoptotic cells was 
considerably increased by treatment with TAM and radiation. 
In addition, TAM treatment did not induce an increase in the 
number of cells that underwent G2/M arrest subsequent to radia-
tion exposure, but delayed the recovery of cell cycle progression. 
The activity of PKC-ι signaling, which plays an important role 
in the proliferation, apoptosis and cell cycle regulation of glioma 
cells (27,28,30), was markedly suppressed by TAM.

Ionizing radiation created DNA double strand breaks and 
activated an integrated DNA damage response, including DNA 

Figure 3. TAM alters radiation-induced cell cycle arrest. A172 and U251 cells were treated with either 4-Gy X-rays or 10 µM TAM alone or in combination for 
12 h, 24 h and 48 h. Flow cytometry was employed to investigate the cell cycle distribution of glioma cells. TAM, tamoxifen.

Figure 4. Inhibition of PKC-ι signaling by treatment with TAM. A172 or U251 cells were treated with either 4 Gy X-ray or 10 µM TAM alone or in combination 
for 24 h. Western blot analysis was performed to detect the expression of p-PKC-ι, Bad and p-cdk7. β-actin was used as the loading control. TAM, tamoxifen; 
IR, irradiation; PKC-ι, protein kinase C-ι; p-PKC-ι, phosphorylated PKC-ι; Bad, B-cell lymphoma 2-associated death promoter; cdk7, cyclin-dependent 
kinase 7; p-cdk7, phosphorylated cdk7.
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lesion sensing, signal transduction and activation of functional 
proteins (31). The cellular outcome of the DNA damage 
response is dependent upon the success of DNA repair. Cells 
may maintain genome integration if the DNA damage is well 
repaired; however, by contrast, the cell cycle may arrest at 
the G2/M checkpoint to allow DNA damage repair, and cells 
may enter the process of programmed cell death if the DNA 
damage repair fails (32). Radiation treatment alone induces 
apoptosis in glioma cells, and TAM enhances the pro-apoptotic 
effects of radiation, suggesting that TAM interferes with the 
DNA damage response. Similarly, TAM treatment maintains 
G2/M phase arrest and prevents cells entering mitosis subse-
quent to the administration of ionizing radiation. Since the 
peroxidase-mediated metabolism of TAM was revealed to 
produce DNA adducts and contribute to the formation of DNA 
damage (33), treatment with TAM alone induced G0/G1 phase 
arrest in human glioma cells. Additionally, A172 cells and 
U251 cells express wild-type p53 and mutant p53 respectively, 
whereas TAM treatment resulted in an equivalent increase of 
radiosensitivity in the two cell lines, indicating the radiosensi-
tizing effects of TAM may be independent of p53 status.

At present, the mechanism by which TAM increases the 
radiosensitivity of glioma cells is not completely clear. A syner-
gistic effect of TAM with radiation in C6 glioma cells has been 
demonstrated, and may partially be due to the inhibition of PKC 
activation (18). The atypical PKC family member, PKC-ι was of 
particular interest as it is a key regulator of cell survival, prolif-
eration, invasion and chemoresistance in glioma (27,30,34,35). 
The present results revealed an inhibitory role of TAM in the 
expression levels of p-PKC-ι, which may participate in the 
radioresistance of glioma cells. In the human glioma T98G 
and U87MG cell lines, PKC-ι is able to directly phosphorylate 
Bad, and restrain its pro-apoptotic function (30). PKC-ι may 
play an equivalent role in A172 and U251 cells, since inhibi-
tion of PKC-ι by TAM was revealed to increase the expression 
of Bad. In metazoans, the only known CDK-activating kinase 
is Cdk7 (36), which was revealed to be phosphorylated by 
PKC-ι in a cell cycle dependent manner (27,37). Inhibiting 
Cdk7 in the G2 phase blocks entry into mitosis and disrupts 
Cdk1/cyclin B complex assembly (38). It has been reported that 
decreased Cdk7 activity led to inactivation of Cdk1 and caused 
an irreversible G2/M phase arrest in human gastric carcinoma 
cells (39). In A172 and U251 cells, the sustained G2/M phase 
arrest induced by radiation and TAM treatment may be the 
result of PKC-ι-mediated inactivation of Cdk7.

In summary, the present data revealed that TAM enhanced 
the radiosensitivity of human glioma cells, accompanied by 
increased cell apoptosis and sustained G2/M phase arrest. 
Mechanistically, the capability of TAM to repress the activation 
of PKC-ι, as well as its downstream targets Bad and Cdk7, may 
play an vital role in the radiosensitizing effects on A172 and 
U251 cells.
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