Expression of ALDH1A1 and CD44 in primary head and neck squamous cell carcinoma and their value for carcinogenesis, tumor progression and cancer stem cell identification

MARTIN LEINUNG1, BENJAMIN ERNST1, CONSTANZE DÖRING2, JENS WAGENBLAST1, AYKUT TAHTALI1, MARC DIENSTHUBER1, TIMO STÖVER1 and CHRISTIN GEISSLER1

1Department of Otolaryngology; 2Institute of Pathology, University Hospital Frankfurt, Frankfurt am Main 60590, Germany

Received September 23, 2014; Accepted June 2, 2015

DOI: 10.3892/ol.2015.3542

Abstract. In head and neck squamous cell carcinoma (HNSCC), aldehyde dehydrogenase 1 family, member A1 (ALDH1A1) and hyaluronan receptor cluster of differentiation 44 (CD44) are often used as cancer stem cell (CSC) markers. The aim of the present study was to examine the relevance of these proteins for HNSCC in general and for the identification of CSCs. Tumors from 48 patients with primary HNSCC were analyzed for the expression of ALDH1A1 and CD44. Additionally, the association of the proteins with the proliferation rate and epidermal growth factor receptor (EGFR) expression was analyzed. ALDH1A1 was expressed in 54.2% of the carcinoma samples while CD44 was expressed in 89.6% of the carcinoma samples. Most notably, these proteins were often not expressed exclusively in a subpopulation, but also in the majority of tumor cells (ALDH1A1: 30.8% of ALDH1A1+ tumors; CD44: 65.1% of CD44+ tumors). Furthermore, patients with ALDH1A1+ tumors exhibited worse survival rates. CD44 and EGFR expression patterns were overlapping within the tumors and the expression rates were significantly connected. Ki-67+ tumor cells often expressed CD44. ALDH1A1 and CD44 expression patterns only partly overlapped. Consequently, ALDH1A1 and CD44 play significant roles in carcinogenesis and tumor progression. Within the present study, CD44 appeared to interact with EGFR and was more often expressed in primary HNSCC than the marker ALDH1A1. However, ALDH1A1 was a better marker to define a subpopulation of tumor cells. Finally, neither ALDH1A1 nor CD44, alone or combined, were sufficient to determine the CSC population in HNSCC.

Introduction

Head and neck squamous cell carcinoma (HNSCC) is the most common entity of the upper aerodigestive tract (1). Carcinoma of this area is the fourth most common region of cancer incidence and the second most common region for cancer-related mortality worldwide (2). The intratumoral heterogeneity may be an explanation for the worse survival rates recorded in HNSCC. Cancer stem cells (CSCs) are the most important subpopulation within carcinoma. CSCs are associated with a worse response to therapy, metastasis and cancer relapse (3). Aldehyde dehydrogenase 1 family, member A1 (ALDH1A1) and hyaluronan receptor cluster of differentiation 44 (CD44) are common markers for CSCs in HNSCC (4-6).

ALDH1A1 belongs to the ALDH enzyme family and catalyzes the oxidation of aldehydes to carboxylic acids (7). This enzyme mediates protection from chemotherapy and reactive oxygen species (ROS) (8).

CD44 is an important hyaluronan receptor. CD44 acts in cell aggregation, proliferation and migration (9). In HNSCC, CD44 is associated with tumor invasion (10) and the poor survival of tumor patients (11).

The present study analyzed the expression of ALDH1A1 and CD44 for their relevance in human primary HNSCC. The prognostic value of ALDH1A1 expression was estimated. Moreover, the utility of ALDH1A1 and CD44 was evaluated in order to identify CSCs. To define the CSC population and its activity more precisely, features such as proliferation (Ki-67) and growth receptor expression [epidermal growth factor receptor (EGFR)] were included into the analysis.

Materials and methods

Patients. In this study, 48 patients with primary HNSCC (35 male and 13 female) were investigated. Tumor samples were collected between 1997 and 2008. Experiments were approved by the Ethics Committee of the Department of Medicine of the Johann Wolfgang Goethe-University, Frankfurt am Main (276/12).

Sample preparation and analysis. All available samples of each primary tumor were examined. For immunohistochemistry,
formaldehyde-fixed paraffin-embedded tumor samples, cut to a size of 5 µm, were used. Antigen retrieval was performed in boiling citrate buffer (pH 6.0; S1699; Dako, Glostrup, Denmark). ALDH1A1 and CD44 are common markers for the identification of CSC (4–6), therefore, these markers were used to identify tumor cell subpopulations comprised of CSCs. The expression of anti-human rabbit monoclonal ALDH1A1 (1/100, ab52492; Abcam, Cambridge, UK), anti-human mouse monoclonal CD44 (1/100, MU310-UC; BioGenex, Fremont, CA, USA), anti-human mouse monoclonal EGFR (1/50, ab49716; Abcam) and anti-human rabbit monoclonal Ki-67 (1/200, KI68IC01: DCS, Hamburg, Germany) were detected. The samples were incubated with primary antibody for 1 h at room temperature. In the next step of immunohistochemistry staining procedure, the DCS Detection Line system staining kits (AD050POL-K, PD000RP and DD006RAP; DCS, Hamburg, Germany) were used. Staining was developed with DAB reagent (DC137C100; DCS) and a Fuchsin-Substrate-Chromogen System (K0625; Dako). Images were captured with a Zeiss Axioplan2 (AxioCam ICC1 camera; Zeiss, Oberkochen, Germany). The staining intensity of CD44 and EGFR in the tumor cells was scaled as follows: Strong (+++), moderate (++), weak (+) and none (-). Weak staining was described as less intensive and/or discontinuous membrane staining of the tumor cells.

So far as documented, the clinical history of the patients and the tumor-node-metastasis (TNM) status (12) of the carcinoma were analyzed. Statistical analysis. The statistical analysis of data was performed with BiAS software for Windows (version 10.12; Epsilon-Verlag, Frankfurt, Germany). The significance between CD44 and EGFR was analyzed by Yates-Cochram test of trends. The significance of cancer relapse for the ALDH1A1 expression groups (+/-) was analyzed by Fisher's exact test. P<0.05 was considered to indicate a statistically significant difference.

Results

General ALDH1A1 and CD44 expression. The majority of primary HNSCC tumors (45/48; 93.8%) expressed a minimum of one protein (Table I). Only three samples (6.3%) expressed neither ALDH1A1 nor CD44. CD44 was more often expressed, but ALDH1A1 more frequently represented a minority of tumor cells. ALDH1A1, aldehyde dehydrogenase 1 family, member A1; CD44, hyaluronan receptor cluster of differentiation 44.

\[
\begin{array}{|c|c|c|c|c|}
\hline
\text{Expression} & \text{ALDH1A1}^+ & \text{CD44}^+ & \text{ALDH1A1}^+/\text{CD44}^+ & \text{ALDH1A1}^+/\text{CD44}^-\\
\hline
\text{General expression} & 26 (54.2) & 43 (89.6) & 24 (50.0) & 3 (6.3) \\
\text{Majority ALDH1A1}^+ & 8 (30.8) & 8 (18.6) & 8 (33.3) & - \\
\text{Minority ALDH1A1}^+ & 18 (69.2) & 16 (37.2) & 16 (66.7) & - \\
\text{ALDH1A1} & - & 19 (44.2) & - & - \\
\text{Majority CD44}^+ & 13 (50.0) & 28 (65.1) & 11 (45.8) & - \\
\text{Minority CD44}^+ & 11 (42.3) & 15 (34.9) & 13 (54.2) & - \\
\text{CD44} & 2 (7.7) & - & - & 3 (100.0) \\
\hline
\end{array}
\]

*CD44 and/or ALDH1A1 were expressed in 93.8% of carcinoma samples. CD44 was more often expressed, but ALDH1A1 more frequently represented a minority of tumor cells. ALDH1A1, aldehyde dehydrogenase 1 family, member A1; CD44, hyaluronan receptor cluster of differentiation 44.

Table II. Staining intensity of CD44 and EGFR in human primary tumors. Linear regression of expression (P≤0.01).

<table>
<thead>
<tr>
<th>Protein</th>
<th>-</th>
<th>+</th>
<th>++</th>
<th>+++</th>
</tr>
</thead>
<tbody>
<tr>
<td>EGFR</td>
<td>1 (2.1)</td>
<td>12 (25.0)</td>
<td>9 (18.8)</td>
<td>26 (54.2)</td>
</tr>
<tr>
<td>CD44</td>
<td>5 (10.4)</td>
<td>5 (10.4)</td>
<td>14 (29.2)</td>
<td>24 (50.0)</td>
</tr>
</tbody>
</table>

ALDH1A1, aldehyde dehydrogenase 1 family, member A1; CD44, hyaluronan receptor cluster of differentiation 44.
ALDH1A1+ tumors this enzyme was expressed in the majority of tumor cells (Fig. 1C). In the remaining ALDH1A1+ tumors (18/26, 69.2%) ALDH1A1-expressing cells were found to be singular, in groups or throughout the entirely cell nest (Fig. 1A and B). More often ALDH1A1+ tumor cell groups were located more centrally within the cell nests (Fig. 1A and B).

Half (24/48) of the analyzed tumors expressed ALDH1A1 and CD44 (Table I). In these tumors the expression pattern of ALDH1A1 and CD44 intersected, but did not completely overlap (Fig. 1G). With the exception of one tumor (7/8, 87.5%), the human papilloma virus (HPV)+ tumors expressed ALDH1A1 and CD44. The remaining HPV+ tumor showed CD44 staining (Table III).

EGFR and Ki67 status of ALDH1A1+ or CD44+ tumor cells. With the exception of one tumor, the examined HNSCC tumors expressed EGFR (47/48, 97.9%) (Table II). In most tumors the majority of tumor cells were EGFR+. The staining intensity of EGFR was scaled as strong to moderate (+/++/+++) in 74.5% (35/47) of EGFR+ tumors. The staining patterns of CD44 and EGFR were mostly overlapping. The position of the EGFR+ and CD44+ tumor cells was generally identical. However, EGFR+ tumor cells were located more marginally within the tumor cell nests (Fig. 1E). The association between EGFR and CD44 staining intensity could be described as an linear regression (P≤0.01). In the majority of tumors, ALDH1A1+ tumor cells were not necessarily CD44+ (Fig. 1G). EGFR staining gave similar results (Fig. 1H). The amount of Ki-67+ tumor cells also appeared to be independent of ALDH1A1 expression (Fig. 1I). Closer to the stroma the proliferation rate was higher (Fig. 1F).

Analysis of ALDH1A1+ and ALDH1A1− patients. The patient collective was divided into ALDH1A1+ and ALDH1A1− primary tumor samples. Notably, the majority of confirmed tonsillar tumors (11/16; 68.8%) were ALDH1A1+. Due to the low number of CD44− tumors (5/48; 10.4%), an analysis of CD44+ and CD44− samples was not meaningful.

The appearance of metastasis and relapse was analyzed (Table III). In the majority of cases, cancer relapse was
observed up to 2 years after primary tumor detection. Cancer relapse occurred in 23.1% (6/26) of patients with ALDH1A1+ primary tumors. The number of relapses was significantly higher (P<0.05) for patients with ALDH1A1+ primary tumors (12/22; 54.5%). No notable differences were found between the TNM stage of ALDH1A1+ and ALDH1A1- tumors. However, one explanation for the increased number of relapses resulted in the comparison of overall survival (Fig. 2). As HPV is a prognostic factor for longer survival (13), HPV+ cases were excluded.

The majority of patients in the two groups succumbed within the first 3 years of tumor appearance. Within the ALDH1A1+ (HPV+) tumor group, fewer patients (4/18; 22.2%) survived longer than 3 years compared with the ALDH1A1- (HPV-)
tumor group (7/21; 33.3%). This issue could not be explained by a younger age of the ALDH1A1 tumor patients, as the analysis of different age groups (<60, 60-70 and >70 years) gave comparable results (data not shown). Survival was not linked to the percentage of ALDH1A1+ cells within the tumor.

Discussion

ALDH1A1 and CD44 function in the carcinogenesis and tumor progression of HNSCC. ALDH1A1 is not expressed in the normal oral mucosa (14,15). However, other ALDH isoenzymes, such as ALDH1A3 and ALDH3A1, are found (14). The expression of the retinoic acid receptors in the oral mucosa underlines the function of ALDH isoenzymes in the normal mucosa (16). However, ALDH1A1 expression is increased in dysplasia and HNSCC (6). In the present study, it was found that 54.2% of primary HNSCC tumors were ALDH1A+. In 30.8% of the ALDH1A1+ tumors, ALDH1A1 was expressed in the majority of tumor cells. This observations confirm a more general function of ALDH1A1 in the carcinogenesis of HNSCC. One explanation is that ALDH1A1 is stress-induced. The ALDH1A1 promoter has binding sites for the AP-1 (17) and Oct-1 (18) transcription factors. Oct-1 is stabilized and translocated into the nucleus due to radiation, ROS (19) and HPV16 infection (20). The low expression of ALDH1A1 has also been recognized in the normal tonsillar squamous epithelium (21). Additionally, ALDH1A1 protects from oxidative stress-induced reactive aldehydes (8). In the present study, ALDH1A1+ tumor cells were mostly located in the middle of tumor cell nests and assumed hypoxic tumor sites. Furthermore, ALDH1A1 appeared to be a prognostic factor for worse survival. This was in agreement with the results of a study by Qian et al (22). The reduced relapse rates for patients with ALDH1A1+ tumors may arise from worse survival rates. Additionally, the majority of HPV-associated carcinomas are ALDH1A+, and HPV-induced HNSCC exhibits a better prognosis (13). These observations possibly verify the role of ALDH1A1 in tumor progression.

CD44 is expressed in the basal layer of the normal oral mucosa (21,23-25). As a consequence, CD44 was overexpressed in many of the examined tumors in the present study. CD44 was located entirely throughout the cell nest or tumor. It is known that CD44 can interact with tumor cell nests and assumed hypoxic tumor sites. Further CSC markers should be used to define and isolate the CSC population.

In conclusion, ALDH1A1 and CD44 expression did not completely overlap. In the majority of tumors ALDH1A1+/CD44+, ALDH1A1+/CD44+ and ALDH1A1+/CD44+ populations were observed. This observation may indicate that different CSC populations could exist within one tumor. For HNSCC, this theory of different CSC phenotypes was first suggested by Biddle et al (32). This hypothesis has also been discussed for breast (33,34) and colorectal (30) cancer. Different phenotypes would make it more difficult to determine the CSC population.

Acknowledgements

This study was funded by a young investigator grant of UCT (grant no. SKHT-HNO-01/13).

References

Towards a knowledge-based Human Protein Atlas.

