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Abstract. The present study demonstrated two novel findings. 
To the best of our knowledge, it is the first study to demon-
strate that regulated upon activation, normal T‑cell expressed 
and secreted (RANTES), produced by breast tumor‑associated 
monocyte‑derived dendritic cells (TADCs) following breast 
cancer cell exposure to phthalate esters, may contribute to the 
progression of cancer via enhancement of cancer cell prolifera-
tion, migration and invasion. Furthermore, the present study 
revealed that didymin, a dietary flavonoid glycoside present 
in citrus fruits, was able to reverse phthalate ester‑mediated 
breast cancer aggravation. MDA‑MB‑231 cells were treated 
with butyl benzyl phthalate (BBP), di‑n-butyl phthalate 
(DBP) or di‑2‑ethylhexyl phthalate (DEHP). Subsequently, 
the conditioned medium (CM) was harvested and cultured 
with monocyte‑derived dendritic cells (mdDCs). Cultures of 
MDA‑MB‑231 cells with the conditioned medium of BBP‑, 
DBP‑ or DEHP‑MDA‑MB‑231 tumor‑associated mdDCs 
(BBP‑, DBP‑ or DEHP‑MDA‑TADC‑CM) demonstrated 
enhanced proliferation, migration and invasion. Exposure of 
the MDA‑MB‑231 cells to DBP induced the MDA‑TADCs to 
produce the inflammatory cytokine RANTES, which subse-
quently induced MDA‑MB‑231 cell proliferation, migration 
and invasion. Depleting RANTES reversed the effects of 
DBP‑MDA‑TADC‑mediated MDA‑MB‑231 cell proliferation, 

migration and invasion. In addition, didymin was observed to 
suppress phthalate‑mediated breast cancer cell proliferation, 
migration and invasion. The present study suggested that 
didymin was capable of preventing phthalate ester‑associated 
cancer aggravation.

Introduction

Phthalates, including butyl benzyl phthalate (BBP), di‑n-butyl 
phthalate (DBP) and di‑2‑ethylhexyl phthalate (DEHP), are 
utilized as softeners and plasticizers (1,2). Epidemiological 
studies have observed that phthalate exposure may increase 
the risk of breast cancer (3‑6). However, the effects of phthalate 
esters in the breast cancer tumor microenvironment remain to 
be elucidated.

The tumor microenvironment is known to have a signifi-
cant role in the progression of tumors and the development of 
chemoresistance to anticancer drugs (7). The tumor micro-
environment is comprised of stromal cells, immune cells 
[lymphocytes, macrophages and dendritic cells (DCs)], growth 
factors, extracellular matrix constituents, metabolites and cyto-
kines/chemokines (8). As antigen‑presenting cells, DCs have 
been observed to exhibit significant roles in the initiation and 
regulation of the immune response to cancer (9). Tumor‑asso-
ciated DCs (TADCs) have been observed to contribute to the 
metastasis of tumors in various cancers (10,11). Regulated upon 
activation, normal T‑cell expressed and secreted (RANTES), 
also known as C‑C chemokine ligand 5, is a cytokine consis-
tently observed in increased levels in breast cancer subtypes (12), 
and has been observed to be associated with the progression of 
breast cancer and the promotion of metastasis (13‑16).

Epidemiological studies have provided evidence that a 
high dietary intake of flavonoids via fruits and vegetables may 
be associated with reduced cancer rates in humans (17‑20). 
Flavonoids are a class of phenolic compounds that are widely 
distributed throughout the plant kingdom; they display diverse 
biological activities, including the inhibition of tumor progres-
sion and the prevention of cancer initiation (21,22). Didymin, 
a dietary flavonoid glycoside present in citrus fruits, demon-
strates antioxidant and anticancer properties (23‑28).
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The present study evaluated the effects of phthalate esters 
in the breast cancer tumor microenvironment and investigated 
didymin, a dietary flavonoid glycoside present in citrus fruits, 
as a possible antidote for phthalate ester‑associated cancer 
aggravation.

Materials and methods

Chemicals. Didymin was obtained from Extrasynthese 
(Genay, France), and was dissolved in dimethyl sulfoxide 
(DMSO; Sigma‑Aldrich, St. Louis, MO, USA) and stored 
at ‑20˚C. Control cultures received the carrier solvent (0.1% 
DMSO). All other chemicals utilized were in the purest form 
available commercially.

Cell culture and conditioned medium. Human breast adeno-
carcinoma MDA‑MB‑231 cells (American Type Culture 
Collection, Manassas, VA, USA) were cultured in α‑minimum 
essential medium (α‑MEM; Thermo Fisher Scientific, Inc., 
Waltham, MA, USA) supplemented with non‑essential amino 
acids, 0.1 mmol/l sodium pyruvate, 1% antibiotic/anti‑mycotic 
solution and 10% fetal bovine serum (FBS) (all Thermo 
Fisher Scientific, Inc.). In order to obtain the various condi-
tioned media (CM), the MDA‑MB‑231 cells (2x106/100-mm 
dish) were treated with or without BBP, DBP or DEHP (all 
Sigma‑Aldrich) at identical concentrations of 1 µM for 
6 h. Following washing and culturing for 24 h, the CM of 
phthalate ester‑treated MDA‑MB‑231 cells (BBP‑, DBP‑ or 
DEHP‑MDA‑CM) were harvested (Fig. 1A).

Isolation of cluster of differentiation (CD)14+ monocytes and 
differentiation of monocyte‑derived dendritic cells (mdDCs). 
Monocytes were purified from peripheral blood mononuclear 
cells obtained from healthy consenting donors. Mononuclear 
cells were isolated  from the blood by Ficoll‑Hypaque 
gradient (GE Healthcare Life Sciences, Chalfont, UK). 
CD14+ monocytes were purified with CD14+ monoclonal 
antibody‑conjugated magnetic beads (MACS MicroBeads; 
Miltenyi Biotec GmbH, Bergisch Gladbach, Germany), 
according to the manufacturer's protocols. mdDCs were gener-
ated by culturing CD14+ monocytes in α‑MEM containing 
FBS and 20 ng/ml granulocyte‑macrophage colony‑stim-
ulating factor (GM‑CSF) and 10 ng/ml interleukin (IL)4 
(R&D Systems, Inc., Minneapolis, MN, USA) for 5 days. The 
medium was replaced with fresh medium containing GM‑CSF 
and IL4 on day 3. For the maturation of DCs, immature 
mdDCs were stimulated with lipopolysaccharide (100 ng/ml; 
Sigma‑Aldrich) following priming with interferon‑γ (EMD 
Millipore, Billerica, MA, USA) for 3 h. MDA‑MB‑231 
tumor‑associated mdDCs (MDA‑TADCs), BBP‑MDA‑TADCs, 
DBP‑MDA‑TADCs or DEHP‑MDA‑TADCs were generated 
by culturing CD14+ monocytes in α‑MEM medium containing 
FBS, IL4 and GM‑CSF in 20% MDA‑CM, BBP‑MDA‑CM, 
DBP‑MDA‑CM or DEHP‑MDA‑CM, and subsequently stimu-
lated as aforementioned. Following washing, the supernatants 
were collected and identified as MDA‑MB‑231‑TADC‑CM, 
BBP‑M DA‑TA DC‑ CM, DBP‑M DA‑TA DC‑ CM or 
DEHP‑MDA‑TADC‑CM (Fig. 1B). The Institutional Review 
Board (IRB) of Kaohsiung Medical University Hospital 
(Kaohsiung, Taiwan) approved the present study protocol 

and all participants provided written informed consent in 
accordance with the Declaration of Helsinki (IRB numbers: 
KMUH‑IRB‑990174 and KMUH‑IRB‑20120362).

Reverse transcription‑quantitative polymerase chain reaction 
(RT‑qPCR). TRIzol reagent (Invitrogen; Thermo Fisher Scien-
tific, Inc.) was utilized for RNA isolation, while complementary 
(c)DNA was prepared using an oligo(dT) primer and reverse 
transcriptase (Takara Bio, Inc., Otsu, Japan) following standard 
protocols (29). RT‑qPCR was performed using SYBR Green 
on the ABI 7500 Real‑Time PCR System (Applied Biosystems; 
Thermo Fisher Scientific, Inc.). Each PCR mixture contained 
200 nM of each primer, 10 µl of 2X SYBR Green PCR Master 
Mix (Applied Biosystems; Thermo Fisher Scientific, Inc.), and 
5 µl of cDNA and RNase‑free water, in a total volume of 20 µl. 
The RT‑qPCR was performed with a denaturation step at 95˚C 
for 10 min, then for 40 cycles at 95˚C for 15 sec and 60˚C for 
1 min. All PCRs were performed in triplicate and normalized 
to internal control glyceraldehyde‑3‑phosphate dehydrogenase 
mRNA. The relative expression level was presented using 
the 2-ΔΔCq method. The primer sequences of target genes in 
the present study were as follows: RANTES, F 5'‑cgc tgt cat 
cct cat tgc ta‑3' and R 5'‑aca cac ttg gcg gtt ctt tc‑3'; and GAPDH 
F 5'‑GAG TCA ACG GAT TTG GTC GT‑3' and R 5'‑TTG ATT 
TTG GAG GGA TCT CG‑3'.

Enzyme‑linked immunosorbent assay (ELISA). RANTES 
levels were determined using an ELISA‑based kit (R&D 
Systems Europe Ltd., Abingdon, UK). ELISA was performed 
according to the manufacturer's protocols. Depletion of 
RANTES from various CMs was performed using a mouse 
monoclonal anti‑RANTES antibodies (2 µg/ml; Abcam, 
Cmabridge, UK) and  Sepharose™ Protein A/G beads 
(PAG50‑00‑0002, Rockland Immunochemicals Inc., Gilberts-
ville, PA, USA) following standard immunoprecipitation 
techniques (30). Cytokine depletion was additionally confirmed 
using an ELISA‑based kit.

Cell proliferation. The cells were plated in 96‑well culture 
plates. Following 24 h of incubation, the cells were treated with 
vehicle mdDC‑CM or specific CM for 72 h. At the conclusion 
of the assay period, cell proliferation was measured using a 
water‑soluble tetrazolium salts (WST)‑1 assay. Cell prolifera-
tion was determined using Premixed WST‑1 Cell Proliferation 
Reagent (Clontech Laboratories, Inc., Mountainview, CA, 
USA) in accordance with the manufacturer's protocols.

Cell migration and invasion assay. Cell migration and invasion 
assays were performed using QCM™ 24‑well Cell Migration 
and Invasion Assay kits (EMD Millipore). Briefly, the cells were 
seeded into the migration chamber and mdDC‑CM or various 
CM were added to the lower wells for 24 h as a chemoattractant. 
At the conclusion of the treatment, the cells were stained using 
CyQuant GR dye (cat no. 90131) in cell lysis buffer for 15 min 
at room temperature. The fluorescence of the migrated and 
invaded cells was subsequently measured using a fluorescence 
plate reader at excitation/emission wavelengths of 485/520 nm.

Statistical analysis. Data are expressed as the mean ± stan-
dard deviation. Statistical comparisons of the results were 
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performed using an analysis of variance. Significant differ-
ences between the means of the test groups were analyzed 
using Student's t‑test. P<0.05 was considered to indicate a 
statistically significant difference.

Results

Breast cancer cells, following exposure to phthalate esters, 
affect mdDCs and contribute to breast cancer progression by 
enhancing cancer cell proliferation, migration and invasion. In 
order to understand whether phthalate esters exacerbate cancer 
progression in the breast cancer tumor microenvironment, the 

effects of BBP‑MDA‑TADC‑CM, DBP‑MDA‑TADC‑CM and 
DEHP‑MDA‑TADC‑CM on breast cancer cell proliferation, 
migration and invasion were investigated. MDA‑TADC‑CM 
(20%) increased breast cancer cell proliferation (P=0.01), 
and this stimulatory effect was additionally enhanced when 
MDA‑MB‑231 cells were pretreated with BBP, DBP or DEHP 
(Fig. 2A) (P=0.001, 0.0001 and 0.0007 for BBP, DBP and DEHP, 

respectively). In addition, MDA‑TADC‑CM (20%) induced 
breast cancer cell migration and invasion (P=0.002 and 0.008 
for migration and invasion analysis), and this reinforceable 
effect was worsened when breast cancer cells were cultured 
with BBP‑MDA‑TADC‑CM (20%), DBP‑MDA‑TADC‑CM 
(20%) or DEHP‑MDA‑TADC‑CM (20%) (Fig. 2B and C).

RANTES has a signif icant role in TADC‑mediated 
cancer progression. In order to determine the primary 
factors contributing to MDA‑TADC, BBP‑MDA‑TADC, 
DBP‑MDA‑TADC and DEHP‑MDA‑TADC‑mediated 
breast cancer progression, RT‑qPCR analysis revealed 
that RANTES mRNA levels were increased by 6‑, 12‑, 
17‑ and 11‑fold in MDA‑TADCs, BBP‑MDA‑TADCs, 
DBP‑MDA‑TADCs and DEHP‑MDA‑TADCs, respectively 
(Fig. 3A). As demonstrated by ELISA, the protein levels of 
RANTES were enhanced in MDA‑TADC‑CM (P=0.01), 
BBP‑MDA‑TADC‑CM (P=0.005), DBP‑MDA‑TADC‑CM 
(P= 0.002) and DEHP‑MDA‑TADC‑CM (Fig.  3B) 

Figure 1. Flow chart of the production of various CM. (A) Flow chart of the production of control‑CM, MDA‑CM, BBP‑MDA‑CM, DBP‑MDA‑CM 
and DEHP‑MDA‑CM. (B) Flow chart of the production of mdDC‑CM, MDA‑TADC‑CM, BBP‑MDA‑TADC‑CM, DBP‑MDA‑TADC‑CM and 
DEHP‑MDA‑TADC‑CM. CM, conditioned media; MDA, MDA‑MB‑231 cells; BBP, butyl benzyl phthalate; DBP, di‑n‑butyl phthalate; DEHP, di‑2‑ethylhexyl 
phthalate; mdDC, monocyte‑derived dendritic cells; TADC, tumor‑associated mdDC; MEM, minimum essential medium; IL, interleukin; GM‑CSF, granulo-
cyte‑macrophage colony‑stimulating factor; IFN, interferon; LPS, lipopolysaccharide; CD, cluster of differentiation.

  A

  B
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(P=0.003). The effect of DBP‑MDA‑TADC‑CM on the 
induction of breast cancer cell proliferation, migration and 
invasion, and the induction of RANTES was greater than 
that of BBP‑MDA‑TADC‑CM or DEHP‑MDA‑TADC‑CM 
(Figs. 2 and 3). As DBP demonstrated the greatest effect in 
these circumstances, it was selected as the model for inves-
tigation of the detailed effects of phthalate ester‑associated 
cancer aggravation in the breast cancer tumor microen-
vironment. In order to understand its role, RANTES was 
depleted in MDA‑TADC‑CM and DBP‑MDA‑TADC‑CM. 
The effect of MDA‑TADC‑CM and DBP‑MDA‑TADC‑CM 
on cancer progression was subsequently assessed. The 
successful depletion of RANTES from MDA‑TADC‑CM 
and DBP‑MDA‑TADC‑CM was confirmed using RANTES 
ELISA kits (data not shown). As demonstrated in Fig. 4, 
RANTES depletion inhibited the stimulatory effects of 
MDA‑TADC‑CM on breast cancer cell proliferation, migra-
tion and invasion (P=0.00002 for cell proliferation, P<0.0001 
for migration and invasion), as well as blocking the intensi-
fied stimulatory effects of DBP‑MDA‑TADC‑CM on breast 
cancer cell proliferation, migration and invasion.

Didymin suppresses DBP‑MDA‑TADC‑mediated breast 
cancer aggravation. The tumor microenvironment has a 
significant role in the development of chemoresistance to 
anticancer drugs and tumor progression (7). TADC has 
been demonstrated to promote the progression of cancer by 
modulating a number of components in the cancer niche, 
thereby creating a supportive and permissive microenviron-
ment for tumor survival, proliferation and metastasis (11,31). 
As phthalate esters stimulate the ability of breast cancer cells 
to affect mdDCs and thereby intensified breast cancer cell 
proliferation, migration and invasion, the search for a possible 
antidote in the fight against phthalate esters‑induced cancer 
aggravation in the breast cancer tumor microenvironment has 
become a matter of importance. The present study therefore 
assessed the effect of didymin, a dietary flavonoid glycoside 
derived from citrus fruits, on DBP‑induced cancer progression. 

As shown in Fig. 5A, the MDA‑TADC‑CM‑induced breast 
cancer cell proliferation effect was inhibited when cells were 
pretreated with didymin, and DBP‑MDA‑TADC‑CM‑induced 
breast cancer cell proliferation was additionally reversed when 
the cells were pretreated with didymin. Similarly, enhance-
ment of breast cancer cell migration and invasion triggered by 
DBP‑MDA‑TADC‑CM was abrogated upon didymin pretreat-
ment (Fig. 5B and C).

Discussion

To the best of our knowledge, the present study is the first to 
evaluate the interaction between mdDCs and breast cancer cells 
following exposure to phthalate esters. BBP, DBP and DEHP 
stimulated the breast cancer cells and subsequently caused the 
mdDCs to secrete RANTES, which enhanced the proliferation, 
migration and invasion of the human breast cancer cells. To the 
best of our knowledge, the present study is additionally the first 
to investigate the effects of didymin in interfering with phthalate 
ester‑mediated breast cancer aggravation in the breast cancer 
tumor microenvironment. The results of the present study 
suggested that didymin was capable of preventing phthalate 
ester‑associated breast cancer progression (Fig. 6).

Phthalates, including BBP, DBP and DEHP, are widely 
utilized in food wraps and cosmetic products (1‑3). Individuals 
are exposed to phthalates throughout their entire lives via inges-
tion, inhalation and dermal exposure (1,2). Several phthalates 
have been demonstrated to promote breast cancer development 
by increasing cell proliferation and migration (32‑34). In a 
previous study, we demonstrated that phthalate esters were 
able to induce breast cancer bone metastasis by targeting 
parathyroid hormone‑related protein (35). The present study 
demonstrated that phthalate esters BBP, DBP and DEHP were 
able to induce breast cancer cells to affect mdDCs, thereby 
intensifying breast cancer cell proliferation, migration and 
invasion. The results of the present study suggested that 
phthalate esters may increase cancer progression in the breast 
cancer tumor microenvironment.

Figure 2. CM of phthalate ester‑treated MDA‑MB‑231 cells cause mdDCs to increase breast cancer cell proliferation, migration and invasion. BBP‑, DBP‑ and 
DEHP‑TADC‑CM increased breast cancer cell (A) proliferation, (B) migration and (C) invasion.  Each value is presented as the mean ± standard deviation of 
three independent experiments. *P<0.05 vs. mdDC‑CM treatment. #P<0.05 vs. MDA‑TADC‑CM treatment. CM, conditioned media; mdDCs, monocyte‑derived 
dendritic cells; BBP, butyl benzyl phthalate; DBP, di‑n‑butyl phthalate; DEHP, di‑2‑ethylhexyl phthalate; TADC, tumor‑associated mdDC; MEM, minimum 
essential medium; OD, optical density.

  A   B   C
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The tumor microenvironment has been observed to affect 
cancer progression and generation. The cells surrounding 
a tumor provide essential supportive factors that promote 

progression (36‑39). RANTES has been observed to be a 
significant contributor to various chronic inflammatory 
diseases and malignancies via the recruitment of inflammatory 

Figure 4. RANTES is a significant factor for MDA‑TADC‑CM and DBP‑MDA‑TADC‑CM in increasing breast cancer cell proliferation and migration. 
(A) The proliferation of MDA‑MB‑231 cells observed in RANTES‑depleted MDA‑TADC‑CM or DBP‑MDA‑TADC‑CM. (B) Migration and (C) invasion of 
MDA‑MB‑231 cells present in RANTES‑depleted MDA‑TADC‑CM or DBP‑MDA‑TADC‑CM. Each value is presented as the mean ± standard deviation of 
three independent experiments. *P<0.05 vs. MDA‑TADC‑CM treatment. #P<0.05 vs. DBP‑MDA‑TADC‑CM treatment. RANTES; regulated upon activation, 
normal T‑cell expressed, and secreted; MDA, MDA‑MB‑231 cells; mdDCs, monocyte‑derived dendritic cells; TADC, tumor‑associated mdDC; CM, condi-
tioned media; DBP, di‑n‑butyl phthalate; OD, optical density; ab, antibody.

  A   B

  C

  A   B

Figure 3. MDA‑CM, BBP‑MDA‑CM, DBP‑MDA‑CM and DEHP‑MDA‑CM increase the expression of RANTES in mdDCs. (A) MDA‑CM, BBP‑MDA‑CM, 
DBP‑MDA‑CM and DEHP‑MDA‑CM increased the levels of RANTES, as assessed by reverse transcription‑polymerase chain reaction. (B) MDA‑CM, 
BBP‑MDA‑CM, DBP‑MDA‑CM and DEHP‑MDA‑CM increased the RANTES protein levels, as detected by enzyme‑linked immunosorbent assay. Each 
value is presented as the mean ± standard deviation of three independent experiments. *P<0.05 vs. mdDC treatment. #P<0.05 vs. MDA‑TADC treatment. MDA, 
MDA‑MB‑231 cells; CM, conditioned media; BBP, butyl benzyl phthalate; DBP, di‑n‑butyl phthalate; DEHP, di‑2‑ethylhexyl phthalate; RANTES; regulated 
upon activation, normal T‑cell expressed, and secreted; mdDCs, monocyte‑derived dendritic cells.
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cells (15,40,41). RANTES has additionally been reported to be 
overexpressed in certain cancers and is involved in critical steps 
of cancer spread, including proliferation, migration, invasion, 

angiogenesis and metastatic colonization following activa-
tion (42‑45). Furthermore, RANTES has been associated with 
resistance to conventional chemotherapeutic drugs, including 

Figure 6. Didymin reverses phthalate ester‑associated breast cancer aggravation in the breast cancer tumor microenvironment. The present study demonstrated 
two novel findings: i) RANTES, produced by breast tumor‑associated monocyte‑derived dendritic cells following breast cancer cells' exposure to phthalate 
esters, contributed to cancer progression by enhancing cancer cell proliferation, migration and invasion; and ii) didymin, a dietary flavonoid glycoside present 
in citrus fruits, reversed phthalate ester‑mediated breast cancer aggravation.

  A   B

  C

Figure 5. Didymin suppresses DBP‑mediated cancer aggravation in the breast cancer tumor microenvironment. Didymin reversed (A) proliferation, (B) migra-
tion and (C) invasion of MDA‑MB‑231 breast cancer cells exposed in culture to MDA‑TADC‑CM or DBP‑MDA‑TADC‑CM. Each value is presented as the 
mean ± standard deviation of three independent experiments. *P<0.05 vs. MDA‑TADC‑CM treatment. #P<0.05 vs. DBP‑MDA‑TADC‑CM treatment. DBP, 
di‑n‑butyl phthalate; mdDCs, monocyte‑derived dendritic cells; TADC, tumor‑associated mdDC; CM, conditioned media; OD, optical density.
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cisplatin and tamoxifen (46). The present study revealed that 
the phthalate esters BBP, DBP and DEHP were able to cause 
breast cancer cells to affect mdDCs to produce the inflamma-
tory cytokine RANTES, which subsequently enhanced breast 
cancer cell proliferation, migration and invasion. Depletion 
of RANTES reversed the effects of MDA‑TADC‑CM‑ and 
DBP‑MDA‑TADC‑CM‑mediated breast cancer cell prolif-
eration, migration and invasion. Elimination of all phthalate 
exposure may not be possible, as phthalate esters are exten-
sively used in modern life (1,2). It is therefore important that 
strategies are developed for the prevention of breast cancer 
progression in the breast cancer tumor microenvironment. The 
results of the present study revealed that didymin, a dietary 
flavonoid glycoside obtained from citrus fruits, is able to 
reverse the negative actions of DBP‑stimulated breast cancer 
cells, which cause mdDCs to enhance the proliferation, migra-
tion and invasion of human breast cancer cells.

In conclusion, to the best of our knowledge, the present study 
is the first to investigate the interaction between mdDCs and 
breast cancer cells following exposure to phthalate esters. These 
esters, BBP, DBP and DEHP, were used to stimulate human breast 
cancer MDA‑MB‑231 cells to mediate RANTES upregulation 
in mdDCs, thereby inducing breast cancer cell proliferation, 
migration and invasion. To the best of our knowledge, this is the 
first study to provide evidence that didymin, a dietary flavonoid 
glycoside present in citrus fruits, has potential for the prevention 
of phthalate ester‑associated breast cancer progression in the 
breast cancer tumor microenvironment. Therefore, the present 
study suggested that didymin may be capable of preventing 
phthalate ester‑associated cancer aggravation.
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