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Abstract. Aberrant epigenetic changes are known to contribute 
to various phases of tumor development. The gene function 
loss caused by aberrant methylation is analogous to genetic 
mutations. Unlike genetic mutations, epigenetic alterations 
can be reversed. 5‑Aza‑2'‑deoxycytidine (5‑aza‑CdR) has been 
approved by the Food and Drug Administration for the treat-
ment of certain types of cancer, such as MDS and leukemia. 
The aim of the present study was to determine whether 
5‑aza‑CdR has the potential to be used in the treatment of colon 
cancer using a human Caco‑2 colonic carcinoma cell line. The 
effect of 5‑aza‑CdR on cell proliferation, cell cycle, apoptosis 
and reversal of aberrant methylation of the Ras association 
domain family 1A (RASSF1A) gene was also examined. The 
5‑aza‑CdR was prepared at different concentrations in sterile 
tri‑distilled water at 0.4, 1.6, 6.4, 25.6  and 102.4 µmol/l and 
employed to treat the human Caco‑2 colonic carcinoma cells. 
An MTT assay was used to detect the effect of 5‑aza‑CdR on 
cell proliferation. Flow cytometry was used to examine the cell 
cycle and apoptosis. The RASSF1A mRNA transcript level was 
examined by reverse transcription‑polymerase chain reaction. 
The results showed that 5‑aza‑CdR inhibited the prolifera-
tion of Caco‑2 cells in a time‑ and concentration‑dependent 
manner (p<0.01). The 5‑aza‑CdR treatment affected the cell 
cycle and caused accumulation of cells in the G0/G1 phase and 
this effect was concentration‑dependent (p<0.05). 5‑aza‑CdR 
treatment caused an increase in the number of cells undergoing 
apoptosis and reactivated the RASSF1A tumor suppressor 
gene that was silenced by hypermethylation in Caco‑2 cells. 
In conclusion, 5‑aza‑CdR inhibited growth and promoted 
apoptosis in Caco‑2 cells by upregulating the epigenetically 
silenced tumor suppressor RASSF1A gene.

Introduction

The biological consequence of gene function loss caused by 
DNA methylation is analogous to the consequences of gene 
mutation (1). Unlike gene mutation, DNA hypermethylation 
can be reversed pharmacologically using DNA demethyl-
ating agents. An association between DNA methylation of 
tumor suppressor genes and the development of colorectal 
cancer has been previously reported (2‑5). The re‑activation 
of tumor suppressor genes that are silenced by DNA hyper-
methylation is commonly termed epigenetic therapy, which 
is a feasible and achievable strategy for cancer treatment. 
Previous in vitro experiments identified that, 5‑aza‑2'‑deox-
ycytidine (5‑aza‑CdR) can reactivate epigenetically silenced 
tumor suppressor genes, thereby restoring their inherent 
anti‑cancer effect.

The Ras association domain family 1A (RASSF1A) gene is 
located in the short arm of chromosome 3, originally found as a 
novel candidate tumor suppressor in lung cancer (6,7). The aim 
of the present study was to examine the effect of 5‑aza‑CdR 
on proliferation, cell cycle and apoptosis in Caco‑2 cells 
in vitro. In addition, a semi‑quantitative analysis of RASSF1A 
transcripts was carried out to determine the reactivation of the 
tumor suppressive function and whether 5‑aza‑CdR can be 
extended to treat colon cancer.

Materials and methods

Cell lines and culture. Human Caco‑2 colon adenocarcinoma 
cells, purchased from Shanghai Jiahe Biotechnology Co., 
Ltd., Shanghai, China, were cultured in RPMI‑1640 medium 
supplemented with 100 ml/l calf serum (Wisent, Nanjing, 
China), 100 kU/l streptomycin (Wisent), and 100 kU/l peni-
cillin (Wisent) at 37˚C with 5% CO2. Subsequently, 5‑aza‑CdR 
(Sigma, St. Louis, MO, USA) was dissolved in tri‑distilled water 
and stored at 70˚C. The desired concentration of 5‑aza‑CdR 
was obtained by serial dilution of the stock solution.

Monoplast suspension was obtained by digesting the Caco‑2 
cells in the logarithmic phase using trypsin (2.5 g/l). This 
monoplast suspension was cultured and passaged to obtain the 
concentration of 2x106/l. The cell suspension was then treated 
with 5‑aza‑CdR at different concentrations of 0.4, 1.6, 6.4, 
25.6 and 102.4 µmol/l. At every 24 h, the medium was aspi-
rated and replaced with fresh RPMI-1640 medium containing 
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the same concentration of 5‑aza‑CdR and this process was 
repeated for 3 days. The RPMI-1640 medium containing the 
drug was then replaced by complete culture medium and incu-
bated for 4‑days. The same procedure as described above was 

performed with the exception of 5‑aza‑CdR in cultured cells, 
which served as the control. During the incubation process, 
morphological changes in the cells treated with 5‑aza‑CdR 
were observed using phase contrast microscope (Aipuda, 
Shanghai,China).

Growth curve using MTT assay. Caco‑2 cells were seeded in a 
96‑well plate at a density of 3x103 to a final volume of 200 µl. 
Cell culture medium containing a concentration of 5 g/l of 
5‑aza‑CdR was changed regularly. A negative control (without 
5‑aza‑CdR) and a blank control (without cells) were included in 
each plate. MTT (20 µl) was added to each well and incubated 
for 4 h at 37˚C. Following incubation, MTT was aspirated and 
the cells were rinsed twice with PBS. This step was followed 
by the addition of 150 µl of DMSO and incubation for 15 min. 
The optical density (OD) was determined at 570 nm in an 
ELISA reader (Perlong, Beijing, China). Cell proliferation was 
calculated according to the formula: Cell proliferation = (OD 
of treated ‑ OD of blank)/(OD of the negative control‑OD of 
the blank) x 100%.

Cell cycle and apoptosis. The 5‑aza‑CdR‑treated cells were 
collected and rinsed twice in PBS. The cells were adjusted to 

Figure 1. (A  and  B)  Caco‑2 cell morphology following treatment with 
6.4 µmol/l 5‑aza‑2'‑deoxycytidine for 3 days. A decrease in volume and 
density was identified.

Figure 2. Caco‑2 cell morphology without treatment.

Table I. Inhibition of cell proliferation by 5‑aza‑CdR in Caco‑2 
cells.

	 Duration of exposure
	 of cells to 5-aza-CdR
	 ---------------------------------------------------------------------------------------
Concentration of	 Day 1	 Day 2	 Day 3	 Day 4	 Day 5
5-aza-CdR, µmol/l	 (%)	 (%)	 (%)	 (%)	 (%)

0.4	 97	 94	 92	 90	 89
1.6	 90	 84	 75	 66	 50
6.4	 80	 74	 68	 56	 40
25.8	 71	 43	 30	 11	 6
102.4	 48	 40	 9	 7	 5

Concentration (F=44.079, p<0.01), duration of exposure (F=12.250, 
p<0.01). 5‑aza‑CdR, 5‑aza‑2'‑deoxycytidine.

Table II. Cell cycle and apoptosis in Caco‑2 cells treated with 
5‑aza‑CdR.

	 Cell cycle
	 -----------------------------------------------------------------------------------
Concentration of	 Sub-G1	 G1	 S	 G2
5-aza-CdR, µmol/l	 phase	 phase	 phase	 phase

0	 1.78	 56.21	 22.01	 15.27
0.4	 18.90	 57.21	 15.99	 8.94
1.6	 37.81	 45.31	 9.98	 7.54
6.4	 49.25	 38.46	 9.35	 5.09
25.6	 38.21	 44.67	 6.72	 3.75

t=3.98, p<0.05 vs. 0 µmol/l. 5‑aza‑CdR, 5‑aza‑2'‑deoxycytidine.

  A
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contain a cell density of 1x109/l in a flask. Subsequently, 5 ml 
of ice cold hexanol (700 ml/l) was added to immobilize the 
cells for 24 h. RNase A (Solarbio, Beijing, China) then was 
added (1 g/l). Propidium iodide (Leagene, Beijing, China) was 
added at a final concentration of 50 mg/l and incubated for 
30 min at 37˚C. The cell cycle and apoptosis were determined 
in a flow cytometer (Potenov, Bejing, China).

Reverse transcription‑polymerase chain reaction (RT‑PCR). 
TRIzol® reagent (Leagene, Beijing, China) was used to extract 
total RNA from the treated and untreated cells. The extracted 
total RNA was then reverse transcribed. Briefly, 2 µg of total 
RNA was added to the pre‑existing mixture of 1 µl 10X reac-
tion buffer (Leagene) with MgCl2 and 1 µl DNase  I. The 
non‑specific inhibitor diethylpyrocarbonate (DEPC)‑treated 
water was added to increase the volume to 10 µl, followed by 
incubation for 30 min at 37˚C. Subsequently, 1 µl Oligo dT18 
was added and mixed gently. A centrifugal separation step at 
1,000 x g was performed after 5 min incubation at 70˚C. The 
tube was kept on ice. For reverse transcription, 5 µl 5X Moloney 
Murine Leukemia Virus (M-MLV) buffer, 1.25 µl deoxyribo-
nucleotide (dNTP) mixture, 1 µl M‑MLV, 0.5 µl RNasin and 
DEPC‑treated water were added until a total volume of 25 µl 
was achieved. Incubation was performed again for 15 min at 
72˚C. RT‑PCR was performed in a total volume of 25 µl and 
the constituents used were: 2.5 µl 10X PCR buffer, 0.5 µl 
dNTP mixture, 0.625  µl MBI TaqDNA polymerase, 1  µl 
primer 1 (10 µmol/l), 1 µl primer 2 (10 µmol/l), 1.5 µl MgCl2, 
1 µl cDNA and sterile distilled water (final volume of 25 µl). 

RASSF1A‑specific primers were used to achieve PCR amplifi-
cation. GAPDH was selected as a reference owing to its stable 
expression (8). RASSF1A primers were selected from a previ-
ously published study (9). The primers used were: forward: 
5'‑ GGCGTCGTGCGCA A AGGCC‑3'  and reverse: 
5'‑GGGTGGCTTCTTGCTGGAGGG‑3'. The pr imer 
sequences for GAPDH were: forward 5'‑ACCACA 
GTCCATGCCATCAC‑3' and reverse 5'‑TCCACCACCCTG 
TTGCTGTA‑3'. The PCR amplification step consisted of 
initial denaturation at 95˚C for 5 min, 35 cycles of denaturation 
at 94˚C for 30 sec, annealing at 56˚C for 30 sec, extension at 
72˚C for 60 sec and a final extension at 72˚C for 5 min. Thus 
the PCR amplicons were visualized on 2%  agarose gel 
(Novelab, Shanghai, China).

Statistical analysis. Experimental data were processed using 
SPSS  software (IBM, Armonk, NY, USA) and F‑test and 
T‑tests were performed.

Results

Morphology and cell proliferation. Morphological changes in 
Caco‑2 cells prior to and following 5‑aza‑CdR treatment were 
observed under an inverted microscope (Dygx, Shanghai, 
China). The treated cells decreased in volume and density, and 
died (Fig. 1A and B). No such abnormalities were observed 
in the untreated cells (Fig. 2). The MTT assay showed that 
5‑aza‑CdR inhibited Caco‑2 cell proliferation. The number 
of cells in which proliferation was inhibited by 5‑aza‑CdR 

Figure 3. Cell growth curve at different concentrations of 5‑aza‑2'‑deoxycytidine.

Figure 4. Ras association domain family 1A expression in 5‑aza‑2'‑deoxycytidine (5‑aza‑CdR)‑treated cells. Lane M, DNA molecular weight marker; lane 1, 
GAPDH; lane 2, 0.4 µmol/l (5‑aza‑CdR); lane 3, 1.6 µmol/l; lane 4, 6.4 µmol/l; and lane 5, 25.6 µmol/l.
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was elevated with an increasing concentration of 5‑aza‑CdR 
(F=44.079, p<0.01) and exposure time (F=12.250, p<0.01, 
Table I, Fig. 3) was observed.

Cell cycle and apoptosis. 5‑aza‑CdR treatment induced 
cell cycle arrest and caused accumulation of cells in the 
G0/G1 phase. Accumulation of the G0/G1 phase cells was 
enhanced with an increasing dose of 5‑aza‑CdR (Table II). 
Flow cytometry showed that the percentage of apoptotic 
cells in the absence of 5‑aza‑CdR was 1.78% while the same 
increased to 49.25% when they were treated with 6.4 µmol/l 
of 5‑aza‑CdR, and this difference was statistically significant 
(t=3.98, p<0.05 vs.  0  µmol/l; Table  II). When 5‑aza‑CdR 
concentration reached 102.4 µmol/l, cell necrosis instead of 
cell apoptosis occurred.

RT‑PCR analysis of the RASSF1A gene. Caco‑2 cells origi-
nally lacking RASSF1A gene expression were treated with 
5‑aza‑CdR. Re‑expressed RASSF1A mRNA was dependent on 
the concentration of 5‑aza‑CdR as observed in the 2% agarose 
gel after RT‑PCR analysis (Fig. 4).

Discussion

5‑aza‑CdR has been identified to be effective in treating 
recurrent, intractable, acute and chronic myelogenous 
leukaemia (10,11). However, its effectiveness against solid 
tumors remains unclear. Hypomethylation and hypermethyl-
ation have been observed in various types of cancer (12,13). 
Hypomethylation can contribute to genomic instability, 
activation of oncogenes, or loss of imprinting. Gene‑specific 
promoter hypermethylation in tumor suppressor genes cause 
silencing of tumor suppressors, which can contribute to many 
of the hallmarks of cancer such as evading apoptosis, insensi-
tivity to antigrowth signals, sustained angiogenesis, limitless 
replicative potential and tissue invasion and metastasis. 
Previous findings have shown that aberrant gene methylation 
in cancer renders them resistant to chemotherapeutics via 
inhibition of apoptosis. Since methylation involves changes 
in gene regulation but not the DNA sequence, the change 
is reversible. The silenced tumor suppressor genes can be 
re‑expressed when hypermethylation in their promoter 
region is removed that may ultimately repress tumor growth 
(14‑19).

In the current study, a concentration‑ and time‑dependent 
inhibition of proliferation of Caco‑2 cells was identi-
fied following treatment with different concentrations 
of 5‑aza‑CdR. The percentage of Caco‑2 cells in the 
G0/G1 phase was enhanced with an increasing the dose of 
5‑aza‑CdR, thereby increasing the cells that undergo apop-
tosis. The morphological changes including decreased cell 
volume and density and cell death were observed at low doses 
of 5‑aza‑CdR, whereas cell disruption and necrosis were 
observed at higher doses of 5‑aza‑CdR. The changes were 
similar to the cytotoxic effects attributed to chemotherapeutic 
drugs where apoptosis occurs at lower doses and necrosis 
at higher doses. Additionally, the RASSF1A gene, which is 
silenced by hypermethylation in Caco‑2 cells, was reacti-
vated by the 5‑aza‑CdR treatment. The mRNA expression 
of RASSF1A gene was identified even after five successive 

generations. The reason for this might be the demethylating 
effect of 5‑aza‑CdR. The re‑expression therefore contrib-
uted to the tumor suppressive function in Caco‑2 cells. It 
is also possible that the cytotoxicity of 5‑aza‑CdR leads to 
an anticancer effect. However, 5‑aza‑CdR does not lead to 
an anticancer effect by exerting cytotoxity on cancer cells. 
Studies (20-22) have been carried out in which Ara‑C, an 
equally cytotoxic drug as 5‑aza‑CdR, was used to determine 
whether the anticancer effect attributed by 5‑aza‑CdR was 
due to cytotoxicity in bladder cancer cells. Ara‑C did not 
possess a demethylating capability. The two drugs inhibited 
cell proliferation although the inhibitory effect of Ara‑C 
was not transmitted, demonstrating that inhibitory effect of 
5‑Aza‑CdR is not derived from cytotoxicity.

It has been reported that Ras‑GTPase is a member of the 
superfamily of molecular switches regulating proliferation 
and apoptosis (23-27). It performs different functions depen-
dent on the signal molecule. Ras‑GTPase interacts with a 
series of different downstream effector molecules to promote 
cell growth and differentiation, inducing cell dormancy, 
terminal differentiation and apoptosis in order to suppress 
cell growth.

RASSF1A gene methylation was found to be present 
in various types of cancer. Previous studies  (28,29) using 
methylation‑specific PCR examined colorectal cancer and 
identified that RASSF1A CpG‑island in the neoplastic foci 
region methylated more frequently than the periphery of 
the neoplastic foci. Kuroki et  al  (30,31) and other inves-
tigators  (32‑34) using methylation‑specific PCR analyzed 
esophageal carcinoma, gastric carcinoma and bladder cancer 
and observed that, RASSF1A was hypermethylated and the 
degree of methylation correlated closely with the clinical 
stages of patients. RASSF1A gene expression was silenced by 
hypermethylation of the CPG island in the promoter region 
of a wide range of tumors. Müller et al  (35) analyzed the 
aberrant DNA methylation of RASSF1A in breast cancer and 
found that patients with aberrant RASSF1A methylation had a 
poorer prognosis.

In conclusion, the current findings suggest that RASSF1A 
can result in an antitumor effect when Caco‑2 cells are 
treated with 5‑aza‑CdR. The demethylating agent 5‑aza‑CdR 
embraces good prospects in antitumor therapy, given the 
universality of regional hypermethylation in tumor cells.
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