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Abstract. Multiple computational tools have been widely 
applied to the detection of coding driver mutations in cancer; 
however, the prioritization of pathogenic non-coding variants 
remains a difficult and demanding task. The present study 
was performed to distinguish non-coding disease-causing 
mutations from neutral ones, and to prioritize potential 
cancer-associated long non-coding RNAs (lncRNAs) with a 
logistic regression model in lung cancer. A logistic regression 
model was constructed, combining 19,153 disease-associated 
ClinVar and Human Gene Mutation Database pathogenic vari-
ants as the response variable and non-coding features as the 
predictor variable. Validation of the model was conducted with 
genome-wide association study (GWAS) disease- or trait-asso-
ciated single nucleotide polymorphisms (SNPs) and recurrent 
somatic mutations. High scoring regions were characterized 
with respect to their distribution in various features and gene 
classes; potential cancer-associated lncRNA candidates were 
prioritized, combining the fraction of high-scoring regions 
and average score predicted by the logistic regression model. 
H3K79me2 was the most negative factor that contributed to 
the model, while conserved regions were most positively infor-
mative to the model. The area under the receiver operating 
characteristic curve of the model was 0.89. The model assigned 
a significantly higher score to GWAS SNPs and recurrent 
somatic mutations compared with neutral SNPs (mean, 5.9012 
vs. 5.5238; P<0.001, Mann-Whitney U test) and non-recurrent 
mutations (mean, 5.4677 vs. 5.2277, P<0.001, Mann-Whitney 
U test), respectively. It was observed that regions, including 
splicing sites and untranslated regions, and gene classes, 
including cancer genes and cancer-associated lncRNAs, had 
an increased enrichment of high‑scoring regions. In total, 
2,679 cancer-associated lncRNAs were determined and 

characterized. A total of 104 of these lncRNAs were differen-
tially expressed between lung cancer and normal specimens. 
The logistic regression model is a useful and efficient scoring 
system to prioritize non-coding pathogenic variants and 
lncRNAs, and may provide the basis for detecting non-coding 
driver lncRNAs in lung cancer.

Introduction

Cancer is caused by the accumulation of genomic alterations 
and consequent disruption of biological processes (1). The rapid 
progression and wide application of sequencing technologies has 
enabled the identification of hundreds of thousands of somatic 
variants in cancer (2). A significant issue in cancer genomics 
is the distinction of driver mutations, critical to oncogenesis, 
from passenger ones, which have little role in cancer initiation 
and progression (3). The development of reliable and efficient 
approaches to functionally annotate variants has been a consis-
tent research focus in cancer-associated studies, and multiple 
computational tools have been investigated and widely utilized 
for the prediction of pathogenic mutations in the coding portion 
of the human genome, including the ‘sorting tolerant from 
intolerant’ algorithm (4) and the ‘polymorphism phenotyping’ 
tool (5). As an increasing number of non‑coding pathogenic 
variants have been detected and annotated, there exists a great 
demand for the development of computational tools to prioritize 
non‑coding drivers in the cancer genome (6,7). However, there 
have been few studies conducted in this field.

The recent completion of high-throughput projects, 
including the Encyclopedia of DNA Elements (ENCODE) (8), 
29 Mammals Project (9) and Health Roadmap Epigenomics 
Project (10), has made non‑coding variants interpretable. In 
particular, the ENCODE project has provided researchers 
with a genome‑wide map of histone modification, DNase I 
hypersensitive sites, formaldehyde-assisted isolation of regula-
tory elements, transcription factor binding sites, RNA-seq 
and replication timing data across a number of cell lines (8). 
An increasing number of studies have taken advantage of 
these annotations of human functional elements to investigate 
non-coding disease-implicated variants or drivers in cancer, 
including RegulomeDB (11), HaploReg (12) and Funseq (13); 
the scoring systems that these approaches rely on are primarily 
empirical scoring algorithms, which are not scientifically 
rigorous and stringent (14).
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Previous studies have taken advantage of machine‑learning 
algorithms to better predict and score the functionality of 
non‑coding variants (15‑17). Kircher et al (18) contrasted the 
annotations of fixed or nearly fixed derived alleles in humans 
with those of simulated variants, and developed Combined 
Annotation‑Dependent Depletion (CADD). CADD evaluates 
deleteriousness, which can be measured systematically across 
the genome assembly. Implementation of CADD as a support 
vector machine has successfully differentiated 14.7 million 
high‑frequency human‑derived alleles from 14.7 million simu-
lated variants (18). Fu et al (19) developed a computational 
framework, FunSeq2, which processed large‑scale genomics 
(including 1000 Genomes and ENCODE data) and cancer 
resources, and combined a high-throughput variant prioritiza-
tion pipeline to annotate and prioritize somatic alterations, 
particularly regulatory non-coding mutations.

LncRNAs are a class of mRNA‑like transcripts ranging 
from 200 bp to 100 kbp. They were regarded as transcription 
noise in the human genome, due to their lack of capability of 
protein translation. Over the previous decade, an increasing 
amount of evidence has indicated that lncRNAs have a 
variety of roles in numerous physiological processes (19‑25). 
Despite a lack of capability of encoding proteins, lncRNAs 
may function through regulating gene expression at various 
levels, including chromatin architecture, transcription, RNA 
splicing, and protein translation and turnover (26,27). As a 
consequence, deregulation of lncRNAs may have a significant 
role in carcinogenesis (28‑31).

In the present study, data concerning conservation 
information, regulatory features, expression and replication 
timing was collected, primarily from the ENCODE project, 
to create lung cancer-specific annotation and construct a 
logistic regression model based on ClinVar and HGMD 
pathogenic variants with the aim of functionally scoring 
non‑coding variants in the lung cancer genome. This scoring 
system was applied to prioritize potential cancer-associated 
lncRNA candidates.

Materials and methods

Cancer mutation and pathogenic variant data. A total of 
1,623,250 somatic mutations detected by whole genome 
sequencing of 24 pairs of lung cancer and normal speci-
mens were obtained from the supplementary data files of 
a previous study (32). Recurrent mutation represents two 
or more mutations that have the same mutation site across 
multiple samples (n=14,515 mutations). Non‑recurrent muta-
tion denotes mutations that only occur once in all patients. 
Germline polymorphism data comprising 38,248,779 single 
nucleotide polymorphisms (SNPs) was downloaded from the 
1000 Genome project pilot 1 (www.1000genomes.org) (33). 
SNPs with derived allele frequencies >0.01 were considered 
to be neutral SNPs; rare SNPs denote those whose allele 
frequencies were <0.01. Disease‑associated variants data 
from ClinVar (www.ncbi.nlm.nih.gov/clinvar) and the Human 
Gene Mutation Database (HGMD; www.hgmd.cf.ac.uk) 
are known (published) gene variants responsible for human 
inherited diseases (34,35). Trait or disease-associated SNPs 
were obtained from genome-wide association studies (GWAS; 
www.gwascentral.org) (36).

Genome‑wide data resources. Human genome annotations 
were obtained from Gencode (www.gencodegenes.org/) (37), 
including protein coding genes, exons, introns, untranslated 
regions (UTRs) and non-coding exons (37). lncRNA annota-
tion was primarily acquired from three different sources, 
Gencode (37), Human Body Map large intergenic non-coding 
RNAs and transcripts of uncertain coding potential gener-
ated from 4 billion RNA‑seq reads across 24 tissues and 
cell types (38) and Refseq annotation (www.ncbi.nlm.nih.
gov/refseq/) (39). In total, there were 39,952 lncRNA anno-
tations collected from these three different databases. The 
5' splicing sites were 10 nucleotides from the 5' end of introns 
of genes (40). The 3' splicing sites were 50 nucleotides from 
the 3' end of introns of genes (41). Evolutionarily conserved 
bases were identified using a recently published analysis of 
46 mammalian genomes (42). A genome‑wide phastCons 
score was obtained from Siepel et al's study (16) (hgdownload.
cse.ucsc.edu/goldenPath/phastConsPaper/vertebrate-scores/). 
Sensitive regions from Khurana et al (13) consisted of binding 
sites or motifs of important transcription factors and contained 
an increased fraction of rare SNPs. Evolutionarily conserved 
structures were RNA secondary structures predicted using 
comparative structure prediction algorithms based on multiple 
genomes (42). Promoters, defined as regions 2.5 kb from tran-
scription start sites (TSS), were generated from the Gerstein 
lab (http://funseq.gersteinlab.org/data) (13). RNA‑seq data in 
bam format, transcription factor binding sites (TFBS), DNase I 
hypersensitive sites and histone modification data (H3K4me1, 
H3K9ac and others) of the A549 cell line were acquired from 
ENCODE (8). Conserved TFBS were transcription factor 
binding sites conserved in the human/mouse/rat alignment 
and obtained from University of California, Santa Cruz 
directly (41). The expression level was calculated by counting 
the number of reads per kilobase per million reads (RPKM) 
for each protein coding gene and lncRNA. Genes whose 
RPKM was >20 or <0.25 were defined as high and low 
expressed regions, respectively. A wavelet‑smoothed, weighted 
average signal was used, and the high and low signal values 
corresponded with early and late replication during the S 
phase, respectively (genome.ucsc.edu/ENCODE, ‘Repli-seq 
track’) (8). Genome‑wide replication timing was mapped to 
protein coding genes and lncRNAs. An early‑to‑late ratio was 
calculated as (G1b+S1)/(S4+G2) for each protein coding gene 
and lncRNA (43). When the ratio (G1b+S1)/(S4+G2) was >1, 
genes were considered to be early replicated, while late repli-
cated genes had an early‑to‑late ratio <1.

Cancer lncRNAs containing 25 lncRNAs are a collection 
of mammalian long non-coding transcripts that have been 
experimentally demonstrated to be associated with a variety of 
cancer types. A list of cancer census genes was obtained from 
the current release of the catalogue of somatic mutations in 
cancer version 71 (COSMIC; cancer.sanger.ac.uk/cosmic) (44).

Logistic regression model training and validation. The 
disease-implicated set of variants was composed of 
19,153 non-coding pathogenic variants from the ClinVar and 
HGMD databases. For the control sets, the present study 
used neutral variants whose minor allele frequency was ≥1% 
to reduce the possibility of including functional rare SNPs. 
A total of 15,789,242 potential control SNPs were included 
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in the model. In the logistic regression model, a matrix of 
425,565 rows was formed throughout the non‑coding genome, 
and each row represented one unique combination of features. 
Disease-causing variants from HGMD and ClinVar databases 
and neutral SNPs were used as the binary response variables, 
and the 25 genomic features served as the predictor variables 
to predict the likelihood of a variant being disease‑associated. 
The logistic regression model was constructed with the 
general linear model. The receiver operating characteristic 
(ROC) curve was generated with a R script (version 2.15.3; 
www.r‑project.org). Scores were predicted with the model for 
GWAS, neutral SNPs, and non-recurrent and recurrent somatic 
mutations of lung cancer and subsequently scaled using the 
following formula: scaled score=log(predicted score x 106).

Prioritization of cancer‑associated lncRNA candidates. 
Cancer-associated lncRNA candidates were determined with 
the following criteria. Firstly, the logistic regression model was 
used to score each nucleotide of the lncRNAs and the average 
score was calculated for each lncRNA. Secondly, 100 Mb 
non‑coding regions whose scores were >8.4149 were defined 
as high scoring regions, and the fraction of high scoring 
regions for each lncRNA was calculated. Subsequently, the 
final subset of lncRNA candidates was determined by iden-
tifying the overlap between the top 10% of lncRNAs with the 
highest average score and the top 10% of lncRNAs with the 
highest fraction of high scoring regions.

RNA‑seq data processing and expression analyses of lncRNAs. 
A total of 161 RNA-seq data samples, including 76 normal 
lung samples and 85 cancerous samples, were obtained from 
the Ju et al (45) study at the European Bioinformatics Institute. 
Reads were mapped to the hg19 genome using the Star aligner 
(https://github.com/alexdobin/STAR/releases) (46). Read 
counts were calculated with bedtools version 2.22.1 (bedtools.
readthedocs.org/en/latest/#) for each lncRNA (47). The expres-
sion level in FPKM was calculated with Cufflinks version 2.2.1 
(cole‑trapnell‑lab.github.io/cufflinks/) (48) and log scaled for 
each lncRNA. DESeq2 Release version 3.0 (bioconductor.
org/packages/release/bioc/html/DESeq2.html) (49) was used 
to identify differentially expressed transcripts between tumor 
and normal pairs, with a cutoff of false discovery rate (FDR) 
≤10‑4 and absolute fold change ≥2.

Statistical analyses. Data are presented as the mean ± stan-
dard deviation. Differences between different groups were 
drawn with the two-sided Mann-Whitney U test or Fisher's 
exact test in R (version 2.15.3; www.r‑project.org). P<0.05 was 
considered to indicate a statistically significant difference.

Results

Distinction of disease‑associated non‑coding variants from 
neutral ones with the logistic regression model. Estimates of 
the densities of ClinVar and HGMD disease-causing variants 
revealed that the densities of disease-associated variants varied 
greatly across various non‑coding features (Fig. 1A). Certain 
features, including conserved regions, conserved TFBS, UTRs, 
promoters and highly-expressed regions, demonstrated the 
highest enrichment of pathogenic variants; however, features 

including H3K9me3, late replicated regions, H3K27me3, evolu-
tionarily conserved structures and H2az had low densities of 
disease-causing variants, suggesting that different non-coding 
features have importance to the functionality of non-coding 
variants. It was observed that conserved regions, early repli-
cated regions, promoters, H3K36me3 and conserved TFBSs 
most positively contributed to the model, while H3K79me2, 
H3K4me2, H3K9me3, H3K9ac and low‑expressed regions were 
the most negatively informative for the model (Fig. 1B). It was 
demonstrated that the area under the ROC curve was 0.89 for 
the logistic regression model (Fig. 1C), which indicated that the 
model was able to discriminate between disease-implicated and 
control variants with a high specificity and sensitivity.

To investigate whether the present model could be applied 
to prioritize candidate functional variants, the disease or 
trait-associated variants from GWAS were selected for an inde-
pendent validation. It was observed that non‑coding GWAS 
SNPs had a significantly higher average score compared with 
1 million random, neutral SNP control variants (mean, 5.9012 
vs. 5.5238; P<0.001, two‑sided Mann‑Whitney U test; Fig. 1D). 
Recurrence is considered to be a potential sign of positive 
selection among tumors and is more likely to be associated 
with driver events (50). Subsequently, the present study evalu-
ated recurrent mutations that occurred at the exact same site 
across >2 samples, as well as non-recurrent mutations, identi-
fied by whole‑genome sequencing of 24 lung cancer samples. It 
was identified that the same‑site recurrent mutations (n=14,515 
mutations) had significantly higher scores compared with the 
non‑recurrent mutations (mean, 5.4677 vs. 5.2277; P<0.001, 
Mann‑Whitney U test; Fig. 1D), which suggested that this 
approach may be useful for the identification of non‑coding 
driver mutations in lung cancer.

Definition and characterization of high‑scoring regions in 
the non‑coding genome. The present study defined 100 Mb 
non‑coding regions, which were scored >8.4149 as high‑scoring 
regions, and analyzed fractions of high-scoring regions in a 
variety of feature types. The 5' and 3' splice sites and UTRs 
were among the features that contained the highest fraction of 
high-scoring regions; by contrast, intergenic regions, lncRNA 
introns and lncRNA demonstrated the lowest fraction of 
high-scoring regions (Fig. 2A). The present model assigned a 
higher average score to splicing sites compared with adjacent 
intronic regions in protein coding genes (mean, 9.4374 vs. 8.3959; 
P<0.001, Mann-Whitney U test; Fig. 2B) and lncRNAs (mean, 
8.1802 vs. 7.8146; P<0.001, Mann-Whitney U test; Fig. 2B). 
Subsequently, the present study sought gene classes with various 
fractions of high‑scoring regions and identified that known 
cancer genes from COSMIC had a significantly increased frac-
tion of high-scoring regions compared with non-cancerous ones 
(mean, 0.0817 vs. 0.0596; P<0.001, Fisher's exact test; Fig. 2C). 
Cancer-associated lncRNAs that were collected from recent 
publications demonstrated a significantly increased fraction 
of high-scoring regions compared with non-cancerous ones 
(mean, 0.1112 vs. 0.0590; P<0.001, Fisher's exact test; Fig. 2C), 
for example, HOX transcript antisense RNA (HOTAIR), metas-
tasis associated lung adenocarcinoma transcript 1 (MALAT1), 
growth arrest‑specific 5 (GAS5) and lung cancer associated 
transcript 1 are among the top 10% of lncRNAs with respect to 
high‑scoring coverage (Fig. 2D).
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Prioritization of lung cancer‑associated lncRNAs with the 
scoring system. Regarding prioritization of lung cancer-impli-
cated lncRNAs, the fraction of high-scoring regions and 
average score were calculated for each lncRNA. Subsequently, 

overlapping lncRNAs were determined between the top 10% of 
lncRNAs with the highest fraction of high scoring regions and 
the top 10% of lncRNAs with the highest average score. A total 
of 2,679 lncRNAs were filtered out as functional candidates, 

Figure 1. Fitting and validation of the logistic regression model. (A) Densities of ClinVar and Human Gene Mutation Database pathogenic variants for all 
25 non‑coding features (red line, average density in the human genome). (B) Regression estimates for all features used in the logistic regression model. 
(C) Receiver operating characteristic curve for the model. (D) Scaled scores for GWAS, neutral SNPs (1 million random neutral SNPs), non‑recurrent and 
recurrent mutations of lung cancer. CR, conserved region; TFBS, transcription factor binding site; cTFBS, conserved TFBS; UTR, untranslated region; 
HE, highly expressed region; SNP, single nucleotide polymorphism; Sensitive, known binding sites or motifs of transcription factors with high ratio of rare 
SNPs (allele frequency <0.01); ncExon, non coding Exon; H3K4me1, H3K9ac, etc., histone modification data; ER, early replicated region; Dnase, Dnase I 
hypersensitive site; LE, low expressed region; ECS, evolutionarily conserved structure; LR, late replicated region; TPR, true positive rate; FPR, false positive 
rate; GWAS, genome‑wide association study.
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including some experimentally characterized cancer-associated 
lncRNAs, including MALAT1, HOTAIR and GAS5. In the 
present study it was demonstrated that this subset of lncRNA 
candidates had a significantly increased fraction of conserved 
regions (mean, 0.1741 vs. 0.0528; P<0.001, Mann-Whitney U 
test; Fig. 3A) and average phastCons score (mean, 0.2770 vs. 
0.2602; P<0.001, Mann-Whitney U test; Fig. 3B) compared with 
control lncRNAs, indicating that they were more conserved 
relative to control lncRNAs. It was additionally observed that 
this subset of lncRNAs had an increased enrichment of disease 
or trait‑associated GWAS SNPs (mean, 6.2106 vs. 4.0618 
SNPs/Mb; P<0.001, Fisher's exact test; Fig. 3C) and a lower 

somatic mutation density compared with the control lncRNAs 
(mean, 329.8380 vs. 573.2742 mutations/Mb; P<0.001, Fisher's 
exact test; Fig. 3D). RNA‑seq data of 76 normal lung samples 
and 85 cancer samples were obtained from Ju et al's (45) study, 
which is publicly available from the European Bioinformatics 
Institute. Read alignment was conducted with a Star aligner 
and coverage was calculated for each lncRNA with bedtools 
software. DESeq2 was used to investigate the differential 
expression of lncRNAs between lung cancer and normal 
samples. It was observed that the lncRNA candidates showed 
significantly increased expression compared with control 
lncRNAs in cancerous and normal samples (log scaled FPKM, 

Figure 2. Characterization of high‑scoring regions in lung cancer. (A) Fraction of high‑scoring regions in various non‑coding features. (B) Average score in 
protein‑coding gene and lncRNA introns near 5' splice site (left panel) and 3' splice site (right panel). (C) Fraction of high‑scoring regions in various gene 
classes. (D) Density plot of fraction of high‑scoring regions in lncRNAs. lncRNA, long non‑coding RNA; PC, protein‑coding; 5'SS, 5' splice site, 10 nucleo-
tides from the 5' end of introns of genes; 3'SS, 3' splice site, 50 nucleotides from the 3' end of introns of genes; UTR, untranslated region; LUCAT1, lung 
cancer associated transcript 1; MALAT1, metastasis associated lung adenocarcinoma transcript 1; GAS5, growth arrest‑specific 5; HOTAIR, HOX transcript 
antisense RNA.
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1.8924 vs. 1.1386; P<2.2e‑16, Mann‑Whitney U test; Fig. 3E). 
Differentially expressed lncRNAs were determined based on 
the criteria that lncRNAs have cutoff FDR <10‑4 and absolute 
fold change >2. The number of differentially expressed lncRNAs 
was 2,208, and 104 of them were among the list of potentially 
cancer‑associated lncRNAs (Fig. 4).

Discussion

In the present study, a logistic regression model was presented 
and used to predict ‘high-impact’ somatic alterations, 
combining pathogenic variants from ClinVar and HGMD 
databases and lung‑cancer specific features. There are two 
main advantages of the present scoring model: Firstly, the 
logistic regression model took into account all non‑coding 

pathogenic variants from HGMD and ClinVar databases, 
which are two well‑known databases of disease‑associated 
variants worldwide, allowing for a complete assessment of 
the damaging impact of any non-coding variant in the human 
genome. Furthermore, a large number of features used in the 
annotation are lung‑cancer specific, including histone modifi-
cations, TFBSs, replication timing and expression data, which 
facilitates the scoring of variants in a lung cancer‑specific 
manner.

Non-coding features that most positively contributed to 
the model include conserved regions, early replicated regions, 
promoter, H3K36me3, H3K4me3, conserved TFBS, TFBS 
and sensitive regions. Among these features, H3K36me3 is 
associated with actively transcribed genes, and H3K4me3 is 
a hallmark of actively transcribed protein‑coding promoters 

Figure 3. Characterization of functional lncRNA candidates in lung cancer. (A) Fraction of conserved regions in functional lncRNA candidates (candidate), 
control lncRNAs (control) and IR. (B) Average phastCons scores for functional lncRNA candidates (candidate), control lncRNAs (control) and IR. (C) Average 
densities of GWAS disease or trait‑related SNPs for functional lncRNA candidates (candidate), control lncRNAs (control) and IR. (D) Average densities of 
somatic mutations for functional lncRNA candidates (candidate), control lncRNAs (control) and IR. (E) Relative expression (log scaled FPKM) for functional 
lncRNA candidates (candidate), control lncRNAs (control) and IR. lncRNA, long non‑coding RNA; IR, intergenic regions; GWAS, genome‑wide association 
studies; SNP, single nucleotide polymorphism; FPKM, fragments per kilobase.
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Figure 4. Expression changes for differentially expressed lncRNA candidates between lung cancer and normal samples. lncRNA, long non‑coding RNA.



LI and LV:  PRIORITIZATION OF NON‑CODING FUNCTIONAL VARIANTS AND lncRNAs IN LUNG CANCER 229

in eukaryotes (51). These findings support the fact that 
conserved and regulatory elements are critical to the formation 
and functionality of pathogenic variants in the non-coding 
genome (52). The area under the ROC curve was 0.89, which 
outperformed two well‑known tools CADD and funSeq2 (14), 
however, more stringent comparison must be conducted to obtain 
a final conclusion. Furthermore, the present model successfully 
distinguished GWAS variants and recurrent cancer mutations 
from benign SNPs and non-recurrent mutations, demonstrating 
the reliability and efficient performance of the model.

Given that splicing sites and UTRs are more evolution-
arily conserved across mammals (53), it was observed that 
these regions have a higher fraction of high-scoring regions 
and splicing sites have a higher score compared with intronic 
regions. With respect to the distribution of high‑scoring 
regions in various gene classes, it was observed that known 
cancer genes and cancer-associated lncRNAs demonstrated 
increased enrichment of high-scoring regions compared 
with non‑cancerous genes. Based on these findings, the 
present study combined the fraction of high-scoring regions 
and average score of each lncRNA to filter out a subset of 
functional lncRNA candidates, which contained a number of 
well‑characterized cancer lncRNAs, for example, HOTAIR, 
the expression of which is elevated in lung cancer and corre-
lated with metastasis and poor prognosis (54). MALAT1 has 
been implicated in tumorigenesis and progression in a variety 
of cancer types (55‑57). A total of 104 functional lncRNA 
candidates were are differentially expressed in lung cancer 
and normal samples. This group of lncRNAs are important 
candidates for cancer researchers to conduct additional experi-
mental validation and characterization in future studies.

In conclusion, the present scoring system provides an 
opportunity to identify cancer-driving mutations in the vast 
non-coding human genome, as well as prioritizes a number of 
lncRNA candidates for cancer research. This scoring system 
may assist with the identification of driver non‑coding genes 
for improved clinical decision‑making in the future.
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