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Abstract.  The developmental process of epithe-
lial‑mesenchymal transition (EMT) occurs when epithelial 
cells acquire invasive mesenchymal cell characteristics, and 
the activation of this process has been indicated to be involved 
in tumor progression. EMT could be induced by growth 
factors, cytokines and matrix metalloproteinases (MMPs). 
sphingosine-1-phosphate (S1P) is a biologically‑active lipid 
that plays an important role in cancer metastasis. S1P also 
contributes to the activation of EMT. However, the mecha-
nism underlying S1P‑induced EMT is unclear. Increased 
evidence has demonstrated that the cell surface glycocalyx 
is closed associated with S1P and plays an important role in 
tumor progression, suggesting that S1P-induced EMT could 
be Snail-MMP signaling-dependent. Thus, we hypothesize 
that an S1P‑glycocalyx‑Snail‑MMP signaling axis mediates 
S1P‑induced EMT. This is an essential step towards improved 
understanding of the underlying mechanism involved in 
S1P‑regulted EMT, and the development of novel diagnostic 
and anticancer therapeutic strategies.
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1. Introduction

The developmental process of epithelial‑mesenchymal transi-
tion (EMT) occurs when epithelial cells acquire invasive 
mesenchymal cell characteristics, and the activation of this 
process has been indicated to be involved in tumor progres-
sion (1‑3). EMT is associated with decreased expression of 
epithelial‑specific genes, such as E‑cadherin, and an increase 
in the expression of mesenchymal‑specific genes, including 
N‑cadherin and vimentin (4,5). EMT is believed to ultimately 
promote tumor metastasis by promoting the migration of tumor 
cells across the basement membrane and their invasion into 
the surrounding microenvironment (2,6). Understanding the 
mechanism underlying EMT has profound results with regard to 
the responsiveness of a tumor to a range of available treatments.

Numerous studies have demonstrated that the interaction 
of tumor cells with their microenvironment can induce the 
expression of growth factors, cytokines and matrix metal-
loproteinases (MMPs), further leading to EMT (7‑9). The 
transforming growth factor‑β (TGF‑β), Wnt, Notch and nuclear 
factor‑κB (NF‑κB) signaling pathways have been found to be 
critical for EMT induction (10,11). Sphingosine‑1‑phosphate 
(S1P), a biologically‑active lipid, has been found to play a vital 
role in inflammatory diseases and cancer. It has been shown 
that S1P contributes to tumor metastasis by modifying the 
extracellular environment and via the induction of the inva-
sion, motility and migration of cells to other locations, as well 
as by EMT (12,13).

The tumor extracellular environment provides various 
stimuli (such as interstitial fluid shear stress and traction 
force) and the matrix for adjacent cells to contact. An early 
and decisive event during tumor development is hypoxia, 
which triggers a metabolic shift and induces processes such 
as coagulation, angiogenesis and extracellular matrix (ECM) 
remodeling (14,15). The glycocalyx localizes at the surface of 
stromal and malignant tumor cells, and regulates a diverse range 
of molecular activities involved in cell‑cell and cell‑matrix 
interactions, as well as ECM remodeling. Recently, the glycos-
aminoglycans (GAGs) of the glycocalyx were indicated to play 
important roles in the mechanotransduction pathways involved 
in flow‑regulated tumor invasion and metastasis (16). In the 
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present review, we postulate that the glycocalyx takes center 
stage in S1P‑induced EMT.

2. Hypothesis

We hypothesize that S1P promotes EMT in cancer by remod-
elling the glycocalyx and inhibiting the Snail‑MMP signaling 
pathway. S1P plays a vital role in EMT, and the identification 
of an S1P‑glycocalyx‑Snail‑MMP signaling axis could provide 
insight into novel anticancer therapeutic strategies.

3. Evaluation and rationale of the hypothesis

Cell surface glycocalyx is closely associated with tumor 
progression. The glycocalyx is a complex layer of numerous 
membrane‑bound macromolecules that covers the mamma-
lian cell surface (17). The glycocalyx is mainly formed from 
glycoproteins that bear acidic oligosaccharides and terminal 
sialic acids, as well as proteoglycans with their associated 
GAG side chains (17). Distinct disaccharide unit repeats char-
acterize the GAGs and give rise to a variety of components, 
including chondroitin sulfate (CS), heparan sulfate (HS) 
and hyaluronic acid (HA). Sulfated GAGs covalently attach 
themselves to specific sites within proteoglycans (18). The 
syndecan family and glypican family are two major protein 
core families of HS proteoglycans that occur in almost all 
mammal cells. In syndecan‑1, two extra sites positioned 
closer to the membrane are reserved for CS (18). HA is a 
disaccharide polymer of greater length (1,000‑10,000 kDa), 
which is synthesized on the cell surface and interacts with 
HA receptors, such as the transmembrane glycoprotein 
CD44, and CS chains (19).

The changes in the structure and function of the 
glycocalyx are associated with disease occurrence. The 
components of the glycocalyx, including syndecans, glypi-
cans and HA, serve as potential prognostic markers. Under 
specific pathophysiological conditions, including tumor 
onset, progression and metastasis, the expression and shed-
ding of the glycocalyx components can be changed  (20). 
As the most well‑characterized syndecan family member, 
syndecan‑1 is mainly expressed by epithelial cells (21). In 
breast carcinoma, the loss and overexpression of syndecan‑1 
correlates with a poor prognosis and an aggressive pheno-
type (22‑24). In in vitro models of breast cancer, syndecan‑1 
is able to promote tumorigenesis via the regulation of tumor 
cell spreading and adhesion, proliferation and angiogen-
esis (25,26). Syndecan‑4 is widely expressed in the normal 
human mammary epithelium, albeit typically at low levels, 
and it is the second most prolific HS proteoglycan that is 
produced by the majority of breast carcinoma cell lines (27). 
Excess focal adhesion formation is promoted by the over-
expression of syndecan‑4, resulting in a reduced level of 
cell migration (28). Additionally, syndecan‑4‑deficient mice 
and cells exhibit impaired wound repair and mesenchymal 
cell migration (29,30). Glypicans that are localized on the 
cell surface via a glycosylphosphatidylinositol moiety may 
regulate the cell responses to cell adhesion molecules and 
the ECM. Human breast and pancreatic cancer cells strongly 
express glypican‑1 (31,32), and it is required by pancreatic 
cancer cells for efficient TGF‑β signaling (33). HA is also 

closely correlated with tumor cell growth, proliferation and 
metastasis. Recent studies have shown elevated serum HA 
levels in breast cancer patients (34).

Close association between the glycocalyx and S1P and MMPs. 
S1P maintains the integrity of the endothelial glycocalyx struc-
ture and inhibits MMP activity. Recent studies showed that the 
release of MMPs degrades the syndecan‑1 ectodomain and its 
associated GAGs when S1P levels fall below a critical range of 
100‑300 nM and S1P1 is vacated (35), and that S1P induces the 
recovery of the glycocalyx via the phosphoinositide 3-kinase 
(PI3K) signaling pathway (36). In another study, HA increased 
the secretion of MMP‑2 and MMP‑9 in multidrug‑resistant 
MCF‑7 cells, and such an effect was blocked by the NF‑κB 
inhibitor BMS‑345541 (37). Furthermore, HA has been shown 
to activate the secretion of MMP‑2 in time‑ and focal adhesion 
kinase‑dependent manners in a QG90 cell line derived from 
human small cell lung carcinoma (38).

Tumor invasion and metastasis is inhibited after shedding of 
the glycocalyx. A study showed that the physiological levels 
of interstitial flow shear stress upregulated MMP levels and 
enhanced the motility of metastatic cells (16). The degradation 
of the glycocalyx on the tumor cell surface by hyaluronidase 
and heparinase blocked the flow‑induced cell invasion. This 
study suggested that HA and HS play important roles in tumor 
invasion and metastasis.

S1P‑induced EMT can be Snail‑MMPs signaling 
pathway‑dependent. S1P is formed by phosphorylation of sphin-
gosine, catalyzed by sphingosine kinases 1 and 2 (39). S1P is a 
ligand for the S1P‑specific G‑protein coupled receptors, termed 
S1P1‑5. The effects of S1P on cell invasion, motility and migra-
tion are mediated via receptor‑dependent pathways (12,39‑41). 
In general, S1P1 is exclusively coupled with Gi protein to activate 
cell migration through extracellular signal‑regulated kinase, 
PI3K, Akt, phospholipase C and Rac signaling (42‑44). The 
S1P2 and S1P3 receptors could couple with the Gi, Gq and G12/13 
proteins to inhibit cell migration via ρ signaling (41,45).

S1P modulates the levels of MMPs, such as MMP‑2 and 
MMP‑9, regulating cell invasion  (46‑48). Recent findings 
have suggested that EMT‑associated MMPs are involved 

Figure 1. Glycocalyx‑Snail‑MMP signaling axis potentially involved in 
S1P‑induced EMT in cancer. MMPs, matrix metalloproteinases; HSPG, 
heparan sulfate proteoglycans; HA, hyaluronic acid; CD, cluster of dif-
ferentiation; S1P, sphingosine‑1‑phosphate; EMT, epithelial‑mesenchymal 
transition.
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with the progression of cancer via three distinct mechanisms: 
i) Elevated MMPs levels in the tumor microenvironment are 
able to directly induce EMT in epithelial cells; ii)  cancer 
cells that undergo EMT are able to generate more MMPs, 
facilitating cell invasion and metastasis; and iii) EMT is able 
to produce activated stromal‑like cells that induce cancer 
progression through further production of MMPs (49). Previ-
ously, transcriptional profiling studies of Ras‑transformed 
mouse mammary epithelial cells that were induced to undergo 
EMT by TGF‑β treatments demonstrated the upregulation 
of MMP‑2, ‑12 and ‑ 13  (50,51). The TGF‑β‑induced EMT 
of MCF10A cells stimulated the expression of MMP‑2 (52). 
Additionally, the expression of Snail in MCF‑7 cells 
induced a MT1‑MMP‑  and MT2‑MMP‑dependent inva-
sion program  (53). In SCp2 cells, Snail expression was 
MMP‑3‑dependent, as Snail levels decreased rapidly after 
MMP‑3 withdrawal (54). The TGF‑β signaling pathway is the 
most extensively studied (55). TGF‑β‑induced EMT involves 
smad and non‑smad pathway activation and is mediated by 
the transcriptional repressors and master regulators of EMT, 
such as Snail (56). Snail‑knockdown inhibits cell migration 
and invasion induced by NF‑κB and causes the suppression 
of inflammation‑mediated breast cancer metastasis (10). Thus, 
Snail plays a vital role in TGF‑β and NF‑κB signaling, as well as 
in MMP‑induced EMT. Overall, it is possible that S1P‑induced 
EMT is Snail‑MMP signaling pathway‑dependent.

4. Conclusion

EMT is a central process in tumor metastasis. S1P plays impor-
tant roles in cell migration, motility and invasion. Numerous 
studies have shown the close association among S1P, the 
glycocalyx and the Snail‑MMP signaling pathway, suggesting 
that a glycocalyx‑Snail‑MMP signaling axis mediates the 
S1P‑regulated EMT in tumor progression and malignancy 
(Fig.  1). Once validated, the identification of this novel 
S1P‑glycocalyx‑Snail‑MMP signaling axis may provide insight 
into novel diagnostic and anticancer therapeutic strategies.
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