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Abstract. The roles of alternative splicing and RNA editing 
in gene regulation and transcriptome diversity are well docu-
mented. Adenosine deaminases acting on RNA (ADARs) 
are responsible for adenosine‑to‑inosine (A‑to‑I) editing and 
exemplify the complex association between RNA editing and 
alternative splicing. The self‑editing activity of ADAR2, which 
acts on its own pre‑mRNA, leads to its alternative splicing. 
Alternative splicing occurs independently at nine splicing 
sites on ADAR2 pre‑mRNA, generating numerous alternative 
splicing variants with various catalytic activities. A‑to‑I RNA 
editing is important in a range of physiological processes in 
humans and is associated with several diseases, including 
amyotrophic lateral sclerosis, mood disorders, epilepsy and 
glioma. Reduced editing at the glutamine/arginine site of the 
AMPA receptor subunit GluA2 in glioma, without any altera-
tion in ADAR2 expression, is a notable phenomenon. Several 
studies have tried to explain this alteration in the catalytic 
activity of ADAR2; however, the underlying mechanism 
remains unclear. The present review summarizes the relevant 
literature and shares experimental results concerning ADAR2 
alternative splicing. In particular, the present review demon-
strates that shifts in the relative abundance of the active and 
inactive splicing variants of ADAR2 may reduce the ADAR2 
editing activity in glioma. Dominant expression of ADAR2 
splicing variant with low enzyme activity causes reduced 
RNA editing of GluA2 subunit at the glutamine/arginine site 
in glioma.
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1. Introduction

Carcinogenesis is a complex, multistage process. Advances in 
gene sequencing technology have demonstrated that certain 
DNA mutations and chromosomal abnormalities are impor-
tant in tumorigenesis and tumor development. Aberrations 
in RNA, a central element in gene expression, are also vital 
in tumorigenesis, tumor development and malignant growth 
at the posttranscriptional and epigenetic level. Posttranscrip-
tional modifications, including RNA editing and alternative 
splicing, render it possible to diversify the transcriptome, while 
restricting the size of the genome. Members of the adenosine 
deaminase acting on RNA (ADAR) family of enzymes, which 
catalyze adenosine‑to‑inosine (A‑to‑I) RNA editing, have been 
associated with alternative splicing in glioma (1,2). Levels of 
A‑to‑I RNA editing are reportedly reduced in glioma, and 
alternative splicing variants (ASVs) of ADAR2 are expressed 
at various levels (3). Notably, the expression of ADAR2 mRNA 
is unaltered in glioma, and the underlying mechanism of this 
phenomenon remains unclear. The present review discusses 
alternative splicing and RNA editing in glioma, specifically in 
terms of the ADAR2 spliced isoforms.

2. RNA editing and ADARs

RNA editing was first identified in trypanosomes by 
Benne et al (4), who concluded that alterations in nucleotide 
sequences occur during or following transcription of the 
frameshift gene by a RNA editing process. A subsequent 
study identified a RNA duplex unwinding activity when 
antisense RNA was injected into fertilized frog eggs (5). The 
unwinding activity was later demonstrated to arise from struc-
tural alterations in the RNA when adenosine (A) is converted 

Splicing variants of ADAR2 and ADAR2-mediated 
RNA editing in glioma (Review)

YAO FU,  XINGLI ZHAO,  ZHAOHUI LI,  JUN WEI  and  YU TIAN

Department of Neurosurgery, China‑Japan Union Hospital, Jilin University, 
Changchun, Jilin 130033, P.R. China

Received May 17, 2015;  Accepted May 26, 2016

DOI: 10.3892/ol.2016.4734

Correspondence to: Professor Yu Tian, Department of 
Neurosurgery, China‑Japan Union Hospital, Jilin University, 
126 Xiantai Street, Changchun, Jilin 130033, P.R. China
E‑mail: tianyu@jlu.edu.cn

Abbreviations: A‑to‑I, adenosine‑to‑inosine; ADAR, adenosine 
deaminase acting on RNA; ASV, alternative splicing variant; 
dsRBD, dsRNA‑binding domain

Key words: alternative splicing, splicing variant, ADAR2, RNA 
editing, glioma



FU et al:  SPLICING VARIANTS OF ADAR2 AND ADAR2‑MEDIATED RNA EDITING IN GLIOMA (REVIEW) 789

to inosine (I) (6). The following types of RNA editing have 
been identified  (7): Uridine (U) insertion or deletion  (8); 
cytosine (C) insertion and dinucleotide insertion (9); small 
nucleolar RNA‑mediated nucleotide modification of ribosomal 
RNAs (10); transfer (t)RNA editing (11); C‑to‑U editing (12); 
and A‑to‑I editing (13). In mammals, A‑to‑I editing is the most 
common type of RNA editing causing genetic diversity (14). 
A‑to‑I RNA editing occurs at over one hundred million 
genomic sites, which are located in the majority of human 
genes  (15). ADAR enzymes, responsible for the catalytic 
conversion of A to I (14), share a highly conserved catalytic 
deaminase domain (DM) at their C‑terminal, which binds 
to double‑stranded DNA (dsRNA) synergistically with the 
N‑terminus dsRNA‑binding domain (dsRBD) (16‑18). In verte-
brates, three members of the ADAR family (ADAR1, ADAR2 
and ADAR3) have been identified (19). There are three dsRBDs 
for ADAR1, and two for ADAR2 and ADAR3 (18). ADAR1 
and ADAR2 are ubiquitously expressed in humans and exhibit 
catalytic activity, whereas ADAR3 is expressed specifically in 
the brain and has no catalytic activity (14). ADAR3 has been 
revealed to competitively inhibit deaminase activities of other 
ADARs by binding to dsRNA (20). The adenosine deaminase 
reaction catalyzed by ADAR2 is site‑specific (21), as demon-
strated in studies of the GluA2 subunit of glutamate AMPA 
receptor (21‑23), in which the conversion of a glutamine (Q) to 
an arginine (R) codon is exclusively mediated by ADAR2 (23). 
ADAR2 activity is essential for brain development and func-
tion (24), and >99.9% of RNA editing occurs at the Q/R site of 
GluA2 in the human central nervous system (25). In addition, 
RNA editing plays a role in controlling microRNA (miRNA) 
biogenesis (26). A recent study of the mouse brain revealed 
that reproducible alterations in the sequence and abundance of 
mature miRNAs are induced by ADAR2 (27). Furthermore, 
ADAR2‑mediated editing is site‑specific, as opposed to 
sequence‑specific, and ADAR2 edits the coding and noncoding 
regions of mRNAs (28,29). Therefore, a single‑base modifica-
tion during the recoding process during editing may affect the 
coding potential of the RNA and its splicing.

3. Alternative splicing

Studies conducted in 1977 revealed that the coding regions 
in DNA sequences are not continuous, and the final tRNA or 
mRNA is a spliced product (30,31). In 1978, Gilbert presented 
‘Why genes in pieces?’  (32), in which the terms ‘intron’ 
and ‘exon’ were first introduced. The research by Gilbert 
led to an additional study, which confirmed that alternative 
splicing occurs in eukaryotic cells  (33). In 1994, the level 
of alternatively spliced human genes was estimated to be 
only 5% (34). However, by the 21st century, data from The 
International Genome Sequencing Consortium predicted that 
≥50% of human genes are alternatively spliced (33,35,36). In 
2008, Wang et al (37) and Pan et al (38) demonstrated that 
>90% of multi‑exon genes are alternatively spliced, and the 
majority of these are specifically alternatively spliced tissue. 
Wang et al (37) also described various types of alternative 
splicing, including exon skipping, intron retention, alternative 
5' splice sites, alternative 3' splice sites, mutually exclusive 
exons, mutually exclusive 5' untranslated regions (UTRs), 
mutually exclusive 3' UTRs and tandem UTRs. Alternative 

splicing results in the expression of diverse proteins and affects 
transcription factors, cell signaling, transmembrane proteins 
and secreted extracellular proteins  (39). Consequently, the 
structural and functional alterations in these proteins and 
signaling pathways may be involved in carcinogenesis (39).

4. Alternative splicing of human ADAR2 mRNA

The human ADAR2 gene is located on the long arm of chro-
mosome 21 (21q22.3) and spans ~153 kbp (40-42). A study by 
Slavov and Gardiner (42) revealed that the genomic structure 
of the human ADAR2 gene consists of 15 exons. The structure 
of ADAR2 mRNA is illustrated in Fig. 1. Kawahara et al (43) 
followed the exon and intron identifiers reported by Slavov and 
Gardiner to divide ADAR2 mRNA into four regions based on 
alternative splicing sites: The first region includes exons 2‑1, in 
which two ASVs occur; the second region includes exons 2‑3, 
in which three ASVs occur; the third region includes exons 
4‑8, in which two ASVs occur; and the fourth region includes 
exons 9‑10. So far, a total of nine splicing sites in ADAR2 
mRNA have been confirmed  (42‑48). Alternative splicing 
at these sites occurs independently, resulting in dozens of 
ADAR2 spliced isoforms. This renders it challenging to 
analyze tissue‑specific and developmental‑stage‑dependent 
properties of the ADAR2 ASVs in vivo (49). Studies have iden-
tified that alternative splicing occurs at exon 2 and exon 4‑6, 
which are dsRBD and DM coding regions, and these affect the 
enzyme activity of ADAR2 (43,44,46). In addition, inclusion 
of exon 5a results in the generation of a protein, which has 
~50% reduction in activity (44). The exception is the splicing 
variants, which have a distinctive truncated shorter C‑terminal 
structure, and exhibit no editing activity, if splicing occurs at 
exon 9 (45). Agranat et al (48) described a splicing event that 
the 93 nucleotide sequence located in intron 7 was included 
as exon 7a. This also occurs outside ADAR2 function domain 
coding regions, but does not lead to a catalytic activity product. 
Alternative exon 7a is expressed tissue‑specifically, with high 
levels in the skeletal muscle, heart and testis, and low levels 
in the brain (48). Alternative splicing sites in human ADAR2 
mRNA are summarized in Table I, which is adapted from a 
previous study by the present authors (50).

5. Reduced RNA editing in glioma

Although extensive sequencing and analysis of the human 
genome have revealed a clear association between genes and 
cancer, numerous questions have also been raised. Currently, 
in the postgenomic era, the field of epigenetics has received 
much attention. Epigenetic alterations, including alternative 
splicing and ADAR‑mediated A‑to‑I RNA editing, have been 
associated with several types of cancer, including breast cancer, 
neuroblastoma and hepatocellular carcinoma, and there is a 
particularly clear association with glioma (3,39,51).

Glioma is the most common type of tumor in the central 
nervous system, and is classified into four grades that 
reflect the degree of malignancy. Glioblastoma multiforme 
(grade  IV) is the most aggressive type of glioma and is 
fatal (1). An association between RNA editing and glioma, 
particularly the pathogenesis of glioblastoma, was first 
identified by Maas et al (1), who demonstrated that there was 
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reduced editing at the Q/R site of GluR‑B, with no corre-
sponding alteration in ADAR2 expression and no difference 
in the alternative splicing of ADAR2 mRNA in tumor and 
normal tissues. Cellular mechanisms that regulate ADAR2 
catalytic activity are unknown, but may involve posttransla-
tional modification or controlled subcellular localization of 
ADAR2 (1). Another study demonstrated that a reduction in 
editing levels was associated with the grade of malignancy 
in pediatric astrocytomas, which was attributed to altered 
ADAR2 catalytic activity  (2). Furthermore, that study 
reported that ADAR2 overexpression inhibited cell prolifera-
tion and migration in vitro. In addition, alternative splicing 
within exon 2 of the ADAR1 pre‑mRNA in high‑grade tumors 
generated a 110‑kDa protein, as opposed to the full‑length 
150‑kDa protein. Overexpressed ASVs of ADAR1 are 
hypothesized to form heterodimers with ADAR2, disrupting 
the balance between ADAR1, ADAR2 and ADAR3, and 
competing for specific ADAR2 editing activity at the Q/R 
site of GluR‑B (2). These findings suggest that the alternative 
splicing events in ADAR1 regulate ADAR2‑mediated RNA 
editing.

A previous study demonstrated a significant loss of 
ADAR2 editing activity in newly diagnosed and recurrent 
pediatric high‑grade astrocytoma  (52). Notably, ADAR2 
editing activity was substantially rescued in the only 
patient with prolonged survival, suggesting that ADAR2 
activity/expression is a possible prognostic marker. Other 
results suggest attenuated A‑to‑I editing of miRNA‑376a* 
promotes invasiveness of glioblastoma cells in  vitro and 
orthotopic xenograft mouse models  (53). In addition, a 
recent study demonstrated that ADAR2 editing activity 
inhibits glioblastoma growth by modulating the cell divi-
sion cycle 14B/S‑phase kinase‑associated protein 2/p21/p27 
axis (54).

6. ADAR2 ASVs regulate RNA editing in glioma

Reduced RNA editing without a significant alteration in 
ADAR2 expression has been widely documented  (1-3,55); 
however, the underlying mechanism remains unclear. Due to 
the large number of ADAR2 ASVs, ADAR2 expression may 
not associate fully with its editing activity. This raises the 

Table I. Summary of alternative splicing sites in human ADAR2 mRNA.

				    Effect on
Author, year	 ASV, exon	 Effect on ADAR2 transcript	 Effect on ADAR2 protein	 catalytic activity	 (Ref.)

Slavov and Gardiner, 2002	‑ 1‑1	 Inclusion of exon 1a	 28‑amino‑acid N‑terminal	 Unknown	 (42)
			   extension
Kawahara et al, 2005	 1‑3	 Skipping of exon 2	 Generation of a 12‑amino‑acid	 None	 (43)
			   protein
Kawahara et al, 2005	 9‑10	 Inclusion of intron 9	 Unknown	 Unknown	 (43)
Kawahara et al, 2005	 9	 Splices exon 9, 83 nt	 Unknown	 Unknown	 (43)
		  downstream from stop codon
Gerber et al, 1997	 5‑6	 Inclusion of exon 5a	 Insertion of AluJ cassette in	 Decreased	 (44)
			   the catalytic domain
Lai et al, 1997	 9	 Truncates 3' end of the coding	 Replacement of 29 C‑terminal	 None	 (45)
		  region	 residues with 2 amino acids
Rueter et al, 1999	 1‑2	 Addition of 47 nt to 5' end of	 Generation of a 9‑kDa protein	 Decreased	 (46)
		  exon 2
Maas and Gommans, 2009	‑ 1‑1	 Inclusion of exon 0	 49‑amino‑acid N‑terminal	 Unknown	 (47)
			   extension
Agranat et al, 2010	 7‑8	 Inclusion of exon 7a	 Nonsense‑mediated mRNA	 None	 (48)
			   decay

Adapted from Li et al (3). ADAR, adenosine deaminases acting on RNA; ASV, alternative splicing site; nt, nucleotide.

Figure 1. Exon‑intron structure of human ADAR2 gene. Boxes illustrate exons, while lines illustrate introns. Filled boxes indicates coding and open boxes 
indicate non‑coding. Shaded part of exon 2 indicates the 47 nucleotide cassette, where self‑editing occurs, leading to the formation of a splicing site. ADAR, 
adenosine deaminases acting on RNA; dsRBD, N‑terminus dsRNA‑binding domain; DM, deaminase domain.
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question of whether alternative splicing is another regulatory 
factor that may interfere with ADAR2‑mediated RNA editing. 
However, the precise association between RNA editing and 
alternative splicing is complex and remains unclear.

Rueter  et  al  (46) demonstrated that the addition of 
47 nucleotides to the 5' end of exon 2 occurs subsequent to 
RNA editing within intron 1, which reduces ADAR2 activity 
in  vivo. A previous study by the present authors revealed 
the expression levels of this ADAR2 ASV in human glioma 
tissues and glioma‑derived U251 and BT325 cell lines (55); 
the ADAR2 ASV was expressed in 10% of low‑grade astro-
cytomas, 16.7% of oligodendrogliomas, 12.5% of anaplastic 
astrocytomas and 25% of glioblastomas multiforme. In addi-
tion, the increased expression of this self‑editing‑induced ASV 
corresponded to the increasing malignancy of the glioma, and 
its expression appeared to be associated with the malignant 
features of glioma, as identified in the glioblastoma multiforme 
group of ADAR2 ASV+ patients, who had more severe peritu-
moral brain edema, tumor invasion in more brain lobes and a 
shorter median survival time compared with ADAR2 ASV‑ 
patients. Therefore, it appears that ADAR2 mRNA levels are 
not altered in glioma‑derived cell lines or glioma tissues, the 
self‑editing of the ADAR2 pre‑mRNA generates an ADAR2 
ASV in glioma‑derived cell lines and glioma tissues, and the 
expression of this ADAR2 ASV may be associated with the 
malignancy of glioma.

Early studies by the present authors lead to a hypothesis 
that ADAR2 splicing isoforms may affect its enzyme activity; 
therefore leading to investigations concerning the association 
between splicing isoform expression and the clinical features 
of glioma. However, the identified percentage of ADAR2 
ASVs (10‑25%) was not enough to theoretically explain the 
reduced RNA editing of the GluA2 Q/R site. Hideyama and 
Kwak (56) demonstrated that expression of Q/R site‑unedited 
GluA2 requires >50% reduction of ADAR2 activity; therefore, 
the present authors analyzed the differences in the alternative 
splicing patterns of ADAR2 in glioma U87, U251 and A172 
cell lines and normal human astrocytes HA1800 cells (50). 
Quantitative polymerase chain reaction identified no signifi-
cant differences in the ADAR2 pre‑mRNA splicing patterns 
at exon 1a or 2 between the glioma‑derived cell lines and 
normal human astrocytes. However, transcripts including 
exon 5a were predominantly expressed in the glioma‑derived 
cell lines, and transcripts without exon 5a were relative to its 
expression in normal human astrocytes. Taken together, these 
findings indicate that alternative splicing in glioma cells causes 
an abnormal increase in the expression of exon 5a, leading to 
the active suppression of ADAR2 activity and a reduction in 
A‑to‑I RNA editing. 

Therefore, A‑to‑I RNA editing is regulated by the pattern 
of ADAR2 alternative splicing in glioma. Collectively, in vitro 
results suggest an association between the increased expres-
sion of abnormal ADAR2 isoforms or specific ADAR2 ASVs 
and the malignant characteristics of astrocytoma. Further 
studies concerning human glioma tissues are required to 
support in vitro findings, using normal brain white matter 
as a control. The primary aim of such a study would be to 
determine whether the alterations in ADAR2 ASV expression 
may be used as a novel marker for the molecular classification 
of glioma and to monitor tumor progression in patients.

7. Conclusion

In summary, abnormal expression and activity of ADAR2 
contributes to abnormal RNA editing. Additional study into 
specific ADAR2 ASVs is required to identify the specific 
RNA abnormalities that are associated with tumorigenesis 
and tumor development, and to determine the complex 
associations between ADAR‑mediated A‑to‑I editing and 
the alternative splicing of pre‑mRNA ADAR2 in specific 
diseases. Furthermore, additional study is required to estab-
lish the precise regulation of A‑to‑I editing by ADAR2 ASVs 
and how they contribute to glioma genesis and progression. 
Overall, future aims would be to identify novel ADAR2 
target genes, investigate the rescue potential of ADAR2 
editing activity and define the underlying rules of ADAR2 
ASVs differential expression. Identification of subtle altera-
tions in the transcriptome introduced by A‑to‑I RNA editing 
and ADAR2 isoforms with differential activity generated by 
alternative splicing may continue to lead to additional and 
notable findings.
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