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Abstract. Studies that only assess differentially‑expressed 
(DE) genes do not contain the information required to investi-
gate the mechanisms of diseases. A complete knowledge of all 
the direct and indirect interactions between proteins may act 
as a significant benchmark in the process of forming a compre-
hensive description of cellular mechanisms and functions. The 
results of protein interaction network studies are often incon-
sistent and are based on various methods. In the present study, 
a combined network was constructed using selected gene pairs, 
following the conversion and combination of the scores of 
gene pairs that were obtained across multiple approaches by a 
novel algorithm. Samples from patients with and without lung 
adenocarcinoma were compared, and the RankProd package 
was used to identify DE genes. The empirical Bayesian (EB) 
meta‑analysis approach, the search tool for the retrieval of inter-
acting genes/proteins database (STRING), the weighted gene 
coexpression network analysis (WGCNA) package and the 
differentially‑coexpressed genes and links package (DCGL) 
were used for network construction. A combined network was 
also constructed with a novel rank‑based algorithm using a 
combined score. The topological features of the 5 networks 
were analyzed and compared. A total of 941 DE genes were 
screened. The topological analysis indicated that the gene 
interaction network constructed using the WGCNA method 
was more likely to produce a small‑world property, which has 
a small average shortest path length and a large clustering 
coefficient, whereas the combined network was confirmed to 
be a scale‑free network. Gene pairs that were identified using 

the novel combined method were mostly enriched in the cell 
cycle and p53 signaling pathway. The present study provided a 
novel perspective to the network‑based analysis. Each method 
has advantages and disadvantages. Compared with single 
methods, the combined algorithm used in the present study 
may provide a novel method to analyze gene interactions, 
with increased credibility.

Introduction

Lung cancer is the main cause of cancer‑associated mortality, 
and annually results in >1 million mortalities globally (1). 
Lung adenocarcinomas (ADCs) constitute a biologically 
heterogeneous group of lung tumors, and are, at present, 
the most common type of lung cancer (2). Previous studies 
have reported that gene expression profiling can be used to 
divide lung ADC into several subgroups and to distinguish 
primary cancers from metastases of extrapulmonary origin. 
Lung ADCs show striking variation in expression patterns 
compared with squamous cell lung carcinomas or small cell 
lung carcinomas (3).

A method that is often used to investigate the histo-
pathology of a disease is the study of microarray data to 
identify genetic signatures. The identification of genes that 
are differentially expressed (DE) across two types of tissue 
samples or samples obtained under two experimental condi-
tions is a typical task in the analysis of microarray data (4). 
RankProd is a method often used for detecting DE genes 
in replicated microarray experiments  (5). RankProd is a 
non‑parametric statistical method derived from biological 
reasoning that detects items that are consistently highly 
ranked in a number of lists (6). The method confers a number 
of advantages over linear modeling, including the biological 
intuition of fold‑change (FC) criterion, fewer assumptions 
under the model, and increased performance with noisy data 
or low numbers of replicates (7). However, the method does 
not accommodate for other types of differential regulation, 
including differential coexpression (DC). Therefore, the 
empirical Bayesian (EB) approach was introduced. The EB 
method provides a false discovery rate (FDR) controlled list of 
significant pairs and pair‑specific posterior probabilities that 
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may be used in the identification of particular DC types (8). 
EB may also be used for the model‑based inference of cellular 
signaling networks (9).

A necessary requirement for any systems‑level under-
standing of cellular functions is the correct identification and 
annotation of all functional interactions among cell proteins (10). 
Functional links between proteins may often be inferred from 
genomic associations between their encoding genes  (11). 
The search tool for the retrieval of interacting genes/proteins 
(STRING) database is a precomputed global resource for the 
investigation and analysis of protein associations  (12). The 
database provides uniquely comprehensive coverage and ease 
of access to experimental and predicted interaction informa-
tion. Interactions in STRING are provided with a confidence 
score and accessory information, including protein domains and 
3 dimensional structures, is made available within a stable and 
consistent identifier space (10). In addition, correlation networks 
are increasingly being used in bioinformatics applications. 
The weighted gene coexpression network analysis (WGCNA) 
package is a comprehensive collection of R functions designed 
to perform various aspects of weighted correlation network anal-
ysis. The package includes functions for network construction, 
module detection, gene selection, calculations of topological 
properties, data simulation, visualization and interfacing with 
external software (13). WGCNA has been used to identify the 
endometrial cancer prognosis markers (14). In addition, from 
the perspective of systems biology, gene coexpression analysis 
is useful for investigating gene interconnection at the expression 
level. The differentially‑coexpressed genes and links (DCGL) 
R package may be used to identify DCGs and links from gene 
expression microarray data (15).

A comparison between cellular networks may provide 
insight into biological understanding and therapeutics. 
However, the comparison between large networks is infeasible; 
therefore, heuristic methods, including the degree distribu-
tion, clustering coefficient, diameter and relative graphlet 
frequency distribution, were used (16). The analysis of network 
topological features may elucidate the complex cellular 
mechanisms and processes and provide insight into the evolu-
tionary aspects of the proteins involved in (17). Previously, the 
topological analysis on mass‑balanced signaling networks has 
been performed and used as a framework to obtain network 
properties, including crosstalk (18). Similar to numerous other 
biological and real‑world networks, protein interaction networks 
also exhibit the established small‑world phenomenon (19) and 
scale‑free property (20). The small‑world network, which has 
a small average shortest path length and a large clustering 
coefficient, may enable a rapid integration of information (21). 
The scale‑free network, of which the node degree distribution 
follows a power law, is characterized by a small number of 
highly connected nodes, whereas the majority of nodes interact 
with only a few neighbors. The network also demonstrates an 
increased robustness to endure random failure.

In the present study, samples from patients with and 
without lung ADC were compared in order to find novel 
molecular targets for lung ADC treatment. First, the RankProd 
package was used to identify DE genes. Next, the EB coex-
pression meta‑analysis, STRING approach, WGCNA package 
and DCGL package were used for gene interaction network 
construction. Each method has various advantages and 

weaknesses. In order to take the non‑uniform outcomes from 
various approaches into consideration, a novel algorithm was 
applied to combine 4 existing methods to identify gene pairs 
and networks in the present study. The topological features 
of the 5 networks, including clustering coefficient, average 
shortest path length and degree distribution, were compared 
and analyzed. The present study may increase the future 
understanding of gene interactions, increase the credibility of 
current methods and be important for the understanding of the 
molecular mechanisms of lung ADC.

Materials and methods

Data collection and preprocessing. The microarray expression 
profiles of patients with and without lung ADC were downloaded 
from ArrayExpress (https://www.ebi.ac.uk/arrayexpress/) 
under the E‑GEOD‑10072  (22), E‑GEOD‑19188  (23), 
E‑GEOD‑31210  (24,25) and E‑MEXP‑231  (26) access 
numbers. In all datasets, only lung ADC and non‑lung ADC 
control patient data were retained. The sample characteristics, 
platform and gene expression data were also extracted from 
each dataset and the associated study. The characteristics of 
the studies are shown in Table I.

Prior to analysis, the original expression data from all condi-
tions were subjected to data preprocessing. The probe‑level 
data in the CEL files were converted into expression measures. 
Gene probes from each dataset were acquired and read by the 
affy package (bioconductor.org/packages/affy). A background 
correction was performed using the robust multiarray average 
algorithm (27) to eliminate non‑specific hybridization. Data 
normalization was conducted using quantiles (28). The modifi-
cation of perfect match/mismatch values was performed using 
the Micro Array Suite 5.0 algorithm  (29). The expression 
value was aggregated by the median polish summarization 
method  (30). The featureFilter function in the GeneFilter 
package (bioconductor.org/packages/genefilter) was used to 
filter data and for probe annotation. The GetSYMBOL func-
tion of the annotate package (bioconductor.org/packages/
annotate) was used to map the association between the probes 
and gene symbols (31). All preprocessing was performed using 
the espresso function of the Limma package (bioconductor.
org/packages/limma) (32,33). The average values of the gene 
symbols with multiple probes were obtained.

Identification of DE genes. The RankProd approach (6,34) 
was employed to identify the DE genes associated with lung 
ADC. The software RankProd is implemented in the statistical 
programming language R as a package of the open‑resource 
Bioconductor project (35). The microarray expression data 
were combined to detect DE genes using the RPadvance func-
tion in the RankProd package. The P‑values for all genes were 
converted into the form ‑log2. Only the genes with a percentage 
of false‑positives (PFP) value of ≤0.05 were considered to be 
DE between treatments and controls.

Construction of protein interaction networks for DE genes
Identification of DC using the EB approach. At present, 
numerous approaches have been used to identify DC gene 
pairs; however, the gene pairs are often prone to false identi-
fication under the conditions of large cardinality of the space 
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to be interrogated (36). Therefore, the EB method was applied, 
which provided an FDR controlled list of significant pairs 
and pair‑specific posterior probabilities (8). To achieve this, 
the EBcoexpress package in R was employed to conduct the 
differential co‑expression analysis (37). The EB approach is 
applicable within a single study and across multiple studies. In 
the single study analysis, 3 inputs were required, including X, 
the array conditions and the pattern object  (37). For X, an 
m‑by‑n matrix of expression values was used, where m is the 
number of genes or probes under consideration and n is the 
total number of microarrays over all conditions. The values 
were normalized using background normalization and median 
correction methods to give all the arrays equal median expres-
sion. Generally, gene expression levels are transformed on a 
log2 scale. For the array conditions, the members of an array 
with length n were provided values '1, ..., K', where K is the 
total number of conditions. All microarrays and assays were 
placed in the same order as the n columns of X. An object 
EBarrays Pattern was used to define the equivalent coexpres-
sion/DC classes. Next, the function makeMyD() of biweight 
midcorrelation was used to the calculate intra‑group associa-
tions for all p = m(m ‑ 1) / 2 gene pairs. 

The initializeHP() function of the Mclust algorithm was 
used to identify the component normal mixture model that 
best fits the correlations of D. The Mclust algorithm may iden-
tify the normal mixture that best fits the empirical distribution 
of correlations, including component means, standard devia-
tions and weights. These values played a role in initializing the 
expectation‑maximization (EM) algorithm. In total, 3 func-
tions accounted for the various versions of the modified EM 
approach, including the zero‑step, one‑step and full versions. 
The full version runs a complete two‑cycle alternating expecta-
tion‑conditional maximization. The zero‑step version uses the 
initial estimates of the hyperparameters to generate posterior 
probabilities of DC. Subsequent to using the aforementioned 
algorithms, the priorDiagnostic() function was used to check 
the prior distribution selected by the EM. Finally, the crit.fun() 
function was used to provide a soft threshold and simulations 
to identify the DC gene pairs. DC genes were distinguished 
from gene pairs with invariant expression by controlling the 
posterior expected FDR at 0.05, and the coexpression network 
was constructed to account for the correlation between each 
pair of genes in the study. The curve was fit to the node degree 
distribution of the network.

Protein interactions obtained from STRING database. 
At present, protein or gene interactions and associations are 
annotated at various levels of detail that range between raw 

data repositories and highly formalized pathway databases in 
online resources. STRING aims to simplify access to infor-
mation by providing a comprehensive, yet quality‑controlled 
collection of protein‑protein associations for a large number 
of organisms with a global perspective. The majority of the 
available information on protein or gene associations may be 
aggregated, scored and weighted with known and predicted 
interactions. Therefore, protein interactions across diverse 
experimental conditions may be measured and used as a 
predictor of functional associations in STRING, as in the 
present study. STRING employs 2 strategies to transfer known 
and predicted associations between organisms (11). Subsequent 
to the assignment of association scores and transfer between 
species, a combined score between any pair of proteins was 
computed, which increased confidence levels with an increased 
score compared with the individual sub‑scores. The combined 
score accounted for the predicted and known scores obtained 
for each protein interaction from the STRING database, and 
was calculated according to the following formula:

where SAB is the score for the interaction between proteins 
A and B, and Si is the score normalized by the biggest value 
calculated for the method i.

A graphical protein‑protein interaction (PPI) network was 
then constructed and the topological features of the network 
were analyzed.

Identification of weighted correlation network. Correlation 
networks are increasingly being used in bioinformatics applica-
tions, and WGCNA has been used to describe the correlation 
patterns among genes across microarray samples (38). WGCNA 
may be used to identify clusters or modules of highly associated 
genes, to summarize clusters using the module eigengene or an 
intramodular hub gene, to associate modules with one other and 
with external sample traits using eigengene network method-
ology, and to calculate module membership measures (13). The 
WGCNA R package may be used to compute a gene selection 
score, termed 'p.weighted', based on the significance of the gene 
and module membership. The smaller the p.weighted value, 
the stronger the proof that the gene is a disease‑associated hub 
gene. In the present study, the threshold value p.weighted score 
was set at ≤0.55. The weighted coexpression was determined 
by calculating a correlation matrix that contained all pairwise 
Pearson correlations between all probe sets spanning all 
subjects. The network nodes corresponded to gene expression 

Table I. Characteristics of the individual studies included in the present study.

			   Sample size,		  Gene size,	
First author	 Year	 Access no.	 total (cases/controls)	 Platform	 bases	 Ref.

Shiraishi et al	 2010	 E-GEOD-10072	   107 (58/49)	 Affymetrix HG-U133A	 12,493	 (22)
Hou et al	 2010	 E-GEOD-19188	   110 (45/65)	 Affymetrix HG-U133Plus2	 20,109	 (23)
Okayama et al and	 2012	 E-GEOD-31210	     246 (226/20)	 Affymetrix HG-U133Plus2	 20,109	 (24)
Yamauchi et al						      (25)
Yap et al	 2005	 E-MEXP-231	   58 (49/9)	 Affymetrix HG-U133A	 12,493	 (26)
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and the edges between genes were determined by the pairwise 
Pearson correlation between gene expression. Subsequent 
to raising the absolute value of the Pearson correlation to a 
power β≥1 (soft thresholding), the weighted gene coexpression 
network construction emphasized the stronger correlations. 
The adjacency of an unsigned weighted gene coexpression 
network was calculated by aij = |cor(xi,xj)|β. The soft threshold 
β=6 was chosen using the scale‑free topology criterion (39). 
The positive and negative correlations of the network were 
treated equally and provided a value between 0‑1. Following 
the selection of the weighted correlation networks, the topo-
logical features of the network were analyzed.

Identification of DC network. In order to identify DCGs 
and differentially‑coexpressed links (DCLs) from gene 
expression microarray data (40), the DCGL 2.0 package in 
R program was introduced (15,41). In the process, the DCp 
and DCe functions were used to extract DCGs and DCLs. 
DCp and DCe are involved in the DC analysis module of the 
DCGL package (40). DCp plays a role in filtering sets of gene 
coexpression value pairs. Each pair is composed of 2 coex-
pression values that are calculated under 2 varying conditions, 
separately. The subset of the pairs was written as 2 vectors, 
X and Y, where n is coexpression neighbors for a gene.

The DC of the gene was defined with the following equation:

The novel Pearson correlation coefficient (PCC) was calcu-
lated and gene pairs were filtered based on the novel PCC with 
a q‑value of 0.05.

The DCe function may also be used to identify DCGs 
and DCLs, which are based on the limit fold‑change (LFC) 
model. The correlation pairs were divided into 3  parts, 
according to the pairing of signs of coexpression values and 
the multitude of coexpression values, as follows: Pairs with 
same signs (N1); pairs with differing signs (N2); and pairs with 
differently‑signed high coexpression values (N3). N1 and N2 
were processed with the LFC model separately to produce 
2 subsets of DCLs (K1,K2). N3 was added to the set of DCLs 
directly. For a gene (gi), the total number of links (ni) and 
DCLs in particular (ki) associated with it were counted. The 
DC of gene i measured using the DCe method was expressed 
by the following equation:

In the process, gene pairs with a correlation value of ≥0.65 
were considered to be significantly co‑expressed  (15,42). 
Finally, DCGs were mapped into Cytoscape software 
(www.cytoscape.org) for construction of the coexpression 
network, and topological features of the network were analyzed.

Conversion and combination of the gene association scores 
of the 4  methods. The score of each pair was obtained 
following the analysis of gene interactions using the afore-
mentioned methods. Considering that variation in the results 
was obtained by the varying approaches, all the scores were 
analyzed in order to maintain a uniform standard. Therefore, 
a novel algorithm was applied to convert the scores of all the 
gene pairs in the present study. The conversion equation was 
as follows:

where Scom was the combined score of each gene pair with 
integrated multiple results, n was the number of methods (n=4 
in the present study), M was the number of gene pairs of the 
DE genes and N was the rank of a pair of genes.

A novel score of each gene pair was obtained by calculating 
the mean. The mean was obtained by dividing the combined 
score by the number of methods. Next, gene pairs were 
ranked based on the novel scores, and the pairs that satisfied 
the criteria N/M ≤10% or ‑2logN/M ≥6.643856 were selected. 
The combined gene interaction network of the selected gene 
pairs was then constructed and the topological features of the 
network were analyzed.

Topological analysis. The clustering coefficient and short 
average path length of the aforementioned 5 networks were 
obtained and compared to investigate whether the networks 
constructed from the 5 methods exhibited the small‑world 
network properties. In addition, the fit of the R2 coefficient of 
the power‑law y = axb of the 5 networks was also compared, 
as PPI networks in general are modular and scale‑free, 
which meant that the networks had power‑law (or scale‑free) 
degree distributions (28,43). Network Analyzer 2.7 plugin in 
Cytoscape 3.1.0 was used for the evaluation of topological 
parameters.

Functional enrichment analysis. Highly connected gene 
pairs generally participate in similar biological processes and 
pathways. In order to investigate the biological functional 
enrichment of the identified gene pairs, a pathway enrichment 
analysis was performed, based on the Kyoto encyclopedia of 
genes and genomes (KEGG; www.genome.jp/kegg/). The DE 
genes identified by RankProd were first imported to the online 
database for annotation, visualization and integrated discovery 
(http://david.abcc.ncifcrf.gov/tools.jsp), and all the pathways that 
the DE genes enriched were obtained. Next, with the DE genes 
in each pathway as a background, the number of enriched gene 
pairs identified by the 4 existing methods and the combined 
approach were calculated and compared. The terms with P<0.01 
were considered to indicate a significant difference.

Results

Identification of DE genes. Following the normalization 
and preprocessing of the expression profile datasets, a 
total of 12,493  genes in E‑GEOD‑10072, 20,109  genes 
in E‑GEOD‑19188, 20,109  genes in E‑GEOD‑31210 and 
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12,493 genes in E‑MEXP‑231 were obtained. Of those genes, 
12,493 were common. By applying the RankProd package 
for meta‑analysis, a total of 941 DE genes, 386 upregulated 
and 555 downregulated, were considered to be DE, with a 
PFP value of ≤0.05 and FC value of >2.

Topological analysis of 5 protein interaction networks. The 
protein interaction networks of DE genes were constructed 
using EB, STRING, DCGL and WGCNA (Fig. 1), and the 
association between gene pairs was determined. Subsequently, 
a novel algorithm was implemented to combine the score values 

Figure 1. Graphical representation of the topological structures of the gene interaction networks constructed by 4 existing methods. Genes were denoted as 
nodes, and interactions between gene pairs were presented as edges (lines) in the images. (A) Network identified by empirical Bayesian method. (B) Network 
based on search tool for the retrieval of interacting genes/proteins database. (C) Coeexpression network constructed using the differentially‑coexpressed genes 
and links approach. (D) Network based on weighted gene co-expression network analysis.

  A   B

  C   D
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of all gene pairs obtained from the 4 existing approaches. A 
novel matrix with a combined score of each gene pair was 
produced and a simple rank‑based permutation procedure was 
used. Next, the combined gene interaction network was also 
constructed, consisting of 280 nodes and 515 edges (Fig. 2).

Network analysis showed that 4/5 networks exhibited the 
scale‑free property, with a degree distribution that follows the 
power law with high fitting coefficients R2, with the excep-
tion of the network constructed using the WGCNA method 
(R2=0.264). The combined network showed the highest fitting 
coefficient (R2=0.977) compared with the other 4 networks 
(Fig. 3), which indicates the evident scale‑free property and 
increased robustness against the random failure of the network, 
compared with the other networks. However, the network 
constructed by the WGCNA method was more likely to be 
a small‑world network, with the smallest mean shortest path 
length (1.783) and the largest clustering coefficient (0.813). The 
detailed parameters of the 5 networks are shown in Table II.

Functional enrichment analysis. All the KEGG pathways 
that the DE genes enriched were obtained as background, and 
7 significant terms were identified, including extracellular 
matrix‑receptor interaction (P=0.0000977), cell adhesion 
molecules (P=0.000991), p53 signaling pathway (P=0.00147), 
focal adhesion (P=0.00151), vascular smooth muscle contrac-
tion (P=0.00265), cell cycle (P=0.00335), and complement 
and coagulation cascades (P=0.00519). In order to investigate 
the enriched pathways of the gene pairs identified by various 
methods, the number of gene pairs enriched in each pathway 
was calculated and compared (Table  III). Following the 

Figure 2. Combined gene interaction network based on the novel scores of each gene pairs across 4 methods. Genes were denoted as nodes and interactions 
between gene pairs were presented as edges (lines) in the image. A total of 280 nodes and 515 edges composed the combined network.

Figure 3. Scatter-gram of gene degree in the combined network. The com-
bined network is a scale-free network of which the degree distribution 
followed a power law (y = axb, where a=121.0, b=-1.315) with the highest 
fitting coefficient (R2=0.977).
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combination of the 4 existing methods, the gene pairs mostly 
enriched the cell cycle and p53 signaling pathway. The common 
pathway that gene pairs enriched across the 5 methods was the 
cell cycle.

Discussion

In the present study, a novel algorithm that combined multiple 
existing approaches was applied in order to better understand 
the molecular mechanisms of lung ADC. First, samples from 
patients with and without lung ADC were compared. Next, the 
RankProd package was used to identify DE genes, and a total 
of 941 DE genes were screened across 4 datasets. Based on 
these DE genes, gene interaction networks were constructed, 
and the score value of each gene pair was obtained using the 
EB coexpression approach, STRING database, DCGL method 
and WGCNA package. A novel algorithm was applied to 
convert and combine the score values that were obtained from 
the aforementioned methods; a novel matrix with a combined 
score of each gene pair was then produced and sorted using 
a rank‑based method. Finally, the combined gene interaction 
network was constructed via linking gene pairs.

A map of PPIs may provide useful revelations with regard 
to the cellular function and machinery of a proteome (44). A 
variety of methods have been proposed for the analysis of gene 
expression microarray data; however, few methods exist that 

use microarray data to quantify the interassociated behavior of 
genes within a gene interaction network (45). The incidence of 
cancer is considered to be closely associated with the abnormal 
expression of numerous genes; however, the previous methods 
used to study DE genes are inadequate, as there is a large 
difference between identifying DE genes and understanding 
the complex mechanisms of cancer. Therefore, the study of 
gene interactions is essential, as gene interactions are impor-
tant for biological processes (46). Network‑based approaches 
utilizing interaction information between gene pairs have 
emerged as powerful tools for the systematic understanding 
of the molecular mechanisms underlying biological processes, 
and a number of algorithms have been created to study these 
biological networks. Barter et al (47) performed a compara-
tive analysis and indicated that the network‑based method was 
more stable compared with single‑gene and gene‑set methods. 
Wu et al (48) also developed a network‑based differential gene 
expression (nDGE) analysis, and demonstrated that nDGE 
outperformed existing methods for the prioritization of deregu-
lated genes and the identification of deregulated gene modules 
using simulated data sets. Furthermore, a study conducted 
by Li et al (49) identified several key genes that were closely 
associated with survival in patients with lung ADC using a 
network‑based approach.

The topological properties of gene interaction networks 
have been studied widely. Gene interaction networks have 

Table II. Parameters of 5 networks constructed using 4 existing approaches and a novel algorithm.

Characteristic	 EB	 STRING	 DCGL	 WGCNA	 Combination

Nodes	    703.000	    419.000	 537.000	   79.000	 280.000
Edges	 2,064.000	 3,734.000	 6379.000	 649.000	 515.000
R2	        0.963	        0.931	       0.938	     0.264	     0.977
Clustering coefficient	        0.024	        0.453	       0.118	     0.813	     0.211
Mean shortest path length	        3.673	        5.337	       2.715	     1.783	     4.195

EB, empirical Bayesian; STRING, search tool for the retrieval of interacting genes/proteins; DCGL, differentially‑coexpressed genes and 
links; WGCNA, weighted gene coexpression network analysis.

Table III. Enriched Kyoto encyclopedia of genes and genomes pathways of gene pairs identified by 4 existing methods and a 
novel algorithm.

	 Number of gene pairs
	 ---------------------------------------------------------------------------------------------------------------
Pathway	 Category	 P-value	 EB	 STRING	 DCGL	 WGCNA	 Combination

ECM-receptor interaction	 hsa04512	 0.000098	 0	 36	 3	 0	   1
Cell adhesion molecules	 hsa04514	 0.000991	 1	   5	 1	 0	   0
p53 signaling pathway	 hsa04115	 0.001466	 1	 21	 1	 0	   4
Focal adhesion	 hsa04510	 0.001510	 1	 38	 3	 0	   2
Vascular smooth muscle contraction	 hsa04270	 0.002649	 0	   7	 1	 0	   1
Cell cycle	 hsa04110	 0.003350	 1	 95	 8	 2	 10
Complement and coagulation cascades	 hsa04610	 0.005190	 0	   3	 0	 0	   0

ECM, extracellular matrix; EB, empirical Bayesian; STRING, search tool for the retrieval of interacting genes/proteins; DCGL, 
differentially‑coexpressed genes and links; WGCNA, weighted gene coexpression network analysis.
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been indicated to exhibit small‑world and scale‑free prop-
erties  (50,51), which are typical of biological networks. 
Featherstone and Broadie (52) demonstrated that the scale‑free 
property of the gene interaction network aided organisms by 
conferring the ability of resistance to the deleterious effects of 
mutation. Similar architecture was also indicated in the gene 
coexpression network of gastric cancer (53). The small‑world 
property of biological networks was also confirmed in 
multiple data sources (43). In particular, Arita (54) indicated 
that the metabolic world of Escherichia coli was not a small 
biological network, but a network with a mean shortest path 
length that was much longer than previously hypothesized. In 
the present study, 5 gene interaction networks of lung ADC 
were constructed using 4 existing approaches and a novel 
combined algorithm. The network built using the WGCNA 
method was the most likely to be a small‑world network, 
with the smallest mean shortest path length and the largest 
clustering coefficient. However, the combined network was 
revealed to be a scale‑free network that possessed a node 
degree distribution that followed a power law with the highest 
fitting coefficient.

Generally, gene pairs that are connected closely participate 
in the same pathway. Li et al (49) suggested that alterations 
in cell cycle genes and pathways were associated with tumor 
grade and contributed to the survival of lung ADC patients, 
regardless of smoking status, using a systems biology‑based 
network approach. The study conducted by Wu et al (48) also 
identified that cell cycle‑associated genes played a role in the 
molecular variations between smoker and non‑smoker lung 
ADC. A study of cisplatin in lung ADC demonstrated that 
cisplatin exerted a cytotoxic effect through the blockage of 
the cell cycle pathway, and may be partly regulated by the 
p53 signaling pathway. Consistent with previous studies, the 
findings in the present study suggested that the gene pairs 
mainly enriched the cell cycle and p53 signaling pathway 
subsequent to combination, and that the cell cycle pathway 
was the common pathway that gene pairs enriched across 
5 methods.

In the present study, 4 existing network‑based approaches 
were presented. Evidently, varying methods often possess 
varying abilities. Therefore, a novel merged approach was 
created to enhance stability and reliability. The combined 
gene interaction network was constructed by reassembling the 
scores of gene pairs from 4 existing methods. Network analysis 
showed that the network constructed by the WGCNA method 
was more inclined to be a small‑world property and that the 
combined network was revealed to demonstrate scale‑free 
network features. In addition, pathway analysis demonstrated 
that the cell cycle pathway was involved in the pathogenesis of 
lung ADC. When considering the applications and limitations 
of each of the methods, the novel merged algorithm outlined 
in the present study may provide a more credible and robust 
outcome for genetic network analyses, and is recommended 
for future application.
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