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Abstract. Aberrant AKT and extracellular signal-regulated 
kinase (ERK) activation is often observed in various human 
cancers. Both AKT and ERK are important in the phos-
phoinositide 3-kinase/AKT and mitogen-activated protein 
kinase kinase/ERK signaling pathways, which play vital 
roles in cell proliferation, differentiation and survival. 
Compounds that are able to block these pathways have there-
fore a promising use in cancer treatment and prevention. The 
present study revealed that AKT and ERK are activated in 
esophageal cancer TE1 cells. Aloe-emodin, an anthraquinone 
present in aloe latex, can suppress TE1 cell proliferation and 
anchor-independent cell growth. Aloe-emodin can also reduce 
the number of TE1 cells in S phase. Protein analysis indicated 
that aloe-emodin inhibits the phosphorylation of AKT and 
ERK in a dose-dependent manner. Overall, the present data 
indicate that aloe-emodin can suppress TE1 cell growth by 
inhibiting AKT and ERK phosphorylation, and suggest its 
clinical use for cancer therapy.

Introduction

Esophageal cancer (EC) is one of the most common cancers 
in the world (1). Esophageal squamous cell carcinoma (ESCC) 
and esophageal adenocarcinoma (EAC) are the two main types 

of EC (2), with ESCC being the main form of EC in Asian coun-
tries, and EAC being the most common type of EC in Western 
countries (3). The incidence of EC is increasing worldwide (4). 
In the USA in 2012, 17,460 patients were diagnosed with EC, 
and 15,070 patients succumbed to the disease (5). Upon initial 
diagnosis, the majority of EC patients already present with 
metastasis, which results in poor prognosis (6,7).

Accumulating evidence indicates that numerous molecular 
changes are associated with EC tumorigenesis, including 
epidermal growth factor receptor (EGFR) amplification, 
phosphoinositide 3-kinase, catalytic subunit alpha (PIK3CA) 
amplification and mutation (8-10), and phosphatase and 
tensin homolog (PTEN) mutation or loss (11,12). Alteration 
of these molecular events contributes to downstream pathway 
activation (8-12). The phosphoinositide 3-kinase (PI3K)/AKT 
and mitogen-activated protein kinase kinase (MEK)/ERK 
signaling pathways are two important pathways that can 
be activated by EGFR amplification and PTEN loss, which 
may ultimately lead to tumorigenesis (13). ERK is a down-
stream component of an evolutionarily conserved signaling 
module that is activated by Raf serine/threonine kinases (14). 
Raf is activated by growth factor stimulation, eventually 
leading to the activation of ERK (14). ERK then can mediate 
cell proliferation and oncogenesis through downstream 
targeting (15). ERK can activate the pro-apoptotic protein 
B-cell lymphoma-2 (Bcl-2)-associated death promoter (BAD) 
at Ser112 and phosphorylate the transcription factor cyclic 
adenosine monophosphate response element-binding protein 
(CREB) at Ser133 to promote cell survival by activating 
the ribosomal S6 kinase (RSK) family of serine/threonine 
kinases (16). Previously, inhibitors targeting this pathway were 
developed and tested in clinical trials (15,17) with certain 
success.

Tumorigenesis frequently occurs during PI3K/AKT 
signal pathway activation following EGFR amplification 
and PTEN loss (18). Activation of AKT results from Thr308 
phosphorylation by 3-phosphoinositide-dependent kinase 1 
(PDK1) and Ser473 phosphorylation by mechanistic target of 
rapamycin complex 2 (mTORC2) (18). AKT regulates CREB 
activity (19,20) by phosphorylating CREB at Ser133, which 
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induces the binding of accessory proteins, thereby regu-
lating anti-apoptotic genes, including Bcl-2 and myeloid cell 
leukemia 1 (21,22). AKT can suppress mouse double minute 2 
homolog (MDM2) self-ubiquitination, thereby inhibiting 
p53-mediated apoptosis (23). AKT also promotes the cell cycle 
by phosphorylating p21Waf1/Cip1, also known as cyclin-dependent 
kinase inhibitor 1 or CDK-interacting protein 1, at Thr145 (24). 
In addition, AKT directly controls the activation of glycogen 
synthase kinase (GSK)3β. which phosphorylates cyclin D1 
at Thr286 (25) and Myc at Thr58 (26). GSK3β promotes the 
nuclear export and ubiquitin-pathway degradation of AKT, 
which could in turn regulate the cell cycle by regulating 
GSK3β activity (25). Therefore, blocking the activation of 
PI3K/AKT signaling may be a promising strategy for cancer 
treatment.

Aloe-emodin has anti-proliferative effects and induces 
cellular apoptosis (27-30). Aloe-emodin has anti-cancer 
activity in neuroectodermal tumors (31), nasopharyngeal 
carcinoma (32), lung squamous cell carcinoma (33), hepa-
toma cells (34), gastric cancer (35) and prostate cancer (36). 
Aloe-emodin induces apoptotic cell death by oxidative stress 
and sustained c-Jun N-terminal kinase (JNK) activation (37). 
Previous studies have demonstrated that aloe-emodin induces 
cell death through S-phase arrest in human tongue squamous 
cancer SCC-4 cells (38). A previous study by the present authors 
also indicated that mTORC2 is a target of aloe-emodin, and 
aloe-emodin can strongly inhibit the AKT activation caused 
by PTEN loss (36). Aloe-emodin is a natural compound from 
aloe or Rheum palmatum (39,40). The present study aimed to 
determine the efficacy of aloe-emodin in the treatment of EC.

The present results demonstrate that both ERK and AKT 
are activated in EC cells. Aloe-emodin can suppress the prolif-
eration and anchor‑independent cell growth of the EC cell line 
TE1. Western blot data revealed that aloe-emodin inhibits 
both AKT and ERK phosphorylation and their downstream 
activation. The inhibition of these pathways results in cell 
cycle arrest at S phase and decreased cyclin D1 transcription. 
These results suggest that aloe-emodin could prevent and even 
reverse the development of EC, thus identifying it as a candi-
date compound for EC chemoprevention.

Materials and methods

Materials. Aloe-emodin (>95% purity) was purchased 
from Sigma-Aldrich (St. Louis, MO, USA). Other chemical 
reagents, including Tris, NaCl, acrylamide, glycine and sodium 
dodecyl sulfate (SDS), were purchased from Sigma-Aldrich 
or Fluka (Sigma-Aldrich). AKT [rabbit polyclonal immuno-
globulin G (IgG); sc-8312], p-AKT (mouse monoclonal IgG1; 
sc-293125), ERK (rabbit polyclonal IgG; sc-94) and p-ERK 
(rabbit polyclonal IgG; sc-23759) primary antibodies, and 
horseradish peroxidase (HRP)-conjugated goat anti-rabbit 
IgG (sc-2004) and HRP-conjugated rabbit anti-mouse IgG 
(sc-358914) secondary antibodies were obtained from Santa 
Cruz Biotechnology, Inc. (Dallas, TX, USA). α-tubulin (rabbit 
polyclonal; #2148) antibody was obtained from Cell Signaling 
Technology, Inc. (Danvers, MA, USA).

Cell culture. The esophageal cancer cell lines TE1 and 
KYSE140 were purchased from Nanjing KeyGen Biotech 

Co., Ltd. (Nanjing, China). Eca109 and EC9706 cells were 
provided by the State Key Laboratory of Molecular Oncology, 
Chinese Academy of Medical Science (Shanghai, China). 
TE1 cells were cultured in Dulbecco's modified Eagle's 
medium (DMEM)-high glucose (HyClone; GE Healthcare 
Life Sciences, Logan, UT, USA) containing 10% fetal bovine 
serum (FBS) (Gibco; Thermo Fisher Scientific, Inc., Waltham, 
MA, USA), 10 IU penicillin/ml and 10 IU streptomycin/ml at 
37˚C in a humidified incubator with 5% CO2.

Cell counting kit‑8 (CCK‑8) assay. TE1 cells (2x104) were 
seeded into 96-well plates in 100 µl of 10% FBS-DMEM, and 
incubated in a 37˚C, 5% CO2 incubator overnight. The cells 
were treated with increasing doses of aloe-emodin (1, 5, 10, 
25 and 50 µM), and cytotoxicity was analyzed at 24 h and 
48 h using a CCK-8 (Beyotime Institute of Biotechnology, 
Haimen, China) according to the manufacturer's protocol. 
TE1 cells (5x103) were seeded in 96-well plates in 100 µl of 
10% FBS‑DMEM and cultured in a 37˚C, 5% CO2 incubator. 
After 12 h, the medium was changed for medium containing 
different concentrations of aloe-emodin (0, 2.5, 5, 10 and 
20 µM). Cells were cultured for an additional 24, 48, 72 and 
96 h, and 10 µl of CCK-8 was then added to each well. The 
cells were incubated for 2 h and the absorbance was measured 
at 450 nm.

Soft agar assay. The soft agar assay was performed in 6-well 
plates containing two layers of agar (Bacto Agar; BD Biosci-
ences, Franklin Lakes, NJ, USA) and different concentrations 
of aloe-emodin (0, 2.5, 5, 10 and 20 µM). The bottom layer 
consisted of 0.5% agar in 1 ml of basal medium Eagle (BEM; 
Sigma-Aldrich) with 10% FBS. The top layer consisted 
of 0.33% agar in 1 ml of BEM with 10% FBS containing 
8x103 TE1 cells. The TE1 cells embedded in agar were incu-
bated in a 37˚C humid incubator for 14 days, and colonies were 
imaged using a microscope with the aid of Image-Pro Plus 
software (version 6; Media Cybernetics, Inc., Rockville, MD, 
USA) and MicroPublisher 5.0 RTV camera (Olympus Corpo-
ration, Tokyo, Japan).

Cell cycle analysis. For flow cytometric analysis of cell cycle, 
TE1 cells (1.5x106) were seeded into a 60-mm dish. After 12 h 
of culture, the cells were washed three times with Dulbecco's 
phosphate-buffered saline (DPBS, pH 7.2). The cells were 
next cultured for 48 h in DMEM without FBS. Then, the 
FBS-free DMEM was removed, and different concentrations 
of aloe-emodin (0, 2.5, 5, 10 and 20 µM) in DMEM containing 
10% FBS were added to each dish. After culturing for addi-
tional 48 h, the cells were trypsinized, washed with ice-cold 
DPBS and fixed with ice-cold 70% ethanol at -20˚C overnight. 
Cells were then washed twice with DPBS, incubated with 
0.5 mg/ml RNase A and 200 µg/ml propidium iodide in DPBS 
at room temperature for 30 min in the dark, and subjected 
to flow cytometry using a FACSCalibur flow cytometer (BD 
Biosciences). The percentages of cells in different cell cycle 
phases (G0/G1, S or G2/M) were calculated.

Western blotting. A total of 1.5x106 TE1 cells were seeded 
and cultured in a 10-cm dish for 24 h. The cells were treated 
with various concentrations of aloe-emodin (0, 2.5, 5, 10 and 
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20 µM) for additional 24 h. The cells were then harvested, 
and cell lysates were collected in modified radioimmunopre-
cipitation assay buffer (50 mM Tris base, 1% NP-40, 0.25% 
superoxide dismutase, 150 mM NaCl, 1 mM ethylenediamine-
tetraacetic acid and 0.1% SDS). A total of 50 µg proteins were 
subjected to 12% SDS-polyacrylamide gel electrophoresis. 
The nitrocellulose membranes (Hybond-c pure; GE Healthcare 
Life Sciences, Chalfont, UK) with transferred protein were 
incubated with a specific primary antibody [anti‑AKT (1:200), 
p-AKT (1:200), ERK (1:200), p-ERK (1:200) or α-tubulin 
(1:1,000)] at 4˚C overnight, followed by incubation with the 
appropriate secondary antibody (1:1,000) for 2 h at room 
temperature. Protein bands were detected with an enhanced 
chemiluminescence (ECL) kit (Beyo ECL Plus; Beyotime 
Institute of Biotechnology) after hybridization with a specific 
secondary antibody.

Cyclin D1 luciferase assay. TE1 cells (600x103 cells/well) 
were seeded and cultured in 24-well plates for 12 h, prior 
to be transfected with 400 ng of the pGL4.29/Luc/Cyclin 
D1 reporter gene plasmid (generously donated by Dr Chris 
Albanese, Department of Developmental and Molecular 
Biology, Albert Einstein Cancer Center, Albert Einstein 
College of Medicine, New York, NY, USA) via a DNA 
transfection method (jetPRIME®, Polyplus-transfection® SA, 
Illkirch, France). This reporter gene was constructed from the 
-1,715 to +134 region of the human cyclin D1 promoter (41). 
The medium was replaced with medium containing different 
aloe-emodin concentrations (0, 2.5, 5, 10 and 20 µM) after 6 h 
transfection. For luciferase detection, the cells were incubated 
for another 24 h. Luciferase assays were performed with the 
Dual-Luciferase® Reporter (DLR™) Assay System (Promega 
Corporation, Madison, WI, USA) according to the manufac-
turer's protocol. Detection was conducted with the Centro 
LB 960 microplate luminometer (Berthold Technologies 
GmbH & Co. KG, Bad Wildbad, Germany), and the data were 
calculated as the mean of three independent experiments.

Statistical analysis. All the data were reported as 
means ± standard error or standard deviation, as calculated 
with the statistical software SPSS version 17.0 (SPSS, Inc., 
Chicago, IL, USA). Single factor analysis of variance was used 
for statistical analysis. P<0.05 was considered to indicate a 
statistically significant difference.

Results

AKT and ERK are activated in EC cell lines. Since the 
MEK/ERK and PI3K/AKT signaling pathways are important 
in tumorigenesis, the level of activation of these pathways in 
EC cells was investigated. Cell lysates of different human EC 
cell lines were collected and subjected to western blot analysis 
to detect AKT and ERK phosphorylation. AKT phosphory-
lation at Ser473 was detected in Eca109, TE1 and KYSE140 
cells. ERK phosphorylation was detected in Eca109, TE1 and 
KYSE140 cells. Phosphorylation could not be detected in 
either AKT or ERK in the EC9706 cell line (Fig. 1).

Aloe-emodin suppresses TE1 cell proliferation and 
anchor‑independent cell growth. Aloe-emodin is a substance 

derived from aloe or Rheum palmatum that is effective at 
suppressing cancer cell growth in gastric cancer, prostate 
cancer and colon cancer cells (Fig. 2A) (42,43). To investigate 
the degree to which aloe-emodin can suppress EC cell prolif-
eration, TE1 cell growth and anchor-independent cell growth 
was examined. In the cytotoxicity assay, 90% of the cells 
survived after treatment with 20 µM aloe-emodin for 48 h 
(Fig. 2B). To investigate the level to which aloe-emodin can 
inhibit TE1 cell proliferation, 2.5, 5, 10 and 20 µM aloe-emodin 
was added to the medium of TE1 cells, and CCK-8 assay was 
performed. The data indicated that aloe-emodin suppressed 
TE1 cell proliferation in a dose-dependent manner (Fig. 3A). 
An anchor-independent cell growth assay was performed on 
TE1 cells in the presence of aloe-emodin. The results indicated 
that aloe-emodin could suppress colony formation of TE1 cells 
in a dose-dependent manner (Fig. 3B).

Aloe-emodin inhibits AKT and ERK activity. Aloe-emodin 
was used to inhibit the ERK and AKT-related signaling path-
ways activated in TE1 cells. The western blot data indicated 
that aloe-emodin inhibited the phosphorylation of AKT at 
Ser473 (Fig. 4A). Downstream of AKT, Ser9 phosphorylation 
of GSK3β also decreased in a dose-dependent manner. In addi-
tion, the phosphorylation of ERK and its downstream target, 
RSK2, were also investigated. The results indicated that the 
phosphorylation of ERK at Thr202/Tyr204, RSK2 at Ser360 
and CREB at Ser133 was also inhibited by aloe-emodin treat-
ment (Fig. 4B).

Aloe-emodin inhibits TE1 cell growth by decreasing the 
number of cells in S phase. To investigate the extent to which 
the aloe-emodin-mediated TE1 cell growth was associated 
with cell cycle arrest, cell cycle analysis was performed. The 
data revealed that treatment with increasing concentrations of 
aloe-emodin for 48 h resulted in a dose-dependent decrease in 
the number of cells in S phase (Fig. 5A).

Aloe-emodin inhibits cyclin D1 expression in TE1 cells. 
AKT and its downstream kinase GSK3β regulate cyclin 

Figure 1. AKT and ERK were activated in EC cell lines. Four human EC cell 
lines were cultured, and cell lysates were harvested. A total of 50 µg of cell 
lysates of each cell line were subjected to western blot analysis. The phos-
phorylation of AKT and ERK was evaluated. Representative data of three 
independent experiments are shown. ERK, extracellular-signal regulated 
kinase; EC, esophageal cancer; p-, phosphorylated.
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Figure 4. Aloe-emodin inhibits (A) AKT-glycogen synthase kinase 3β and (B) extracellular-signal regulated kinase-ribosomal S6 kinase activity. Western blot 
analysis of TE1 cells exposed to increasing concentrations of aloe-emodin was performed. Representative data of three independent experiments are shown. 
DMSO, dimethyl sulfoxide; ERK, extracellular-signal regulated kinase; p-, phosphorylated; CREB, cyclic adenosine monophosphate response element-binding 
protein; RSK, ribosomal S6 kinase; GSK3β, glycogen synthase kinase.

  B  A

  A   B

Figure 3. AE suppresses TE1 cell proliferation and anchor-independent cell growth. TE1 cells (5x103) were treated with different concentrations of AE. (A) AE 
significantly inhibited cell proliferation. Absorbance was measured at 24, 48, 72 and 96 h by Cell Counting Kit‑8, as described in Materials and methods. 
Data are shown as means ± SD (*P<0.05 vs. untreated control, n=3). (B) AE significantly suppressed anchor-independent cell growth of TE1 cells. Colonies 
were counted, and data are shown as means ± SD (*P<0.05 vs. untreated control, n=3). DMSO, dimethyl sulfoxide; AE, aloe-emodin; SD, standard deviation. 

  A   B

Figure 2. (A) Chemical structure of aloe-emodin. (B) Toxicity of aloe-emodin in TE1 cells. TE1 cells (2x104) were seeded into 96-well plates in 100 µl of 10% 
fetal bovine serum‑Dulbecco's modified Eagle medium, and incubated in a 37˚C, 5% CO2 incubator overnight. The cells were treated with increasing doses of 
aloe-emodin (1, 5, 10, 25 and 50 µM), and cytotoxicity was analyzed at the indicated times using a Cell Counting Kit-8 (Beyotime Institute of Biotechnology, 
Haimen, China) according to the manufacturer's protocol.
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D1 transcription, which regulates cell transition from 
G1 to S phase (44). To investigate the degree to which 
aloe-emodin-mediated S phase reduction is associated 
with cyclin expression, a cyclin D1 reporter gene assay was 
performed with aloe-emodin treatment. The cyclin D1 reporter 
gene assay demonstrated that aloe-emodin could inhibit cyclin 
D1 transcription activity in a dose-dependent manner (Fig. 5B).

Discussion

Signal transduction pathways have an important role in 
tumorigenesis (45). Both AKT and ERK are important 
molecules in the MEK/ERK and PI3K/AKT signal transduc-
tion pathways (46,47). In the present study, ERK and AKT 
were activated in EC cell lines, including TE1, Eca109 and 
KYSE 140, which implies that these two activation pathways 
are important in esophageal tumorigenesis and development. 
Previous studies have also indicated that both MEK/ERK and 
PI3K/AKT signaling are activated in ESCC (8,48,49). There-
fore, blocking these two pathways is a promising strategy for 
EC treatment and chemoprevention.

Previous research on cancer cells has revealed that 
aloe-emodin has anti-proliferative effects and can induce 
apoptosis at high doses (50). Aloe-emodin suppresses pros-
tate cancer by targeting mTORC2 and inhibiting growth in a 
dose-dependent manner, with a maximal inhibitory effect at a 
concentration of 15 µM (36). By contrast, other studies have 

indicated that aloe-emodin has anti-proliferative effects at 
75 µM and induces apoptosis of human hepatoma Huh-7 cells 
via downregulation of calpain-2 and ubiquitin-protein ligase 
E3A (51). In the present study, aloe-emodin had a cytotoxic 
effect on EC cells. Thus, at lower doses than those previously 
reported (<20 µM), aloe-emodin inhibited TE1 cell prolifera-
tion and anchor-independent cell growth in a dose-dependent 
manner. Cell cycle analysis indicated that aloe-emodin inhib-
ited cell entry into S phase. These data demonstrated that 
aloe-emodin is a promising compound for suppressing the 
growth of EC cells.

Aloe-emodin has been reported to inhibit tumor cell prolif-
eration through various mechanisms (35,50). Aloe-emodin 
induced G2/M arrest and differentiation of cervical cancer 
cells (52), while induced apoptosis of retina ganglion cells 
in glaucomatous patients through regulation of ERK phos-
phorylation (53). Aloe-emodin induced apoptosis, autophagy 
and differentiation of glioma cells by inhibiting the action of 
ERK (54). In the current study, aloe-emodin at low doses inhib-
ited AKT and ERK phosphorylation, which is consistent with 
a previous study by the present authors on prostate cancer cells 
(PC3) (36). However, PTEN loss caused strong activation of 
AKT, which, in turn, attenuated the phospho-ERK signal. This 
may be the explanation for the lack of an effect of ERK (55). In 
the current study, GSK3β and RSK2, the downstream kinases 
of AKT, were also inhibited, as was the phosphorylation of the 
transcription factor CREB. This suggests that aloe-emodin can 
suppress the MEK/ERK and PI3K/AKT signaling pathways. 
However, further investigation is required to determine if this 
is caused by one or several targets. Furthermore, aloe-emodin 
inhibited cyclin D1 transcription in the present study, which 
may be associated with AKT and ERK pathway inhibition.

In conclusion, the present study demonstrated that AKT 
and ERK were activated in EC cells. Aloe-emodin suppressed 
EC TE1 cell proliferation through the inhibition of AKT, ERK 
and their downstream molecules, thus regulating cyclin D1 
transcription. Further studies on aloe-emodin and its potential 
use as a therapeutic agent for EC should be conducted.
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