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Autophagy inhibition augments resveratrol-induced
apoptosis in Ishikawa endometrial cancer cells

TOMOHIKO FUKUDA!, KATSUTOSHI ODA', OSAMU WADA-HIRAIKE', KENBUN SONE', KANAKO INABA',
YUJI IKEDA', CHINAMI MAKII!, AKI MIYASAKA', TOMOKO KASHIYAMA'!, MICHIHIRO TANIKAWA !,
TAKAHIDE ARIMOTO!, TETSU YANO?, KEI KAWANA', YUTAKA OSUGA'! and TOMOYUKI FUJII'

1Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655;
2Department of Obstetrics and Gynecology, National Center for Global Health and Medicine, Tokyo 162-0052, Japan

Received July 25, 2015; Accepted June 16, 2016

DOI: 10.3892/01.2016.4978

Abstract. Resveratrol (RSV), a polyphenolic compound
derived from red wine, inhibits the proliferation of various
types of cancer. RSV induces apoptosis in cancer cells, while
enhancing autophagy. Autophagy promotes cancer cell growth
by driving cellular metabolism, which may counteract the
effect of RSV. The present study aimed to elucidate the corre-
lation between RSV and autophagy and to examine whether
autophagy inhibition may enhance the antitumor effect of
RSV in endometrial cancer cells. Cell proliferation, cell cycle
progression and apoptosis were examined, following RSV
exposure, by performing MTT assays, flow cytometry and
annexin V staining, respectively, in an Ishikawa endometrial
cancer cell line. Autophagy was evaluated by measuring the
expression levels of light chain 3, IT (LC3-II; an autophagy
marker) by western blotting and immunofluorescence. Chlo-
roquine (CQ) and small interfering RNAs targeting autophagy
related (ATG) gene 5 (ATGS5) or 7 (ATG7) were used to inhibit
autophagy, and the effects in combination with RSV were
assessed using MTT assays. RSV treatment suppressed cell
proliferation in a dose-dependent manner in Ishikawa cells. In
addition, RSV exposure increased the abundance of the sub-G1
population and induced apoptosis. LC3-II accumulation was
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observed following RSV treatment, indicating that RSV
induced autophagy. Combination treatment with CQ and RSV
more robustly suppressed growth inhibition and apoptosis,
compared with RSV treatment alone. Knocking down ATG5
or ATG7 expression significantly augmented RSV-induced
apoptosis. The results of the present study indicated that
RSV-induced autophagy may counteract the antitumor effect
of RSV in Ishikawa cells. Combination treatment with RSV
and an autophagy inhibitor, such as CQ, may be an attractive
therapeutic option for treating certain endometrial cancer
cells.

Introduction

Endometrial cancer is the most common gynecologic malig-
nancy, and its incidence is increasing worldwide (1). A strong
association exists between endometrial cancer and metabo-
lism. Individuals with diabetes mellitus or obesity have 1.8
or 1.5-fold higher relative risks for developing endometrial
cancer, respectively (2,3). In addition, metabolic modifiers,
including metformin (an oral antidiabetic drug for type-II
diabetes mellitus), have been reported to induce antitumor
effects in endometrial cancer (4,5).

Resveratrol (RSV) is a natural polyphenol found in a
variety of plant-based foods and beverages, such as red
wine (6). RSV is able to regulate various physiological func-
tions, such as blocking inflammation and protecting against
cardiovascular dysfunctions and obesity (6-8). These activities
suggest that RSV may serve as a promising metabolic modi-
fier in endometrial cancer. Indeed, an antitumor role of RSV
has been reported in endocrine-associated cancers, including
endometrial cancer (9-11). However, the mechanism underlying
its antiproliferative effect is debated. The effects of RSV have
been suggested to be dependent on estrogen, epidermal growth
factor downregulation, protein kinase B (AKT) inactivation, and
adenosine monophosphate-activated protein kinase (AMPK)
activation (11-14). Loss of AMPK activity can promote onco-
genesis (15). Metformin is known to activate AMPK through
liver kinase Bl (LKBI1) phosphorylation, and this activation is
suggested to be involved in its antitumor effect (16). RSV was
previously revealed to activate sirtuin 1 (SIRT1) (17). SIRT1 is
able to deacetylate certain proteins that regulate longevity and
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cellular stress, such as tumor protein p53 (TP53) (18,19). Thus,
various factors are associated with the antitumor effects of RSV.
In addition, cytostatic and cytotoxic effects have been observed
following RSV treatment in cancer cells (20).

By contrast, RSV may also induce oncogenesis. Notably,
RSV is associated with autophagy induction (21-24) and activa-
tion of the Raf/MEK/ERK signal transduction cascade (25).
Autophagy, which literally means ‘self-eating’ is a major degra-
dation system that promotes the lysosomal digestion of organelles
and cytoplasmic components (26). Autophagic activity is
commonly assessed through measuring the expression levels of
microtubule-associated protein 1 light chain 3 (LC3). LC3-II is
a standard marker of autophagic flux and localizes to autophago-
somes. Autophagy-related (ATG) genes 5 (ATG5) and 7 (ATG7)
directly regulate autophagic processes (26). Autophagy has
been suggested to promote cancer progression through driving
cell metabolism (27). Activation of AMPK and/or extracellular
signal-regulated kinase (ERK) signaling was demonstrated to
induce autophagy in human cancers (28,29), which may induce
the antitumor effect of RSV on cancer cells.

Chloroquine (CQ) is an autophagy inhibitor with an
antimalarial effect (30). In addition, CQ and its derivative,
hydroxychloroquine, have been used to treat connective tissue
diseases, including rheumatoid arthritis, systemic lupus erythe-
matosus and Sjogren's syndrome (31-33). CQ exhibits antitumor
effects in vitro and in vivo by inhibiting autophagy, and various
clinical trials have been conducted using CQ in certain types
of cancer (34,35). We recently reported that autophagy inhibi-
tion by CQ suppressed endometrial cancer cell proliferation,
and improved cisplatin sensitivity (36). Therefore, autophagy
inhibition may potentiate the antitumorigenic effects of RSV in
endometrial cancer cells.

The purpose of the present study was to investigate the effects
of RSV on endometrial cancer cell proliferation and autophagy.
In addition, the study also addressed whether autophagy inhibi-
tion enhances the effect of RSV, which would suggest a potential
new treatment strategy for endometrial cancer.

Materials and methods

Chemicals and antibodies. RSV and CQ were obtained from
Sigma-Aldrich (St. Louis, MO, USA). Mouse monoclonal
antibodies against LC3 (#M152-3) and p-actin (#M177-3) were
obtained from MBL International Corporation (Woburn, MA,
USA) and Sigma-Aldrich, respectively. Rabbit monoclonal anti-
bodies against SIRT1 (#ab32441) were purchased from Abcam
(Cambridge, UK). Antibodies against phospho-AMPKa
(p-AMPKa) at Thr172 (#2535), phospho-AKT at Ser473
(#9271P), phospho-Erk1/2 (p44/42 MAPK; #9101), phospho
S6 ribosomal protein at Ser240/244 (#2215), LC3 (#2775),
and cleaved poly (ADP-ribose) polymerase (PARP) (#9544)
were obtained from Cell Signaling Technology, Inc. (Danvers,
MA, USA). An Alexa Fluor 488-conjugated goat anti-mouse
immunoglobulin (Ig)G secondary antibody (#A-11001) was
obtained from Invitrogen, Thermo Fisher Scientific, Inc.
(Waltham, MA, USA).

Cell culture. The Ishikawa endometrial cancer cell line was
provided by Dr Masato Nishida (National Hospital Organiza-
tion Kasumigaura Medical Center, Tsuchiara, Japan). Ishikawa
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cells were grown at 37°C in Dulbecco's modified Eagle's
medium (DMEM) supplemented with 10% fetal bovine serum
(FBS; both obtained from Thermo Fisher Scientific, Inc.) in a
humidified 5% CO, incubator.

MTT assays. Ishikawa cells (3,000 cells/well) were seeded
24 h prior to RSV treatment. Subsequently, the cells were
grown for 72 h in DMEM, which contained increasing doses of
RSV (0.1-200 #M). At the endpoint, 10 ul of the Cell Counting
kit-8 reagent containing the tetrazolium salt WST-8 was added
to the wells, according to the protocol of the manufacturer
(Dojindo, Molecular Technologies, Inc., Kumamoto, Japan),
and absorbance (450 nm) was measured in a microplate reader
(BioTek Instruments, Inc., Winooski, VT, USA). Proliferation
was normalized to absorbance measurements observed in
control cells treated with dimethyl sulfoxide alone.

Cell cycle analysis. Tshikawa cells (5x10° cells/60-mm dish)
were grown in the presence of RSV (25 yuM) for 72 h. Cell
cycle analysis was performed as previously described (36) in
three independent experiments.

Apoptosis measurements by double staining with annexin V
and propidium iodide (PI). Ishikawa cells were plated in
60-mm dishes for 24 h prior to 24 h incubations at 37°C with
the indicated drugs and/or small interfering RNAs (siRNAs),
at the indicated doses. As described previously (36), the cells
were trypsinized, washed two times with phosphate-buffered
saline (PBS), and stained with PI and fluorescein isothiocya-
nate (FITC)-conjugated annexin V, using the FITC Annexin-V
Apoptosis Detection kit I (BD Biosciences, San Jose, CA,
USA), as directed by the manufacturer. Apoptotic cells were
measured as double-positive cells in three independent experi-
ments using a BD FACSCalibur flow cytometer, and expressed
on a percentage basis.

Western blot analysis. Soluble proteins from Ishikawa cell
lysates were extracted as described previously (36), followed
by western blot analysis with the aforementioned primary
antibodies (1:1,000) at 4°C overnight. Bands were detected
using the BioRad Blotting system (BioRad Laboratories, Inc.,
Hercules, CA, USA) with the ECL Select Detection Reagent
(GE Healthcare, Little Chalfont, UK).

Immunofluorescence. Ishikawa cells were cultured in DMEM
in 6-well plates, on glass coverslips coated with PBS containing
0.1% gelatin. After 24-h incubation at 37°C, the medium was
replaced with DMEM alone (control cells) or DMEM supple-
mented with 25 yM RSV. The cells were then incubated for
an additional 48-h. Subsequently, the cells were washed in
PBS, fixed with 4% paraformaldehyde, and permeabilized
with 0.2% Triton X-100 prior to blocking in 6% bovine serum
albumin (Thermo Fisher Scientific, Inc.). The cells were then
incubated overnight at 4°C with a primary anti-LC3 antibody
(diluted 1:200). On the following day, the cells were incubated
for 1 h at room temperature with a secondary Alexa Fluor
488-conjugated goat, anti-mouse IgG antibody (1:200). Nuclei
were counterstained with Hoechst 33342 dye at a 1:1,000
dilution. The slides were analyzed by confocal fluorescence
microscopy (BX50; Olympus Corporation, Tokyo, Japan).
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Gene silencing. Ishikawa cells were grown in culture for 24 h
prior to gene-silencing experiments conducted with Stealth
RNAIi siRNAs against ATG5 or ATG7 (Invitrogen; Thermo
Fisher Scientific, Inc.), using Lipofectamine RNAIMAX
(Invitrogen; Thermo Fisher Scientific, Inc.). A negative control
siRNA was used as a control (Invitrogen; Thermo Fisher
Scientific, Inc.). siRNA transfections were performed as
described previously (36).

Statistical analysis. The data were presented as the
mean + standard error from at least three independent deter-
minations. The significance of differences between =3 samples
were analyzed by one-way analysis of variance and post-hoc
testing, whereas the significance between two samples were
analyzed by a Mann-Whitney U test, using GraphPad Prism,
version 6.0 (GraphPad Software, San Diego, CA, USA). P<0.05
was considered to indicate a statistically significant result.

Results

RSV suppresses the proliferation of Ishikawa cells by apop-
tosis induction. MTT assays were performed in Ishikawa
endometrial cancer cells to assess the antitumor activity of
RSV. RSV inhibited the proliferation of Ishikawa cells in a
dose-dependent manner (Fig. 1A). The half-maximal (50%)
inhibitory concentration IC, value was 20 uM. Cell cycle
analysis was also performed to elucidate whether growth
inhibition by RSV was attributable to cell cycle arrest
or cell death. Cell cycle analysis demonstrated that RSV
caused a significant increase in the abundance of the sub-Gl1
population of Ishikawa cells (Fig. 1B). In addition, annexin
V-PI double staining showed a significant accumulation of
double-positive cells following RSV treatment in Ishikawa
cells (Fig. 1C), indicating that RSV induced apoptosis in
Ishikawa cells. These results suggested that RSV inhibits the
growth of Ishikawa cells, mainly via its cytotoxic effect.

RSV induces autophagy in Ishikawa cells. To elucidate
which proteins are associated with growth inhibition
by RSV, immunoblotting was performed against cell
growth-associated proteins expressed in Ishikawa cells. RSV
markedly increased the expression of p-AMPKa and p-ERK
(Fig. 2A). However, RSV did not increase SIRT1 expres-
sion, or decrease the expression of p-AKT (Fig. 2A). RSV
induced LC3-IT expression, and LC3-immunofluorescence
experiments revealed autophagosome accumulation in the
cytosol of Ishikawa cells following 20 uM RSV treatment
(Fig. 2A and B). These data strongly suggest that RSV acti-
vates AMPK and ERK signaling in Ishikawa cells, with an
induction of autophagy.

Pharmacologic autophagy inhibition by CQ augments
RSV-inducible apoptosis in Ishikawa cells. Next, we
addressed whether RSV-mediated autophagy affects the
RSV antitumor effect in Ishikawa cells, by adding CQ in
combination with RSV. Cell viability was significantly
suppressed by combination treatment (25 yM RSV and
5 uM CQ), compared with RSV treatment alone at 25 yM
(Fig. 3A). Combination treatment induced significant cleaved
PARP accumulation, compared with RSV treatment alone,
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Figure 1. RSV suppresses the proliferation of Ishikawa cells via apoptosis
induction. (A) MTT assays for RSV treatment (0.1-200 M) in Ishikawa cells.
The data are presented as the mean + SE of quadruplicate samples. (B) Cell
cycle analysis in Ishikawa cells given no treatment (Ctrl.; left), or treated
with 25 uM RSV (right). The data are presented as the mean + SE of three
independent experiments. (C) Annexin V-PI double staining in untreated
Ishikawa control cells (left), or cells treated with 25 yuM RSV (right). This
panel shows the percentage of double-positive (apoptotic) cells. ‘P<0.05. The
results are presented as the mean + SE of three independent experiments.
RSV, resveratrol; PI, propidium iodide; SE, standard error.

as determined by western blot analysis (Fig. 3B). In addition,
combination treatment showed a trend towards an increased
population of double-positive (apoptotic) cells in the annexin
V-PI double staining assays (Fig. 3C). These data indicated
that combination treatment with RSV and CQ may induce
greater cytotoxicity in Ishikawa cells, as compared with RSV
treatment alone.
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Figure 2. RSV induces autophagy by modulating various cell growth-associated proteins in Ishikawa cells. (A) Immunoblotting of cell growth-associated
proteins following RSV treatment at three concentrations (0, 25 or 100 xM) in Ishikawa cells. LC3 was separated on the basis of molecular weight. The upper
band was LC3-I (16 kDa) and the lower band was LC3-II (14 kDa), which is a marker of autophagosomes. 3-actin was used as a loading control. (B) Detection
of autophagosomes by LC3 immunofluorescence in Ishikawa cells. Immunofluorescence in untreated cells (left) and in cells treated with 25 xM RSV (right).
These cells were counterstained with Hoechst 33342. Small green dots indicate autophagosome formation. Scale bar, 20 ym. RSV, resveratrol; LC3, light chain

3; SIRT]I, sirtuin 1; pAMPKa, phosphorylated AMP-activated protein kinase o; pAKT, phosphorylated protein kinase B; pERK, phosphorylated extracellular
signal regulated kinase.
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Figure 3. Pharmacologic autophagy inhibition by chloroquine augments RSV-induced apoptosis in Ishikawa cells. (A) Cell viabilities were assessed by
performing MTT assays in three groups, including: Untreated control cells (left), cells treated with 25 yM RSV (middle), and cells administered a combination
treatment with 25 yM RSV and 5 uM CQ (right). Treated cell survival fraction (%) was compared with the non-treated group (set as 100%). The results are
presented as the mean = SE of three independent experiments. “P<0.05. (B) Immunoblotting of cleaved PARP following each treatment, as described above.
p-actin was used as a loading control. (C) Apoptosis was measured by annexin V-PI double staining following each treatment, using the aforementioned RSV
and CQ concentrations. The results are presented as the mean + SE of three independent experiments. RSV, resveratrol; CQ, chloroquine; SE, standard error;
PARP, poly ADP ribose polymerase; PI, propidium iodide.

Autophagy inhibition by ATG5 and ATG7 siRNAs augments  siRNAs for each gene. The efficacy of gene silencing and
RSV-induced apoptosis in Ishikawa cells. To elucidate  autophagy inhibition by these siRNAs was already confirmed
whether RSV-inducible autophagy renders the antiprolif- in our previous report (36). MTT assay revealed that the cells
erative effect of RSV, the core ATGs, ATGS5 or ATG7, were  were more sensitive to RSV when either ATG5 or ATG7 was
knocked down in Ishikawa cells using two independent knocked down (Fig. 4A). Moreover, annexin V-PI double
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Figure 4. Autophagy inhibition by ATG5 and ATG7 siRNA augments RSV-induced apoptosis in Ishikawa cells. (A) MTT assays following RSV treatment
(0.1-200 M) following gene knockdown in Ishikawa cells. Two siRNAs targeting ATG5 (siATGS5-1, siATG5-2; left panel) or ATG7 mRNA (siATG7-1,
siATG7-2; right panel), and a negative control siRNA were used for this assay. The results are presented as the mean + SE of quadruplicate samples. (B) Annexin
V-PI double staining following ATG5 or ATG7 knockdown, with and without 25 yM RSV treatment in Ishikawa cells. Four siRNAs (siATG5-1, siATGS5-2,
siATG7-1, and siATG7-2) and a negative control siRNA (siNC) were used, as described above. Three independent experiments were performed. These results
show the percentage of double-positive cells following each treatment. The results are presented as the mean + SE of three independent experiments. "P<0.05.
ATG, autophagy related gene; RSV, resveratrol; si, small interfering; PI, propidium iodide; SE, standard error; CQ, chloroquine.

staining revealed that RSV-induced apoptosis was enhanced
by silencing ATGS5 or ATG7, whereas the knockdown of
ATGS5, or ATG7, alone did not affect apoptosis in cells without
RSV treatment (Fig. 4B).

Discussion

RSV is an active compound in foods that can prevent cell
proliferation of various types of cancer cells. However, RSV
also induces autophagy, which can promote stress tolerance
and cell survival by maintaining energy production. Therefore,
RSV-associated autophagy may hamper its antitumor effect.
In this study, we focused on i) antitumor activity and apoptosis
induction by RSV, ii) autophagy induction by RSV, and iii) the
efficacy of combined autophagy inhibition and RSV treatment
in Ishikawa endometrial cancer cells.

Initially, the results demonstrated that RSV suppressed the
proliferation of Ishikawa cells. The ICs, value of 20 yM for
RSV in the Ishikawa endometrial cancer cells was lower than
those of cervical, bladder, breast and liver cancer cells (37-39).
This result implies that at least certain endometrial cancer
cells may be more sensitive to RSV treatment than other types
of cancer cells. The antiproliferative effect of RSV on the
tumor cells was revealed to be primarily cytotoxic, not cyto-
static. Although the mechanism underlying RSV induction of

apoptosis remains unclear, AMPK-dependent signaling path-
ways may be associated with its ability to induce apoptosis (40).
Indeed, RSV markedly increased the expression of p-AMPKa
in this study. Although a previous report indicated that RSV
attenuated cancer cell proliferation in a SIRT1-dependent
manner (41), SIRT1 did not accumulate following RSV treat-
ment in Ishikawa cells. Therefore, RSV-induced apoptosis
may be independent from SIRTI. Further investigation is
warranted to elucidate the mechanism underlying apoptosis
induction by RSV.

In addition, autophagy was induced by RSV treatment in
Ishikawa cells, results which were concordant with previous
findings in ovarian and cervical cancer cells (21,23). To our
knowledge, this is the first report of RSV-mediated autophagy
in endometrial cancer cells. Activation of either AMPK or
ERK has also been reported to induce autophagy (29,42).
AMPK Activation inhibits the mammalian target of the
rapamycin (mTOR) signaling pathway, which is frequently
activated via phosphatase and tensin homolog mutations in
endometrial cancers, including Ishikawa cells (43,44). As
activation of mTOR signaling is associated with autophagy
inhibition (45), AMPK activation by RSV may counteract
mTOR-dependent autophagy inhibition (thereby promoting
autophagy) in Ishikawa cells. ERK activation is also associated
with autophagy induction, as well as cell proliferation (29).
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Although the effect of RSV-mediated autophagy on cancer
cells is thought to be cancer-type specific (i.e., tumor
suppressive in glioma and esophageal cancer (46-48), or
tumor-promoting in ovarian and cervical cancer cells (21,23),
the results of the present study suggest that RSV-mediated
autophagy may serve a protective role against apoptosis in
endometrial cancer cells.

Finally, autophagy inhibition by CQ augmented
RSV-induced apoptosis in Ishikawa cells. Moreover, specific
autophagy inhibition by siRNAs against either ATGS5 or
ATGY7 significantly enhanced apoptotic cell death by RSV. We
previously reported that CQ treatment alone caused apoptosis
in endometrial cancer cells (36). The results indicate that
combined RSV and CQ treatment may be a promising thera-
peutic strategy through autophagy inhibition and apoptosis
induction.

This study has several limitations. The precise mechanism
underlying RSV-induced apoptosis and autophagy remains
unclear. Autophagy induction may also be mediated by other
factors that are independent of AMPK and ERK signaling.
Biomarkers for predicting sensitivity to RSV or combined
treatment (RSV+CQ) should be identified for clinical applica-
tions. In addition, the safety and efficacy of combination RSV
and CQ therapy should be examined in in vivo studies.

In conclusion, the results of the present study revealed that
RSV increased apoptosis, and that RSV-mediated autophagy
rendered its apoptotic function in Ishikawa cells. Combined
autophagy inhibition with RSV treatment significantly
augmented apoptosis. Considering that CQ is widely used
in clinical settings, combination RSV/CQ therapy may be a
viable option for treating endometrial cancer.
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