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Abstract. The objective of the present study is to identify 
significant genes and pathways associated with hepatocellular 
carcinoma (HCC) by systematically tracking the dysregulated 
modules of re‑weighted protein-protein interaction (PPI) 
networks. Firstly, normal and HCC PPI networks were inferred 
and re‑weighted based on Pearson correlation coefficient. Next, 
modules in the PPI networks were explored by a clique-merging 
algorithm, and disrupted modules were identified utilizing a 
maximum weight bipartite matching in non-increasing order. 
Then, the gene compositions of the disrupted modules were 
studied and compared with differentially expressed (DE) 
genes, and pathway enrichment analysis for these genes was 
performed based on Expression Analysis Systematic Explorer. 
Finally, validations of significant genes in HCC were conducted 
using reverse transcription‑quantitative polymerase chain 
reaction (RT‑qPCR) analysis. The present study evaluated 
394 disrupted module pairs, which comprised 236 dysregu-
lated genes. When the dysregulated genes were compared 
with 211 DE genes, a total of 26 common genes [including 
phospholipase C beta 1, cytochrome P450 (CYP) 2C8 and 
CYP2B6] were obtained. Furthermore, 6 of these 26 common 
genes were validated by RT‑qPCR. Pathway enrichment 
analysis of dysregulated genes demonstrated that neuroactive 
ligand-receptor interaction, purine and drug metabolism, and 
metabolism of xenobiotics mediated by CYP were signifi-
cantly disrupted pathways. In conclusion, the present study 
greatly improved the understanding of HCC in a systematic 
manner and provided potential biomarkers for early detection 
and novel therapeutic methods.

Introduction

Hepatocellular carcinoma (HCC) is the fifth most 
common cancer worldwide and the third leading cause of 
cancer‑associated mortality (1), which explains the importance 
of identifying novel early diagnostic markers and therapeutic 
targets (2). HCC primarily develops from cirrhosis caused by 
chronic infection with hepatitis B virus or hepatitis C virus 
(HCV), alcoholic injury, and, to a lesser extent, from geneti-
cally determined disorders (3). However, the heterogeneity of 
HCC presents unique challenges in identifying biomarkers 
and exploring molecular pathogenesis in this disease (4).

Identifying genes that are differentially expressed (DE), 
exhibit similar expression profiles to known disease genes, 
are ‘central’ or ‘reachable’ in disease molecular networks, or 
display disease associations according to the literature is the 
main method to evaluate biomarkers (5). In addition, a crucial 
distinguishing factor of cancer genes is their involvement in 
core mechanisms responsible for genome stability and cell 
proliferation (such as DNA damage repair and cell cycle), 
and the fact that these genes function as highly synergetic or 
coordinated groups (6). Therefore, critical to implicating genes 
in cancer is the identification of core modules, including path-
ways and complexes, that are dysregulated in cancer.

Beyond straightforward scoring genes in a gene regulatory 
network, it is crucial to study the behavior of modules across 
specific conditions in a controlled manner in order to under-
stand the disease mechanisms and to identify biomarkers (7). 
For example, Zhang et al (8) have identified tightly connected 
gene co-expression sub-networks across 30 cancer networks 
in various cell lines, and have tracked aberrant modules 
as frequent sub-networks appearing across these cancers. 
However, studying multiple cancers simultaneously makes it 
challenging to discern clearly the intricate underlying mecha-
nisms.

Furthermore, it is important to effectively integrate omics 
data into such an analysis. For example, Magger et al (9) 
combined protein-protein interaction (PPI) and gene expression 
data to construct tissue-specific PPI networks for 60 tissues, 
and used them to prioritize disease genes. A few significant 
genes may not be identifiable through their own behavior, but 
their changes are quantifiable when considered in conjunction 
with other genes (which is known as modules) (10). Therefore, 
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a systematic tracking of gene and module behavior across 
specific conditions in a controlled manner is required. Besides, 
since a number of human genes have not yet been assigned to 
definitive pathways, scoring pathways based on module anal-
ysis has become a more reliable analyzing approach compared 
to individual gene analysis.

Therefore, the present study systematically tracked the 
disrupted modules of re‑weighted PPI networks to identify 
significant DE genes and pathways between normal controls 
and HCC patients, in order to reveal potential biomarkers for 
HCC. To achieve this, normal and HCC PPI networks were 
firstly inferred based on Pearson correlation coefficient (PCC). 
Next the modules in the PPI networks were explored based on a 
clique-merging algorithm, and disrupted modules were identi-
fied by matching normal and HCC modules. Subsequently, the 
gene compositions of the disrupted modules were studied and 
compared with DE genes, and pathway enrichment analysis 
was performed for these genes. Finally, dysregulated genes of 
HCC were validated utilizing reverse transcription‑quantitative 
polymerase chain reaction (RT‑qPCR) analysis.

Materials and methods

Inferring normal and HCC PPI networks
Human PPI network construction. A dataset of literature‑curated 
human PPIs from the Search Tool for the Retrieval of Inter-
acting Genes/Proteins (STRING; string-db.org/), comprising 
16,730 genes and 1,048,576 interactions, was utilized (11). For 
STRING analysis, self-loops and proteins without expression 
value were removed. The remaining largest connected compo-
nent with score >0.75 was kept as the selected PPI network, 
which consisting of 9,273 genes and 58,617 interactions.

Gene expression dataset and dataset preprocess. The 
microarray expression profiles of E-GEOD-14520 (12,13) 
from the ArrayExpress database (www.ebi.ac.uk/arrayex-
press/) were selected for the study. In E-GEOD-14520, there 
were a total of 488 samples, which were processed on two 
platformed. To eliminate the batch effects, only samples 
processed on the GeneChip® Human Genome U133A 2.0 
Array (Affymetrix, Inc., Santa Clara, CA, USA), were 
recruited in the present study, which consisted of 123 samples. 
The gene expression profiles were preprocessed with stan-
dard methods, including background correction via ‘robust 
multiarray average (rma)’ (14), ‘quantiles’ (15), ‘mas’ (16) and 
‘medianpolish’ (14), and were subsequently screened with a 
feature filter method.

Briefly, in order to eliminate the influence of nonspecific 
hybridization, background correction was applied by the 
‘rma’ method (14). The observed perfect match (PM) probes 
were modeled as the sum of a normal noise component N 
(normal with mean µ and variance σ2) and an exponential 
signal component S (exponential with mean α). To avoid 
negative values, the normal was truncated at zero. An adjust-
ment was performed based on the observed intensity O as 
follows:

, where a=s-µ-σ2
α and b=σ. Of note, Ø and Φ were the standard 

normal distribution density and distribution function, respec-
tively. Mismatch (MM) probe intensities were corrected by 
'mas'.

Normalization was performed through a quantiles‑based 
algorithm (15). Specifically, the transformation x'i=F-1[G(xi)]
was used, where G was estimated by the empirical 
distribution of each array and F was estimated using the 
empirical distribution of the averaged sample quantiles. 
Using the ‘mas’ method to conduct PM/MM correction (16), 
an ideal mismatch was subtracted from PM. The ideal MM 
would always be less than the corresponding PM, and thus, 
it could be safely subtracted without the risk of achieving 
negative values.

The summarization method was ‘medianpolish’ (14). A 
multichip linear model was fit to the data from each probe set. 
In particular, for a probe set k with I=1, …, Ik probes and data 
from j=1, …, J arrays, the following model was fitted:

where αi was a probe effect and βj was the log2 expression value.
Next, the data were screened by the feature filter method of 

the genefilter package version 1.54.2 (bioconductor.org/pack-
ages/release/bioc/html/genefilter.html). The gene expression 
value for each gene was obtained, and the number of genes 
with multiple probes was determined to be 12,493.

Re‑weighting gene interactions by PCC. In the present study, 
PCC was selected to re‑weight gene interactions in HCC 
and normal networks. PCC was a measure of the correlation 
between two variables, assigning a value between -1 and +1 
inclusive, and evaluated the probability of two co-expressed 
gene pairs (17). The PCC of a pair of genes (X and Y), which 
encoded the corresponding paired proteins (u and v) inter-
acting in the PPI network, was defined as:

where s was the number of samples of the gene expression 
data; g(X,i) or g(Y,i) was the expression level of the gene X 
or Y in the sample i under a specific condition; ḡ(X) or ḡ(Y) 
represented the mean expression level of gene X or Y, and s(X) 
or s(Y) represented the standard deviation of the expression 
level of the gene X or Y.

If the PCC for X and Y had a positive value, there was a 
positive linear correlation between u and v. In addition, the 
PCC of each gene-gene interaction was defined as the weight 
value of the interaction. By re‑weighting the interactions in 
the generic PPI network of normal and HCC samples, two 
conditional PPI networks were inferred.

Identifying modules from the PPI networks. The present study 
applied a clique-merging algorithm to identify modules of HCC 
and normal controls (18,19). Finding all the maximal cliques 
from the weighted PPI and merging highly overlapped cliques 
were the two steps in the algorithm. The score of a clique C 
was defined as its weighted interaction density dW(C) (20):
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where w(u,v) was the weight of the interaction between u and 
v. The cliques were ranked according to their scores, and the 
maximal cliques were obtained. A depth-first algorithm was 
utilized to enumerate all maximal cliques, and non-maximal 
cliques were effectively removed.

Next, a set of cliques {C1, C2, ..., Ck} was ranked in 
descending order of their scores, and their ordered list was 
assessed by repeatedly merging highly overlapping cliques to 
constructed modules. For a clique Ci, it was estimated whether 
Cj (j>i) existed, such that the overlap |Ci∩Cj|/|Cj| was ≥t. If Cj 
existed, weighted inter-connectivity Iw was used to determine 
whether Cj should be removed or merged with Ci. If Iw(Ci,Cj) 
was ≥m, Cj was merged with Ci; otherwise, it was removed. In 
this setting, t=0.5 and m=0.25 were predefined thresholds for 
merging (6). The Iw between the non-overlapping genes of Ci 

and Cj was calculated as follows:

Comparing modules between HCC and normal control. To 
identify altered modules, normal and HCC modules were 
matched by setting a high tJ, which ensured that the module 
pairs either had the same gene composition or had lost or 
gained only a few genes. The module sets of normal and 
HCC were denoted as S={S1, S2, …, Sm} and T={T1, T2, …, Tn}, 
respectively. The module correlation density dc(Si) or dc(Ti) for 
each Si ε S or Ti ε T was calculated as follows:

The disrupted modules γ(S,T) were identified based on 
a maximum weight bipartite matching (21). The matching 
worked in three steps. For the first step, a similarity graph 
M=(VM,EM) was built, where VM={S∩T}, EM=∩{Si,Tj):J(Si,Tj)≥tJ 

and ∆C(Si,Tj)≥δ, whereby J(Si,Tj)=|Si∩Tj|/|SiUTj| weighted 
every edge (Si,Tj) and was the Jaccard similarity, while 
∆C(Si,Tj) = |dc(Si)-dc(Ti)| was the differential correlation density 
between Si and Tj, being tJ and δ thresholds with 2/3 and 0.1, 
respectively (6). In the second step, the disrupted module pairs 
were identified and ordered in descending sequence of their 
differential density ∆C. In the last step, genes involved in HCC 
were inferred as Γ={g:g ε Si∩Tj, (Si,Tj) ε γ (S,T)} ranked in 
non-increasing order of ∆C(Si,Tj).

Pathway enrichment analysis. The Database for Annotation, 
Visualization and Integrated Discovery (DAVID; david.ncifcrf.
gov/) for Kyoto Encyclopedia of Genes and Genomes (KEGG; 
www.genome.jp/kegg/) pathway enrichment analysis was 
evaluated to further investigate the biological functions of the 
genes in the modules that were altered between the normal 
controls and the HCC patients (22). KEGG pathways with 
P<0.001 were selected based on the Expression Analysis 
Systematic Explorer (EASE; david.ncifcrf.gov/ease/ease.jsp) 
test applied in DAVID. EASE analysis of the regulated genes 

indicated molecular functions and biological processes unique 
to each category (23). The EASE score was used to detected 
the significant categories. In both the functional and pathway 
enrichment analysis, the threshold of minimum number of 
genes for the corresponding term >2 was considered signifi-
cant for a category:

where n=a'+b+c+d was the number of background genes; a' 
was the gene number of one gene set in the gene lists; a'+b was 
the number of genes in the gene list including ≥1 gene set; a'+c 
was the gene number of one gene list in the background genes; 
and a' was replaced with a=a'-1 in EASE.

Identif ication of DE genes. The Linear Models for 
M ic roa r r ay  Da t a  (w w w.bio conduc to r.o rg /pack-
ages/release/bioc/html/limma.html) method was used to 
detect DE genes between HCC patients and normal controls 
based on 12,493 filtered genes. The P-values for all genes were 
converted into the form of -log10 upon being manipulated with 
t and F tests. Linear fit, empirical Bayes statistics and false 
discovery rate correction were applied to the data by using 
the Fit function (bioconductor.org/packages/release/bioc/
manuals/limma/man/limma.pdf) (24). DE genes were identi-
fied for further research with a threshold of P<0.05 and |log2 

fold‑change|>2.

RT-qPCR analysis. RT‑qPCR was used to validate the 
common genes of DE genes and dysregulated genes, which 
was explored by the gene compositions of modules and DE 
genes. Total RNA was prepared from 24 HCC patients using 
TRIzol reagent (Invitrogen; Thermo Fisher Scientific, Inc., 
Waltham, MA, USA). Complementary DNA was synthesized 
using SuperScript® Reverse Transcriptase and oligo(dT) 
primers (Invitrogen; Thermo Fisher Scientific, Inc.). The 
data were normalized to housekeeping gene β-actin, which 
was used as an internal reference, and relative gene expres-
sion levels were determined using the ΔΔCq method (25). 
A total of 8 common genes [including cytochrome P450 
(CYP)2E1, CYP2C9, glutathione S‑transferase Z1, CYP3A4, 
CYP1A2, phospholipase C beta 1 (PLCB1), CYP2C8 and 
CYP2B6] were analyzed, whose primer sequences are listed 
in Table I.

For PCR amplification, each 4 µl reaction contained 10 µl 
of 10X PCR Buffer I (Invitrogen; Thermo Fisher Scientific, 
Inc.), 1 µl of Taq DNA Polymerase (Invitrogen; Thermo Fisher 
Scientific, Inc.), 3 µl of each forward and reverse primer, and 
8 µl of deoxynucleotides. The conditions were as follows: 
2 min at 94˚C for pre-denaturation, followed by 35 cycles of 
10 sec at 94˚C, 15 sec at 59˚C and 30 sec at 72˚C, and a final 
7‑min extension at 72˚C. In total, 10 replicates of the assay 
within or between runs were performed to assess its reproduc-
ibility. Gene expression was examined with an iCycler iQ™ 
Real Time PCR Detection System (Bio-Rad Laboratories, 
Inc., Hercules, CA, USA) using an iQ™ SYBR Green PCR kit 
(Bio-Rad Laboratories, Inc.).
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Results

Analyzing disruptions in HCC PPI networks. A total of DE 
12,493 genes between normal and HCC individuals were 
obtained after preprocessing the gene expression profiles. 
The intersections between these gene interactions and the 
STRING PPI network were investigated, and PPI networks of 
normal and HCC individuals were identified. These networks 
displayed equal numbers of nodes (7,264) and interactions 
(45,286), but the interaction score or weight between two genes 
was different. Fig. 1 reveals that there were significant differ-
ences in the score distribution of the two networks (Fig. 1A), 
while the overall distribution of expression correlations 
between interacting genes of normal and HCC PPI networks 
was similar (Fig. 1B). When the correlation ranged from 0 to 
0.1, the number of interactions reached its maximum value and 
the interaction numbers of HCC were more than that of normal 
controls.

Analyzing disruptions in HCC modules. In the present study, 
a clique‑merging algorithm was selected to evaluate disrupted 

modules between normal and HCC networks. A comparative 
analysis between normal S and HCC T modules was performed 
to understand these disruptions at the module level. As indi-
cated in Table II, 1,810 and 785 modules from normal and 
HCC PPI networks were explored, respectively. The average 
module size (gene number) was 20.175 for normal and 28.851 
for HCC. The maximal module correlation density among 
HCC modules was larger than that of normal modules, and the 
average correlation density of HCC modules was also larger 
than that of normal modules. Furthermore, the distributions of 
correlation density in normal and HCC modules were studied 
(Fig. 2). There were significant differences between normal 
and HCC module distribution when the correlation density 
ranged from -0.2 to 0.1, and the amount of normal modules 
was higher than that of HCC in this range. When the correla-
tion density was >0.2, the number of HCC modules was higher 
than that of normal modules. In addition, Table II also indi-
cated an overall decrease in correlation in the HCC modules. 
Furthermore, this decrease had affected mainly the highly 
correlated modules (Fig. 2). With the thresholds tJ=2/3 and 
δ=0.1, 394 disrupted module pairs [γ(S,T)], were evaluated. 

Figure 1. (A) Score‑wise distribution of interactions. (B) Expression correlation‑wise distribution of interactions in normal and hepatocellular carcinoma. 
HCC, hepatocellular carcinoma.

Table I. Primer sequences for the genes validated by reverse transcription‑quantitative polymerase chain reaction.

 Primers (5'-3')
 -------------------------------------------------------------------------------------------------------------------------------------------------------------------
Genes Forward Reverse Size, bp

PLCB1 AGTCCGCCAAAAAGGACAGT TACAAGAAAGTTGGGCACAGAG 763
CYP2C8 TCTTTCACCAATTTCTCAAAAGTCT CCAAAATTCCGCAAGGTTGTGA 248
CYP2B6 AACCAGACGCCTTCAATCCT GGGGAGTCAGAGCCATTGTC 345
CYP3A43 CAAGGGATGGCACCGTAAGT CCCCACGCCAACAGTGATTA 586
CYP2E1 CTCCTCGTCATATCCATCTG GCAGCCAATCAGAAATGTGG 473
GMNN AAAAACGGAGAAAGGCGCTG GTACAAGAAAGTTGGGCATATACA 335
β-actin AAGTACTCCGTGTGGATCGG TCAAGTTGGGGGACAAAAAG 615

PLCB1, phospholipase C beta 1; CYP, cytochrome P450; GMNN, geminin.
  

  B  A
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Subsequently, γ(S,T) were divided into γ'(S,T) of module pairs 
exhibiting higher correlation density in HCC than in normal 
patients, γ"(S,T) of module pairs with lower correlation in 
HCC than in normal controls, and computed γ'(S,T)=332 and 
γ"(S,T)=62. The absolute differential correlation density ∆C of 
these subsets was calculated, as presented in Table III. Notably, 
the maximal and minimum absolute differential correlation 
density ∆C was similar, and the difference between the average 
∆C of two subsets was only 0.09. Besides, pathway-based 
analysis revealed enrichment for similar terms in both γ'(S,T) 
and γ"(S,T), which was not sufficiently specific to differentiate 
the roles of the two subsets and, therefore, whether compensa-
tory or HCC-driving mechanisms are involved This prompted 
further in-depth analysis of the modules.

In-depth analysis of disrupted modules. Of the 394 disrupted 
module pairs in γ(S,T), gene compositions were studied, 
as represented in Fig. 3. Gene compositions between two 
disrupted modules may be the same (Fig. 3A and B) or different 
(Fig. 3C and D). For the same gene compositions modules, the 
interaction score between two identical genes was different. 
For the different gene compositions modules, the genes and 
interaction scores were all different.

Furthermore, a total of 236 dysregulated genes were evalu-
ated in all the disrupted modules, and pathway enrichment 
analysis was conducted for these genes (Table IV). There 
were 38 pathways within the threshold P<0.001. Neuroac-
tive ligand-receptor interaction (P=1.38x10-22), chemokine 
signaling pathway (P=8.22x10-13), metabolism of xenobiotics 
by CYP (P=8.66x10-12), purine metabolism (P=5.39x10-11) and 
linoleic acid metabolism (P=9.10x10-10) were the five most 
significant pathways.

If a gene existed in a normal module but not in a disrupted 
HCC module, it was called ‘miss’ gene; on the contrary, if a 
gene existed in a disrupted HCC module but not in a normal 
module, it was called ‘add’ gene. The present study evaluated 

58 ‘add’ genes and 87 ‘miss’ genes among 236 dysregulated 
genes of disrupted HCC modules, and collectively referred to 
them as dysregulated genes. The ‘add’ genes were enriched 
in two pathways (neuroactive ligand-receptor interaction and 
purine metabolism), while the ‘miss’ genes were enriched 
in six terms (neuroactive ligand-receptor interaction, purine 
metabolism, pyrimidine metabolism, chemokine signaling 
pathway, gap junction and RNA polymerase). Neuroactive 
ligand-receptor interaction and purine metabolism were 
common pathways of total, ‘add’ and ‘miss’ dysregulated 
genes enrichment analysis; thus, it was inferred that the two 
pathways may be significant terms in HCC development.

To explore the significant genes of HCC in depth, 211 DE 
genes between normal controls and HCC patients were 
identified, and the intersection of DE genes and dysregu-
lated genes was obtained. The 26 common genes are listed 
in Table V. PLCB1 participated in 10 pathways, of which, 
7 were the same as pathways based on dysregulated genes. 
Platelet‑derived growth factor receptor, alpha polypeptide 

Figure 2. Distribution of correlation density of modules in normal and  
hepatocellular carcinoma (inset, zoom into 0.3‑0.5). HCC, hepatocellular 
carcinoma.

Table II. Properties of normal and HCC modules.

 Module correlation density
 -----------------------------------------------------------------------------------
Module set Number of modules Average module sizea Maximal Average Minimum

Normal S 1810 20.175 0.512 0.142 -0.175
HCC T 785 28.851 0.525 0.156 -0.145

aGene number. HCC, hepatocellular carcinoma.
  

Table III. Correlations of matched normal and hepatocellular carcinoma module pairs.

 ∆C
 ----------------------------------------------------------------------------------------------------------------
Module pair subseta No. of pairs Maximal Average Minimum 

γ'(S,T) 332 0.215 0.114 0.100
γ"(S,T) 62 0.211 0.123 0.101

aγ'(S,T)⊆γ(S,T), γ"(S,T)⊆γ(S,T).
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was involved in 9 pathways, whereas 11 common genes 
were not enriched in any pathway. Among these common 
genes, PLCB1, CYP2C8, CYP2B6, alcohol dehydrogenase 
(ADH) 1B, ADH6, CYP3A43, CYP2E1, aurora kinase A, 
decorin, lipoprotein(A), geminin (GMNN ) and alpha‑ 
fetoprotein (AFP), were also ‘add’ or ‘miss’ genes. The path-
ways of metabolism of xenobiotics mediated by CYP and drug 
metabolism both contained 9 common genes.

Validation of common genes based on RT-qPCR analysis. 
Among the common genes, PLCB1, CYP2C8, CYP2B6, 
CYP3A43, CYP2E19 and GMNN were selected as examples to 
validate the results of the present module-based analysis and to 
examine the changes in their expression profiles by RT‑qPCR 
in HCC patients (Fig. 4). These genes were also ‘add’ or ‘miss’ 
genes; among them, PLCB1, CYP2C8, CYP2B6, CYP2E19 and 
GMNN were upregulated DE genes, whereas CYP3A43 was 
a downregulated DE gene. The results revealed that PLCB1, 
CYP2C8, CYP2B6, CYP3A43, CYP2E19 and GMNN in HCC 

Figure 4. Relative expression of PLCB1, CYP2C8, CYP2B6, CYP3A43, 
CYP2E19 and GMNN. The expression of one gene in HCC compared with 
normal controls was indicated by its P-value. All the six genes analyzed were 
significantly differently expressed in HCC (*P<0.001 vs. control). If a gene 
exhibited a P>0.05, it would be not significantly differently expressed; by 
contrast, a gene with P<0.05 was considered to be significantly differently 
expressed. PLCB1, phospholipase C beta 1; CYP, cytochrome P450; GMNN, 
geminin; HCC, hepatocellular carcinoma. 

  C   D

  B  A

Figure 3. Swapping behavior of disrupted modules. A swapping phenomenon means that novel genes replace existing genes, forming physical interactions with 
the remaining ones in these modules within a tumor. (A) A module in normal condition. (B) The paired disrupted module of (A) in hepatocellular carcinoma. 
(C) A normal module. (D) The paired disrupted module of (C). Relative to normal conditions, a novel gene CEBPZ in module (B) replaced the existing gene 
RRS1, and in module (D) a novel gene POLR2F replaced the existing gene GUCY2F. Furthermore, a new POLR2I gene was added. In addition, the interaction 
score changed. Nodes represent genes, while lines represent the interactions between these genes. The thickness of the lines represents the interaction score 
between two genes. PDCD11, programmed cell death 11; BYSL, bystin‑like; NIP7, nucleolar pre‑rRNA processing protein; WDR12, WD repeat domain 12; 
RRS1, ribosome biogenesis regulator homolog; DDX18, DEAD box protein 18; CEBPZ, CCAAT/enhancer binding protein (C/EBP), zeta; ENTPD1, ecto-
nucleoside triphosphate diphosphohydrolase 1; POLR2C, polymerase (RNA) II (DNA directed) polypeptide C; NME4, NME/NM23 nucleoside diphosphate 
kinase 4; GUCY2D, guanylate cyclase 2D; POLR1B, polymerase (RNA) I polypeptide B; GUCY2F, guanylate cyclase 2F; POLR2F, polymerase (RNA) II 
(DNA directed) polypeptide F; POLR2E, polymerase (RNA) II (DNA directed) polypeptide E; POLR2I, polymerase (RNA) II (DNA directed) polypeptide I.
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patients were significantly DE (P<0.001) compared with normal 
controls. Apart from CYP3A43, the other genes possessed 
higher relative expression levels in HCC patients than in normal 
controls, which confirmed the regulation of DE genes.

Discussion

The objective of the present study is to identify dysregulated 
genes and pathways in HCC based on systematically tracking 

the disrupted modules of re‑weighted PPI networks. Normal 
and HCC PPI networks were evaluated by PCC; modules from 
the networks were then identified, and 394 disrupted module 
pairs were obtained. The gene compositions of the disrupted 
modules were studied, and 236 dysregulated genes of these 
modules were identified. When comparing these dysregulated 
genes with 211 DE genes, a total of 26 common genes (including 
PLCB1, CYP2C8 and CYP2B6) were identified. Pathway 
enrichment analysis of dysregulated genes demonstrated that 

Table IV. Pathways based on dysregulated genes in disrupted normal and hepatocellular carcinoma modules.

Term P-value Count

Neuroactive ligand-receptor interaction 1.38x10-22 48
Chemokine signaling pathway 8.22x10-13 31
Metabolism of xenobiotics by cytochrome P450 8.66x10-12 18
Purine metabolism 5.39x10-11 26
Linoleic acid metabolism 9.10x10-10 12
Drug metabolism 1.78x10-09 16
Pyrimidine metabolism 2.80x10-09 19
GnRH signaling pathway 4.74x10-09 19
Phosphatidylinositol signaling system 1.81x10-07 15
VEGF signaling pathway 2.16x10-07 15
Arachidonic acid metabolism 3.40x10-07 13
Progesterone-mediated oocyte maturation 1.24x10-06 15
Vascular smooth muscle contraction 1.31x10-06 17
Inositol phosphate metabolism 1.83x10-06 12
Gap junction 1.91x10-06 15
Fc epsilon RI signaling pathway 2.31x10-06 14
Long-term depression 3.61x10-06 13
Pancreatic cancer 5.73x10-06 13
Glioma 8.95x10-06 12
Non-small cell lung cancer 1.35x10-05 11
Renal cell carcinoma 2.54x10-05 12
Melanogenesis 3.40x10-05 14
RNA polymerase 3.63x10-05 8
Fc gamma R-mediated phagocytosis 1.01x10-04 13
Cell cycle 1.02x10-04 15
Type II diabetes mellitus 1.88x10-04 9
Focal adhesion 1.99x10-04 19
DNA replication 2.02x10-04 8
Prostate cancer 2.40x10-04 12
Chronic myeloid leukemia 2.47x10-04 11
Glutathione metabolism 2.93x10-04 9
Endometrial cancer 3.88x10-04 9
Aldosterone-regulated sodium reabsorption 4.69x10-04 8
Colorectal cancer 6.26x10-04 11
Small cell lung cancer 6.26x10-04 11
Melanoma 7.38x10-04 10
ErbB signaling pathway 8.28x10-04 11
Pathways in cancer 9.62x10-04 24 

GnRH, gonadotropin‑releasing hormone; Fc, fragment, crystallizable; VEGF, vascular endothelial growth factor; ErbB, erythroblastic leu-
kemia viral oncogene.
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Table V. Common genes between differentially expressed genes and dysregulated genes of hepatocellular carcinoma.

Symbol Sum. pathway ‘Add’ gene ‘Miss’ gene Pathways

PLCB1 10 No Yes Long-term depression, GnRH signaling pathway, 
    gap junction, phosphatidylinositol signaling 
    system, vascular smooth muscle contraction, 
    melanogenesis, Wnt signaling pathway, inositol 
    phosphate, chemokine signaling pathway, 
    long-term potentiation
PDGFRA 9 No No Focal adhesion, colorectal cancer, glioma, 
    melanoma, pathways in cancer,
    prostate cancer, gap junction,
    MAPK signaling pathway, regulation of actin
CYP2C9 5 No No Metabolism of xenobiotics by CYP,
    drug metabolism, linoleic acid metabolism,
    arachidonic acid metabolism, retinol metabolism
CYP2C8 5 Yes No Metabolism of xenobiotics by CYP,
    drug metabolism, linoleic acid metabolism,
    arachidonic acid metabolism, retinol metabolism
CYP1A2 4 No No Metabolism of xenobiotics by CYP, 
    drug metabolism, linoleic acid metabolism, 
    retinol metabolism
CYP2B6 4 Yes Yes Metabolism of xenobiotics by CYP, 
    drug metabolism, linoleic acid metabolism, 
    retinol metabolism
GSTZ1 4 No No Metabolism of xenobiotics by CYP, 
    drug metabolism, glutathione metabolism, 
    metabolism
ADH1B 4 Yes No Metabolism of xenobiotics by CYP, 
    drug metabolism, retinol metabolism,  
    tyrosine metabolism
ADH6 4 No Yes Metabolism of xenobiotics by CYP, 
    drug metabolism, retinol metabolism,  
    tyrosine metabolism
CYP3A4 4 Yes No Metabolism of xenobiotics by CYP, 
    drug metabolism, linoleic acid metabolism, 
    retinol metabolism
CYP2E1 4 Yes No Metabolism of xenobiotics by CYP, 
    drug metabolism, linoleic acid metabolism, 
    arachidonic acid metabolism
ADH1A 4 No No Metabolism of xenobiotics by CYP, 
    drug metabolism, retinol metabolism, 
    tyrosine metabolism
CCNB1 3 No No Cell cycle, progesterone-mediated oocyte
    maturation, oocyte meiosis
AURKA 1 No Yes Tyrosine metabolism
DCN 1 Yes No TGF-beta signaling pathway
ASPM 0 No No -
RACGAP1 0 No No -
LPA 0 No Yes -
TOP2A 0 No No -
CENPF 0 No No -
GMNN 0 Yes Yes -
CDKN3 0 No No -
NUSAP1 0 No No -
ECT2 0 No No -
CTH 0 No  No  -
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neuroactive ligand-receptor interaction, purine metabolism, 
metabolism of xenobiotics by CYP and drug metabolism were 
significantly disrupted pathways. In addition, the expression of 
various common genes was validated by RT‑qPCR.

PLCB1 encodes an enzyme that generates the intracellular 
second messenger diacylglycerol inositol 1,4,5-trisphosphate 
from phosphatidylinositol 4,5-bisphosphate (26). PLCB1 has 
been validated as a carcinogen of HCC (27,28). Jia et al (27) 
suggested that PLCB1 was a critical driver gene with causal 
roles in carcinogenesis, and may have an important role in 
HCC pathogenesis. HCC with recurrence exhibited enrich-
ment of upregulated genes mapping to signaling or disease 
pathways associated with cell cycle regulators, including 
genes that encode proteins involved in the molecular mecha-
nisms of cancer control such as PLCB1 (28). The present 
study identified PLCB1 as an upregulated DE gene, and then 
validated it by RT‑qPCR, which was consistent with the 
literature (28).

CYP2C8 and CYP2B6 both encode a member of the 
CYP family of enzymes (29). These enzymes are known to 
metabolize certain xenobiotics, including the anticonvulsive 
drug mephenytoin and the anticancer drugs cyclophosphamide 
and ifosphamide (30). The members of the CYP family, which 
are involved in a myriad of biological processes, were noticed 
to be frequently dysregulated in numerous diseases, including 
liver, prostate and breast cancer as well as leukemia (31,32). 
Furthermore, a numbers of studies have revealed that CYP2C8 
correlated with several cancers, including breast cancer (32), 
ovarian cancer (33) and colorectal cancer (34). Therefore, it 
could be inferred that CYP2C8 was closely associated with 
cancer. In addition, CYP2C8 was primarily distributed in 
the liver, and is the second most abundant member of the 
CYP2C family expressed in this organ (35). Zhang et al (36) 
suggested that CYP2C8 was post-transcriptionally regulated 
by microRNAs in human liver. CYP2C8 was identified as a 
major CYP responsible for morphine N-demethylation in liver 
microsomes (37). In the present study, CYP2C8 was demon-
strated to be an upregulated DE gene, and its expression was 
validated by RT‑qPCR. The results were consistent with those 
from previous studies, which confirmed the feasibility and 
veracity of the present analysis. Therefore. it was concluded 
that CYP2C8 played a carcinogenic role in HCC.

CYP2B6 was an ‘overlooked’ P450 isozyme, which has 
now been recognized to be important for xenobiotic metabo-
lism (38). The expression of CYP2B6 has been investigated 

in a few carcinomas, including breast cancer and HCC (39). 
Lee et al (40) demonstrated that several single-nucleotide 
polymorphisms in the vascular endothelial growth factor, 
insulin-like growth factor 2 and CYP2B6 genes, which are 
relevant to tumor angiogenesis or drug metabolism, predis-
posed to the development of treatment-associated toxicity in 
Korean HCC patients. Furthermore, CYP2B6 expression was 
decreased with liver diseases progressed to the end-stage (41). 
Genome-wide transcriptome analysis in three pairs of 
non‑tumorous livers/HCCs clarified that CYP2B6 messenger 
RNA displayed the lowest expression level in group G3 with 
G1-G6 classification (42). In the present study, it was observed 
that CYP2B6 was an upregulated DE gene, and when validated 
by RT‑qPCR, its relative expression level in HCC was higher 
than that in normal controls. Therefore, CYP2B6 had a close 
association with HCC.

Pathway enrichment analysis revealed the most significant 
pathways in the disrupted modules, including neuroactive 
ligand-receptor interaction, purine metabolism, metabolism 
of xenobiotics by CYP and drug metabolism. It has been 
demonstrated by Liu et al (43) that neuroactive ligand-receptor 
interaction and purine metabolism were both associated with 
HCC, since genes expressed in human liver were involved in 
neuroactive ligand-receptor interaction pathways (31). AFP 
secreted cluster of HCC was involved in disease mutation 
without neuroactive ligand-receptor interaction and in cell 
surface receptor‑linked signal transduction (44). In addition, 
Zhao et al (45) revealed that neuroactive ligand-receptor 
interaction was present in the early-, middle- and late-stages 
of HCC. Therefore, this pathway (neuroactive ligand-receptor 
interaction) appears to be important in HCC progression.

Understanding the mechanism involved in metabolic 
regulation has important implications in both biotechnology 
and medicine. It has been estimated that ≥1/3 of all serious 
health problems are caused by metabolic disorders (46). The 
present study revealed that HCC was correlated with several 
metabolic pathways, including purine metabolism and 
metabolism of xenobiotics by CYP. Purine metabolism may 
serve as the salvage pathway in HCC, as suggested by the 
upregulation of hypoxanthine, and the results reflected meta-
bolic responses to surgical operation in HCC patients (47). 
In addition, the altered purine metabolism pathway provided 
a promising methodology to distinguish cirrhotic HCV 
patients who were at high risk of developing HCC from those 
who had already progressed to HCC (48). The metabolism 

Table V. Continued.

Symbol Sum. pathway ‘Add’ gene ‘Miss’ gene Pathways

AFP 0 No Yes -

Sum pathway, the total number of pathways that the gene participated in. The last 11 genes in the table have not yet been assigned to any 
KEGG pathways, thus the corresponding pathways are not given. PLCB1, phospholipase C beta 1; PDGFRA, platelet derived growth factor 
receptor, alpha polypeptide; CYP, cytochrome P450; GMNN, geminin; GST, glutathione S‑transferase; ADH, alcohol dehydrogenase; CCNB1, 
cyclin B1; AURKA, aurora kinase A; DCN, decorin; ASPM,  abnormal spindle microtubule assembly; RACGAP1, Rac GTPase‑activating 
protein 1; LPA, lipoprotein(A); TOP2A, topoisomerase 2‑alpha; CENPF, centromere protein‑F; GMNN, geminin; CDKN3, cyclin‑dependent 
kinase inhibitor 3; NUSAP1, nucleolar and spindle associated protein 1; ECT2, epithelial cell transforming 2; CTH, cystathionine gamma‑lyase; 
AFP, alpha‑fetoprotein; GnRH, gonadotropin‑releasing hormone; MAPK, mitogen‑activated protein kinase; TGF, transforming growth factor.
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of xenobiotics by CYP is a typical liver-function-specific 
pathway and is important in HCC (49,50). Apart from 
genes involved in metabolic pathways, the present study 
has explored common genes, including CYP2C8, CYP2B6, 
CYP3A43 and CYP2E1, which encode members of the CYP 
family. CYPs are estimated to be involved in the metabo-
lism of drugs, chemicals and endogenous substrates, and 
hepatic CYPs may participate in the pathogenesis of liver 
diseases (51). Thus, the present results were in accordance 
with those from previous studies (47,51).

In conclusion, the present study successfully identified 
significant genes (such as PLCB1, CYP2C8 and CYP2B6) and 
pathways (including neuroactive ligand-receptor interaction, 
purine metabolism and metabolism of xenobiotics mediated 
by CYP), which may be potential biomarkers associated with 
HCC. The current study greatly improved the understanding 
of HCC in a systematic manner and provided potential 
biomarkers for early detection and novel therapeutic methods.
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