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Abstract. There are multiple bioinformatics tools available 
for the detection of coding driver mutations in cancers. 
However, the prioritization of pathogenic non-coding variants 
remains a challenging and demanding task. The present study 
was performed to discriminate non-coding disease-causing 
mutations and prioritize potential cancer-implicated long 
non-coding RNAs (lncRNAs) in liver cancer using a 
logistic regression model. A logistic regression model was 
constructed by combining 19,153 disease-associated ClinVar 
and human gene mutation database pathogenic variants as the 
response variable and non-coding features as the predictor 
variable. Genome-wide association study (GWAS) disease or 
trait-associated variants and recurrent somatic mutations were 
used to validate the model. Non-coding gene features with 
the highest fractions of load were characterized and potential 
cancer-associated lncRNA candidates were prioritized by 
combining the fraction of high-scoring regions and average 
score predicted by the logistic regression model. H3K9me3 
and conserved regions were the most negatively and posi-
tively informative for the model, respectively. The area under 
the receiver operating characteristic curve of the model was 
0.92. The average score of GWAS disease-associated vari-
ants was significantly increased compared with neutral single 
nucleotide polymorphisms (5.8642 vs. 5.4707; P<0.001), the 
average score of recurrent somatic mutations of liver cancer 
was significantly increased compared with non-recurrent 
somatic mutations (5.4101 vs. 5.2768; P=0.0125). The present 
study found regions in lncRNAs and introns/untranslated 
regions of protein coding genes where mutations are most 

likely to be damaging. In total, 847 lncRNAs were filtered 
out from the background. Characterization of this subset of 
lncRNAs showed that these lncRNAs are more conservative, 
less mutated and more highly expressed compared with other 
control lncRNAs. In addition, 23 of these lncRNAs were 
differentially expressed between 12 pairs of liver cancer and 
adjacent normal specimens. The logistic regression model is 
a useful tool to prioritize non-coding pathogenic variants and 
lncRNAs, and paves the way for the detection of non-coding 
driver lncRNAs in liver cancer.

Introduction

The wide application of next-generation sequencing has iden-
tified millions of somatic alterations in cancer genomes (1). 
Certain alterations responsible for oncogenesis are termed 
driver mutations, but the majority remain passenger muta-
tions, which accumulate and have little function in cancer 
progression (2). At present, there are numerous bioinfor-
matics tools available on driver mutation prediction; the tools 
mostly focus on coding mutations that change the amino acid 
residues, for example the sorting tolerant from intolerant 
algorithm (3) and polymorphism phenotyping tool (4). By 
contrast, there are few studies conducted on the evaluation of 
the functional impact of non-coding variants, and identifica-
tion of non-coding drivers in a typical tumor is a challenging 
and unsolved problem.

Recently, the interpretation of non-coding variants has 
been achievable due to the production of high-throughput proj-
ects, such as the Encyclopedia of DNA Elements (ENCODE) 
Consortium (5) and the US National Institutes of Health 
Roadmap Epigenomics project (6). Based on these data, a 
number of tools have been developed to annotate potential 
regulatory variants or suggest the most likely damaging vari-
ants, such as RegulomeDB (7), HaploReg (8) and Funseq (9). 
Despite the high efficiency of functional annotation of 
non-coding variants with these tools, there have been certain 
criticisms of the empirical scoring algorithms, such as lack 
of accuracy and specificity (10). Recently, machine‑learning 
models were introduced and trained on pathogenic variants 
or nearly‑fixed/fixed human derived alleles to better predict 
and score the functionalities of non-coding variants (11,12). 
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Fu et al (13) reported a computational framework, FunSeq2, 
that combines an adjustable data context integrating 
large-scale genomics, such as 1000 Genomes and ENCODE 
data, and cancer resources with a weighted scoring system. 
Variants are scored by combining inter- and intra-species 
conservation, loss- and gain-of-function events for transcrip-
tion-factor binding, enhancer-gene linkages and network 
centrality, and per-element recurrence across samples (13). 
Kircher et al (11) contrasted the annotations of fixed or 
nearly‑fixed derived alleles in humans with those of simu-
lated variants and developed combined annotation-dependent 
depletion (CADD). CADD, as a trained support vector 
machine, measures deleteriousness, which may be measured 
systematically across the genome assembly (14). Implemen-
tation of CAAD successfully differentiated 14.7 million 
high-frequency human-derived alleles from 14.7 million 
simulated variants.

Long non-coding RNAs (lncRNAs) are a class of 
mRNA-like transcripts ranging between 200 bp and 100 kb 
in size. lncRNAs lack significant open‑reading frames and 
are not translated into proteins. There has been a large 
number of studies that reported lncRNAs to be involved in 
a wide range of physiological processes by regulating gene 
expression at various levels, including chromatin architec-
ture, transcription, RNA splicing, and protein translation 
and turnover (15-19). Previously, the role of lncRNAs as 
drivers of tumor suppressive and oncogenic functions has 
been reported in prevalent cancer types. For example, HOX 
transcript antisense RNA (HOTAIR) expression is high in 
breast cancer tumors that are predisposed to metastasize, 
and the inhibition of HOTAIR expression blocks metastasis 
in mouse models (17). Metastasis associated lung adenocar-
cinoma transcript 1 (MALAT1) expression correlates with 
metastasis and overall survival rate in lung cancer (18). 
An increasing number of studies have explored methods 
to identify non-coding driver genes in cancers (19-21). 
Du et al (19) selected lncRNAs in recurrent somatic 
copy‑number alterations (amplification) regions as candidate 
drivers. Knockdown of either prostate cancer-associated 
non coding RNA 1 (PCAN-R1) or 2 (PCAN-R2), which 
are the two most notably differentially expressed lncRNAs 
between normal prostate tissue and primary prostate cancer, 
resulted in substantial decreases in cell growth and colony 
formation in the androgen-dependent prostate cancer LNCaP 
cell line, suggesting that PCAN-R1 and PCAN-R2 have 
tumor-promoting functions in prostate cancer (19).

While numerous studies have investigated generalized 
variants (7,9,11,12), this is not the case for cancer‑specific 
somatic mutations. In the present study, a liver cancer‑specific 
annotation, mainly from the ENCODE project, was used to 
investigate whether a combination of non-coding features 
may be predictive for non-coding pathogenic variants. This 
scoring system was then added to prioritize cancer-associated 
lncRNAs in liver cancer.

In a previous study, we successfully constructed a logistic 
regression model to score the functionalities of non-coding 
variants using an array of lung cancer‑specific features (22). 
Considering the function impact of non-coding variants is 
largely feature and cancer type-dependent, in the present 
study, another logistic regression model was created based 

on a liver cancer‑specific feature annotation to interpret the 
function information of non-coding pathogenic variants. 
Subsequently, this scoring system was applied to prioritize 
cancer-associated lncRNAs in liver cancer. 

Materials and methods

Cancer mutation and pathogenic variant data. A total of 
881,136 somatic mutations of human liver cancer were detected 
by whole-genome sequencing of 88 pairs of cancer and normal 
tissues. This data was obtained from the supplementary data 
files of the study by Alexandrov et al (23). Recurrent cancer 
mutation was defined as mutations that are recurrently 
mutated at least two times at the same site across multiple 
samples. Non-recurrent mutation denotes mutations that only 
occur once in all patients. In total, 1,121 mutations of liver 
cancer were defined as recurrent and the remaining mutations 
were considered to be non-recurrent. Germline polymorphism 
data comprising 38,248,779 single nucleotide polymorphisms 
(SNPs) was downloaded from the 1000 Genome project 
pilot 1 (24). SNPs with a derived allele frequency ≤0.01 were 
considered neutral SNPs. Rare SNPs are the SNPs with an 
allele frequency <0.01. Disease-associated variants data 
contained in ClinVar and the human gene mutation database 
(HGMD) are published gene variants responsible for human 
inherited diseases (25,26). Genome-wide association study 
(GWAS) SNPs from GWAS (27) are numerous common 
genetic variants associated with a trait or disease.

Genome‑wide feature sets. Human genome annotations were 
obtained from Gencode (28), including protein coding genes, 
exons, introns, lncRNAs, lncRNA exons, introns, untrans-
lated regions (UTRs) and non-coding exons (ncExon) (28). 
The 5' splicing sites are 10 nucleotides from the 5' end of the 
introns of genes. The 3' splicing sites are 50 nucleotides from 
the 3' end of the introns of genes (29). Evolutionarily conserved 
bases were identified using a recently published analysis of 
46 mammalian genomes (30). Genome-wide phastCons scores 
were obtained from the study by Siepel et al (31). Sensitive 
regions from the study by Khurana et al (9) consist of binding 
sites or motifs of important transcription factors and contain 
a higher fraction of rare SNPs. Evolutionarily conserved 
structures (ECSs) from the study by Smith et al (32) are RNA 
secondary structures predicted using comparative structure 
prediction algorithms based on multiple genomes. Promoters, 
which are regions 2.5 kb from the transcription start sites, 
were generated by the Gerstein lab and are publicly available 
for download (9). RNA sequencing (RNA-seq) data in bam 
format, transcription factor binding sites (TFBSs), DNase I 
hypersensitive sites (DNase I), histone modification data, 
including H3K4me1 and H3K9ac, of the Hepg2 cell line were 
acquired from ENCODE (33). Conserved TFBSs are transcrip-
tion factor binding sites conserved in the human/mouse/rat 
alignment and obtained from UCSC directly (30). The expres-
sion level was calculated by counting the number of reads 
per kb per million reads (RPKM) for each protein coding 
gene and lncRNA. Genes with a RPKM >20 or <0.25 were 
defined as high and low‑expressed regions, respectively. A 
wavelet-smoothed, weighted average signal, with high and 
low values that indicate early and late replication during the 
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S phase, respectively (33), was used in the present study. 
Genome-wide replication timing was mapped to protein 
coding genes and lncRNAs, and an early-to-late ratio was 
calculated for each protein coding gene and lncRNA, as 
follows: Early-to-late ratio = (G1b + S1) / (S4 + G2). As the 
early-to-late ratio is >1, genes are considered early replicated, 
while late replicated genes have an early-to-late ratio <1.

Cancer lncRNAs, consisting of 25 lncRNAs, are a cura-
tion of mammalian long non-coding transcripts that have 
been experimentally shown to be associated with a variety of 
cancer types (22). A list of cancer census genes was obtained 
from the current release of catalogue of somatic mutations in 
cancer (COSMIC) v71 (34).

Logistic regression model. The disease-implicated set of 
variants was composed of all pathogenic variants from the 
ClinVar and HGMD databases. Subsequent to the removal 
of coding variants, a set of 19,153 non-coding disease-impli-
cated single nucleotide variants (SNVs) remained. For the 
control sets, neutral variants with a minor allele frequency 
≥1% were used to reduce the possibility of including func-
tional rare SNPs. A total of 15,789,242 potential control 
SNVs were included in the model. In the logistic regression 
model, a matrix of 395,279 rows was formed throughout 
the non-coding genome; each row represents one type of 
combination of features. A disease-implicated set of variants 
was used as success (disease-causing variant), neutral SNPs 
were used as control, and the 26 genomic binary features 
were used as the predictor variable. The logistic regression 
model was constructed using a general linear model, and the 
receiver operating characteristic (ROC) curve was generated 
using a script in R generated by the present authors. The 
scores were predicted using the model for GWAS, neutral 
SNPs, non-recurrent and recurrent somatic mutations of liver 
cancer and then scaled using the following formula: Scaled 
score = log (predicted score x 106).

Prioritization of cancer‑associated lncRNA candidates. In 
order to filter out potential functional lncRNAs involved in 
liver cancer, two different strategies were utilized. First, the 
fraction of high scoring regions and the average score for each 
lncRNA were calculated. Secondly, the top 10% of lncRNAs, 
which contained the highest fraction of high-scoring regions, 
and the 10% lncRNAs that had the highest average score 
were determined, and a subset of overlapping lncRNAs 
were generated by intersection of the two different lncRNAs 
sets, forming 847 functional lncRNA candidates, and the 
remaining lncRNAs were considered to be control lncRNAs.

RNA‑seq data processing and expression analyses. The 
RNA-seq data of 12 pairs of liver cancer samples were 
obtained from the study by Zhang et al (GSE63863) (35). 
The reads were aligned to the hg19 genome using TopHat2 
version 2.0.13 (36). Read counts were calculated with 
BEDTools v2.22.1 for each lncRNA (37). The relative 
expression level was calculated as the RPKM + 1 and then 
log scaled for each lncRNA. DESeq2 Release (3.0) (38) was 
used to identify differentially expressed transcripts between 
tumor and normal pairs, with a false discovery rate (FDR) 
cutoff of ≤10-4 and absolute fold change cutoff of ≥1.5.

Statistical analyses. The data were expressed as the mean 
values. The difference between groups was tested using the 
two-sided Mann-Whitney rank sum test (wilcox.test) or 
Fisher's exact test (fisher.test) in R. P<0.05 was considered to 
indicate a statistically significant difference.

Results

Logistic regression model successfully discriminates between 
functional non‑coding variants and neutral variants. Density 
of disease-causing variants estimates showed that different 
features exhibit differential enrichment of deleterious vari-
ants (Fig. 1A). Conserved regions, conserved TFBS, UTRs, 
high-expressed regions and promoters showed the highest 
densities of disease-causing variants. By contrast, H3K9me3, 
late-replicated regions, ECSs, H2az and H3K27me3 are the 
least enriched features in disease-causing variants, indicating 
that various non-coding features have varied importance to the 
functionalities of non-coding variants. The present study used 
a logistic regression model to build a classifier to discriminate 
between the disease-associated and control variants. The 
present study analyzed the features that contribute most to the 
discriminative power of the present model (Fig. 1B). Generally, 
the present study observed that conserved regions, early-repli-
cated regions, promoters, H3K36me3 and conserved TFBSs 
are the most positive factors contributing to the model, while 
H3K9me3, H3K79me2, H4K20me1 and ncExon are the most 
negative factors affecting the prediction capability of the model. 
The ROC curve for the classifier is shown in Fig. 1C. The area 
under the ROC curve (AUC) is 0.92, which demonstrates that 
the present model may discriminate between disease-implicated 
and control variants with a high specificity and sensitivity.

To establish whether the present prediction scores are 
likely to be generalizable to other data sets, the current study 
conducted experiments that demonstrate how the predicted 
scores may be applied to prioritize candidate functional vari-
ants. For the first experiment, non-coding variants associated 
with complex disease from genome-wide association studies 
(GWAS) were annotated. It was found that non-coding GWAS 
SNVs had a significantly higher average score compared with 
control variants (mean score, 5.8642 vs. 5.4707; P<0.001; 
two-sided Mann-Whitney U test; Fig. 1D).

Recurrence is considered to be one potential sign of posi-
tive selection among tumors and is more likely to be associated 
with driver events (33). As an application to cancer studies, the 
present study annotated non-coding somatic mutations identi-
fied in whole‑genome sequencing studies from 88 liver cancer 
samples. The present study identified recurrent somatic muta-
tions that had occurred at the same site in multiple samples 
(n=1,121 mutations) and found that these recurrent mutations 
were assigned a significantly higher average score compared 
with non-recurrent mutations (5.4101 vs. 5.2768; P=0.0125, 
Mann‑Whitney U test; Fig. 1D). This finding demonstrates that 
this approach may be useful in the detection of cancer driver 
mutations in liver cancer.

High‑scoring regions define cancer ‘hotspots’ in introns, UTRs 
and lncRNAs. The present study defined 100‑mb non‑coding 
regions that had the highest scores predicted by the model 
as high-scoring regions, and gene features with the highest 
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fractions of high-scoring regions were sought. Features with 
the highest fractions of high scoring regions included intronic 
5' and 3' splice sites and 3'-UTRs (Fig. 2A). Splicing sites were 
scored significantly higher compared with adjacent intronic 
regions in protein coding genes (9.3463 vs. 8.3263; P<0.01; 
Fig. 2B) and lncRNAs (8.2544 vs. 7.9248; P<0.001; Fig. 2B). 
Furthermore, known cancer genes from COSMIC have 
significantly more high‑scoring regions in the gene introns and 
UTRs compared with non-cancer genes (0.0850 vs. 0.0640; 
P<0.001; Fig. 2C). In general, lncRNAs do not contain a large 

fraction of high-scoring regions (Fig. 2C). However, the known 
cancer‑associated lncRNAs showed a significantly increased 
fraction of high-scoring regions as compared to general 
lncRNAs (0.0997 vs. 0.0404; P<0.001; Fig. 2C). For example, 
HOTAIR and MALAT1 are among the top 10% of lncRNAs 
with respect to overlap with high-scoring regions (Fig. 2D).

Prioritization of liver cancer‑associated lncRNAs with the 
scoring system. In the present study, 847 lncRNAs were iden-
tified by combining the fraction of high‑scoring regions and 

Figure 1. (A) Density of disease-causing variants from the ClinVar database and human gene mutation database associated with different genome features 
(red line, the average in the human genome). Different features exhibit differential enrichment of deleterious variants, with conserved regions highest and 
H3K9me3 lowest. (B) Regression coefficient for each feature. (C) Receiver operating characteristic curve for the logistic regression model. (D) Predicted scores 
for GWAS, neutral SNPs, and non-recurrent and recurrent somatic mutations of liver cancer. The scores were scaled using the formula ‘scaled score = log 
(predicted score x106)’. GWAS disease associated variants and recurrent somatic mutations of liver cancer showed elevated average scores as compared with 
neutral SNPs and non-recurrent somatic mutations respectively. TFBS, transcription factor binding site; cTFBS, conserved TFBS; UTR, untranslated region; 
CR, conserved region; SNP, single nucleotide polymorphism; Sensitive, known regions with a high ratio of rare SNP (allele frequency <0.01); ER, early repli-
cated regions; LR, late replicated regions; HE, high expressed regions; LE, low expressed regions; ECS, evolutionarily conserved structure; Dnase I, Dnase I 
hypersensitive site; H3K/H4K, histone modification data; ncExon, non‑coding exon; TPR, true positive rate; FPR, false positive rate.
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the average score of lncRNAs. Among these are lncRNAs 
that are known to be cancer-associated, such as MALAT1, 
HOTAIR and growth arrest specific 5 (GAS5). This final subset 
of lncRNAs was found to be significantly more conserved 
compared with other control lncRNAs, in terms of fraction 
of conserved regions (0.1635 vs. 0.0536; P<0.001; Fig. 3A) 
and phastCons score (0.2813 vs. 0.2644; P<0.001; Fig. 3B). 
It was also observed that this subset of lncRNAs had a lower 
somatic mutation density compared with the control lncRNAs 
(219.4753 vs. 329.7922 mutations/Mb; P<0.001; Fig. 3C); 
RNA-seq data of 12 pairs of liver cancer samples were obtained 
from the study by Zhang et al (35). Read alignment was 
conducted using TopHat2 and coverage was calculated for each 
lncRNAs using BEDTools. It was found that the list of lncRNA 

candidates had increased average expression levels compared 
with the control lncRNAs in cancer and normal samples [log 
scaled (RPKM+1), 1.3868 vs. 0.6327; P<0.001; Fig. 3D]; DESeq2 
was used to evaluate the different expression of lncRNAs in 
12 pairs of liver cancer and adjacent normal samples. lncRNAs 
with FDR ≤10-4 and absolute fold change ≥1.5 were considered 
to be differentially expressed. In total, there were 353 lncRNAs 
that met the selection criteria, 23 of which are among the list of 
potentially cancer-associated lncRNAs (Fig. 4).

Discussion

It is evident that only a small subset of genetic variations 
contributes to tumor evolution by providing cells with a 

Figure 2. Characterization of high-scoring genome regions in liver cancer. (A) Fraction of high-scoring genome regions in various non-coding features. 
Features with the highest fractions of high-scoring regions included intronic 5' and 3' splice sites and 3'-UTRs. (B) Average score in protein-coding gene and 
lncRNA introns near the 5'-splice site (left) and 3'-splice site (right). The scores were predicted by the model and scaled using the formula ‘scaled score = log 
(predicted score x106)’. Splicing sites were scored significantly higher compared to adjacent intronic regions in protein coding genes and lncRNAs (C) Fraction 
of high scoring regions in different gene classes. Known cancer genes from COSMIC and cancer associated lncRNAs had an increased fraction of high-scoring 
regions as compared to non-cancer genes and general lncRNAs respectively. (D) Kernal density plot of fraction of high-scoring regions in lncRNAs; HOTAIR 
and MALAT1 are two exemplary cancer lncRNAs that contain high coverage of high-scoring regions. Distribution of fraction of high-scoring regions in 
lncRNAs. lncRNA, long non-coding RNS; PC gene, protein coding gene; 5'SS, 5' splicing site 10 nucleotides from the 5'-end of introns of genes; 3'SS, 3' 
splicing site 50 nucleotides from the 3'-end of introns of genes; UTR, untranslated region; MALAT1, metastasis associated lung adenocarcinoma transcript 1; 
HOTAIR, HOX transcript antisense RNA.
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selective advantage over their neighbors (10). The damaging 
impact of coding mutations may be evaluated efficiently with 
a variety of tools; however, functional annotation of mutations 
in the non-coding fraction of the human genome is markedly 
more obscure and challenging.

Recently, GWAVA used all variations annotated as 
‘regulatory mutations’ from the public release of HGMD and 
combined annotations to build three random forest classifiers 
that prioritize disease-associated variants (12); however, this 
study focused on regulatory mutations of the HGMD database 
and predicted regulatory pathogenic variants, which was 
incomplete and limited in scope to the regulatory regions. 
The present logistic regression model included all non-coding 
pathogenic variants from HGMD and ClinVar databases, 
which allows for evaluation of damaging impact of any variant 
in the non‑coding genome. Furthermore, a liver cancer‑specific 
annotation was used, which facilitated the identification of 
driver mutations in a liver cancer-specific fashion. It was 

Figure 4. Expression profile for 23 differentially expressed long non‑coding 
RNA candidates.

Figure 3. Characterization of functional candidates in liver cancer. (A) Fraction of conserved regions in functional candidates, controls and IRs; functional 
candidates contain increased enrichment of conserved regions in comparison with controls and IRs. (B) Average phastCons scores for functional candidates, 
controls and IRs; functional candidates show higher average phastCons scores than controls and IRs. (C) Average densities of somatic mutations for func-
tional candidates, controls and IRs; functional candidates are less frequently mutated compared with controls and IRs. (D) Relative expression [log scaled 
(RPKM+1)] for functional candidates, controls and IRs; functional candidates are overexpressed compared with controls and IRs. lncRNA, long non-coding 
RNA; candidate, lncRNA candidate; control, control lncRNA; IR, intergenic regions; RPKM, reads per kb per million reads.
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found that non-coding features, such as conserved regions, early 
replicated regions, promoter, H3K36me3, conserved TFBS, 
sensitive regions, TFBS, H3K4me3 and H3K9ac are among 
the positive factors that most contribute to the model. Histone 
modifications, such as H3K4me3 and H3K9ac, are hallmarks 
of actively transcribed protein-coding promoters in eukaryotes, 
and H3K36me3 has long been associated with the gene bodies 
of actively transcribed genes (40). All these findings support the 
hypothesis that conserved regions and regulatory elements play 
notable roles in the formation and functionality of pathogenic 
variants in the non-coding genome.

The AUC demonstrates how well a classifier can discrimi-
nate between disease and control variants; the AUC of the 
present logistic regression model was as high as 0.92, which 
showed a reliable and high‑efficient performance. Furthermore, 
the present study showed the utility of the present model by 
providing two types of examples of common experiments using 
disease or trait-associated GWAS variants and recurrent cancer 
mutations. The present study demonstrates that the present 
model effectively discriminates non-coding GWAS SNVs 
from control variants. Recurrence of somatic mutations is a 
widely used proxy of likely function; the present scoring system 
scored recurrent mutations significantly higher compared with 
non-recurrent mutations, suggesting this approach may allow 
for the identification of cancer driver mutations.

With respect to the distribution of high scoring regions 
identified by the present model, it was found that splicing 
sites of either protein coding genes or lncRNAs and UTRs 
were most enriched with the highest fraction of high scoring 
regions, as these regions are highly evolutionarily conserved 
across mammals (41). Notably, it was found that known cancer 
genes and cancer-implicated lncRNAs contain a higher fraction 
of high-scoring regions compared with non-cancer-associated 
counterparts. Two typical examples are MALAT1 and HOTAIR, 
which have been involved in the tumorigenesis and progression 
in a variety of cancer types (17,18,42-47). The fraction of high 
scoring regions and average score predicted by the present 
model was combined for each lncRNA and filtered out the a 
subset of functional lncRNA candidates, which include experi-
mentally characterized functional lncRNAs, such as MALAT1, 
HOTAIR, HOXA transcript antisense RNA, myeloid‑specific 1 
and GAS5. The present study found that this small subset of 
lncRNAs are more conserved, less mutated and demonstrate 
increased expression compared with the control lncRNAs, and 
23 of the 847 lncRNAs identified are differentially expressed in 
12 pairs of liver cancer and normal samples. These lncRNAs 
are notable candidates for experimental validation and charac-
terization in future studies.

Overall, the present study defined a scoring system for 
evaluating the damaging effect of non-coding variants in liver 
cancer. This system allows the identification of putative harmful 
mutations in a liver‑cancer specific fashion in the introns and 
UTRs of mRNAs, as well as prioritizing a number of lncRNA 
candidates for additional experimental validation.
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