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Curcumin potentiates the effect of chemotherapy against
acute lymphoblastic leukemia cells via downregulation of NF-xB
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Abstract. Acute lymphoblastic leukemia (ALL) accounts for
30% of all pediatric cancers. Currently available treatments
exhibit toxicity and certain patients may develop resistance.
Thus, less toxic and chemoresistance-reversal agents are
required. In the present study, the potential effect of curcumin,
a component of Curcuma longa, as a pharmacological
co-adjuvant of several chemotherapeutic agents against ALL,
including prednisone, 6-mercaptopurine, dexamethasone,
cyclophosphamide, l-asparaginase, vincristine, daunorubicin,
doxorubicin, methotrexate and cytarabine, was investigated
in the REH ALL cell line cultures treated in combination
with chemotherapeutic agents and curcumin. The results of
cell viability, gene expression and activation of NF-kB and
caspase 3 indicated that curcumin potentiates the anticancer
effects of the aforementioned chemotherapeutic agents in
the REH ALL cell line. Following treatment with the above
chemotherapeutic agents, curcumin enhanced caspase-3 acti-
vation and downregulated nuclear factor-kappa B (NF-«B)
activation. Curcumin also downregulated the oxidative stress
induced by certain chemotherapies. Notably, curcumin did
not affect the gene expression of cell survival proteins such
as B-cell lymphoma (Bcl)-2, Bcl-extra large, survivin, c-Myc
and cyclin D1, which are regulated by the NF-xB transcription
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factor. In conclusion, curcumin has the potential to improve
the effect of chemotherapeutic agents against ALL.

Introduction

Acute lymphoblastic leukemia (ALL) is one of the most
malignant types of hematological disease, which accounts
for 30% of all pediatric cancers (1). Chemotherapeutic
drugs commonly used for ALL treatment include predni-
sone, 6-mercaptopurine, dexamethasone, cyclophosphamide,
l-asparaginase, vincristine, daunorubicin or doxorubicin,
methotrexate and cytarabine; with overall cure rates of 80%
(Fig. 1) (2). However, a significant number of patients develop
resistance to these drugs and outcome is poor among patients
who relapse (2). The pathogenesis of ALL includes changes
in gene expression, which are regulated by diverse transcrip-
tion factors (3) such as nuclear factor-kappa B (NF-kB), which
has been associated with cell proliferation and survival (4).
Additionally, in solid tumors, NF-xB exhibits an important
function in invasion, angiogenesis, aggressive tumor growth
and chemoresistance (4-6). Constitutive activation of NF-xB
is observed in ~92% of pediatric ALL patients (7) and thus is
one of the targets for chemosensitization.

Since ~80% of clinical drugs are derived from natural
products, numerous compounds have been identified that
downmodulate NF-kB (8). Curcumin (diferuloylmethane), a
polyphenol derived from the plant Curcuma longa, has been
demonstrated to inhibit NF-kB activation, which is induced by
a wide variety of carcinogens and chemotherapeutic agents (9).
The use of curcumin was classified by the USA Food and
Drug Administration as ‘generally recognized as safe’ (10).
Furthermore, various clinical trials indicate that curcumin
may be administered at oral doses as high as 8 g/day with no
side effects (11).

The aim of the present study was to investigate the potential
anticancer effect of curcumin on the human REH ALL cell line,
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when administered alone and in combination with currently
used therapies. The results indicate that curcumin potentiates
the effect of chemotherapeutic agents against ALL cells by
activation of caspase-3 through downregulation of oxidative
stress, NF-kB activation and various NF-kB-regulated cell
survival gene products.

Materials and methods

Reagents. Curcumin and sodium dodecyl sulfate were obtained
from Sigma-Aldrich (St. Louis, MO, USA). Penicillin, strepto-
mycin, RPMI-1640 medium, phosphate-buffered saline (PBS),
fetal bovine serum (FBS) and TagMan Assays for B-cell
lymphoma (Bcl)-extra large (xL), Bcl-2, cyclin DI, survivin,
c-Myc and beta-glucuronidase (GUSB) were obtained from
Life Technologies (Thermo Fisher Scientific, Inc., Waltham,
MA, USA). DNA and RNA extraction was performed using
QIAzol Lysis reagent and QIAmp Circulating Nucleic Acid kit,
which were obtained from Qiagen GmbH (Hilden, Germany).
Monoclonal anti-NF-xB (dilution, 1:50; cat. no. A88940),
anti-cluster of differentiation (CD)45 (dilution, 1:10;
cat. nos. IM2652U and IM0782U) and anti-caspase-3 (dilu-
tion, 1:50; cat. no. A88950) antibodies, 7-aminoactinomycin D
(7-AAD) viability dye, PerFix EXPOSE Phospho-Epitopes
Exposure kit and IntraPrep™ permeabilization reagent were
obtained from Beckman Coulter, Inc. (Brea, CA, USA).
Anti-NF-kB p65 antibody (dilution, 1 pug; cat. no. sc-8008)
was obtained from Santa Cruz Biotechnology, Inc. (Dallas,
TX, USA). Highly sensitive 8-hydroxy-2'-deoxyguanosine
(8-OHdG) was supplied by the Japanese Institute for the
Control of Aging (Fukuroi, Japan). Prednisone, 6-mercapto-
purine, dexamethasone, cyclophosphamide, l-asparaginase,
vincristine, daunorubicin, doxorubicin, methotrexate and
cytarabine were provided by PiSA Farmacéutica (Guadalajara,
MEéxico).

Cell culture. The REH cell line (St. Jude Children's Research
Hospital, Memphis, TN, USA) was cultured in RMPI-1640
medium supplemented with 100 U/ml penicillin and 100 g/ml
streptomycin with 10% FBS in a humidified incubator at 37°C
with an atmosphere of 5% CO,. Next, 5x10° REH cells were
treated for 48 h in triplicate with 125 pg/ml prednisone,
250 pg/ml 6-mercaptopurine, 0.4 ug/ml dexamethasone,
50 pg/ml cyclophosphamide, 5 U l-asparaginase, 25 pg/ml
vincristine, 1 pg/ml daunorubicin, 0.5 yg/ml doxorubicin,
7.5 pg/ml methotrexate and 1.25 pg/ml cytarabine, with or
without 20 #M curcumin. Untreated cells served as the control

group.

Viability assay. Cell viability was determined by flow cytom-
etry using a 7-AAD dye exclusion test. After treatment with
the various drugs, cells were harvested, washed once in PBS
and centrifuged at 100 x g at room temperature for 1 min, and
incubated with 100 u1 PBS, 20 ul anti-CD45-FITC (dilution,
1:10; cat. no. IMO782U; Beckman Coulter, Inc.) and 100 ul
7-AAD for 20 min at room temperature in the dark. Following
incubation, the cells were suspended in PBS and 20,000 events
were analyzed using a Gallios Flow Cytometer (Beckman
Coulter, Inc.). Gating was set to exclude cell debris and auto-
fluorescence.
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DNA oxidation. To determine if curcumin prevents oxidative
damage to DNA caused by chemotherapy treatment, oxida-
tive DNA adducts were measured using the highly sensitive
8-OHdG. DNA was isolated from the cells using QTAamp DNA
Mini kit (Qiagen GmbH) and mixed with 50 pl nuclease-free
water. Later, the cells were digested with Mung Bean Nuclease
(6 U; Promega, Madison, WI, USA) at 37°C for 45 min,
followed by treatment with alkaline phosphatase (2 U) for
an additional 45 min. DNA was precipitated with absolute
ethanol and centrifuged at 2,370 x g for 2 min, followed by
hydration with 50 ul nuclease-free water. The digested DNA
was added to the 8-OHdG (Highly Sensitive 8-OHdG Check
ELISA kit; cat. no. KOG-HSI10E; Japan Institute for the
Control of Aging, Fukuroi, Japan.) well strip and incubated
with 50 ul primary monoclonal antibody (dilution, 1 zg/50 ul)
specific for 8-OHdG at 4°C overnight. Following incubation,
3 washes were performed with 250 ul washing solution (Japa-
nese Institute for the Control of Aging) at room temperature,
with agitation of the plate from side to side for 20 seconds,
disposing washing solution each time. The samples were then
incubated with 50 pl horseradish peroxidase-conjugated anti-
mouse secondary antibody (dilution, 1 pg/5 ul; cat. no. 405310)
for 1 h at room temperature in the dark. After 3 washes,
50 ul chromatic solution (Japanese Institute for the Control of
Aging) was added and incubated for 15 min at 4°C. The reac-
tion was terminated following addition of 100 ul termination
solution (Japanese Institute for the Control of Aging), and the
samples were analyzed at a wavelength of 450 nm in a plate
spectrophotometer.

NF-kB detection. To assess the involvement of curcumin
in NF-«kB activation, flow cytometry was performed using
anti-human-phospho-NF-«B p65 antibody (Beckman Coulter,
Inc.). After the treatment the cells were fixed using PerFix
Fixative reagent (Beckman Coulter, Inc.) for 10 min at room
temperature and permeabilized using PerFix Permeabilizing
reagent for 5 min at 37°C in a water bath (PerFix EXPOSE
Phospho-Epitopes Exposure kit; Beckman Coulter, Inc.). A
total of 50 yul staining reagent pre-mixed with 2 pl conjugated
anti-NF-kB-AlexaFluor 647 (dilution, 1:50; cat. no. A88940;
Beckman Coulter, Inc.) and 10 ul anti-CD45-FITC antibodies
were added to each tube immediately and incubated at room
temperature for 30 min in the dark. Cells were then washed
with 3 ml 1X wash reagent (PerFix EXPOSE; Beckman
Coulter, Inc.) at room temperature, centrifuged at 300 x g
for 5 min. The washing solution was removed and the cells
were suspended in 500 gl final 1X reagent (PerFix EXPOSE;
Beckman Coulter, Inc.), and 20,000 events were analyzed
using Gallios software version 10 (Beckman Coulter, Inc.).
Gating was set to exclude cell debris and autofluorescence.

Gene expression. To determine changes in the expression of
various genes that are downregulated by NF-kB, RNA extrac-
tion was performed using QIAzol Lysis reagent. The cells were
washed with PBS at room temperature, centrifuged at 100 x g
for 2 min at room temperature and incubated with 1 ml QIAzol
Lysis reagent for 5 min, followed by the addition of 200 pl
chloroform and centrifugation at 12,350 x g at 4°C for 10 min.
The aqueous phase was recovered in 500 ul isopropanol and
incubated at -20°C overnight. Next, samples were centrifuged at
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12,350 x g at4°C for 10 min and washed twice with 70% ethanol,
with centrifugation performed at 9,680 x g at 4°C for 5 min
between each wash, and then air dried for 30 min. The samples
were reconstituted in 30 pl diethylpyrocarbonate-treated water
(Invitrogen; Thermo Fisher Scientific, Inc.). Reverse transcrip-
tion was performed using 1 ug total RNA and a High-Capacity
cDNA Reverse Transcription kit (Applied Biosystems; Thermo
Fisher Scientific, Inc.) in a GeneAmp PCR System 9700
thermal cycler (Applied Biosystems; Thermo Fisher Scien-
tific, Inc.). The reaction conditions were as follows: 25°C for
25 min, 37°C for 120 min, 85°C for 5 min and infinite hold
at 4°C. Quantitative polymerase chain reaction (PCR) was
performed using TagMan Assays for the different genes and
the TagMan Universal PCR Master Mix (Applied Biosystems;
Thermo Fisher Scientific, Inc.) in a 7900HT Fast Real-Time
PCR System using SDS 2.4 software (Applied Biosystems;
Thermo Fisher Scientific, Inc.). PCR was performed according
to the manufacturer's protocol, and the cycling conditions were
as follows: 50°C for 2 min, 95°C for 10 min, 95°C for 15 sec and
60°C for 1 min (40 cycles). Data was quantified according to the
relative quantitation 2“4 method (12), using the GUSB gene as
an endogenous control and the chemotherapy treatment groups
without curcumin as a calibrator (13).

Caspase-3 detection. To determine whether curcumin potenti-
ates caspase-3 activity, flow cytometry was performed using
polyclonal anti-human cleaved caspase-3 (Asp-175). The cells
(5x10%) were mixed with 20 ul anti-CD45-PC5 (dilution, 1:10;
cat. no. IM2653U; Beckman Coulter, Inc.) and incubated for
20 min at room temperature in the dark. Cells were fixed
using 100 ul IntraPrep Fixation reagent (Beckman Coulter,
Inc.) for 15 min at room temperature, washed in 4 ml PBS and
centrifuged at 300 x g for 5 min. Subsequent to washing, the
cells were permeabilized for 5 min at room temperature using
IntraPrep™ Permeabilization reagent (Beckman Coulter, Inc.).
Next, the cells were incubated with 2 ul polyclonal anti-human
cleaved caspase-3 (Asp-175) for 45 min at room temperature in
the dark. The cells were then washed and suspended in 500 pl
PBS and 20,000 events were analyzed using Gallios software
version 10 (Beckman Coulter, Inc.). Gating was set to exclude
cell debris and autofluorescence.

Statistical analysis. Differences in various parameters were
compared in the control and treatment groups using the
PASW 18.0 Software (SPSS, Inc., Chicago, IL, USA). The
data were firstly analyzed using the Kolmogorov-Smirnov
test. When the data had a normal distribution, the groups were
compared using the Student's t-test. When the distribution did
not have a normal distribution, the data were analyzed using
Mann-Whitney U test. P<0.05 was considered to indicate a
statistically significant difference.

Results
The antitumor properties of curcumin have been evaluated in
a large number of solid tumors (14), however, less is known

regarding hematological neoplasias.

Curcumin decreases cell viability of REH cells. To evaluate
the effect of curcumin alone on cell viability, flow cytometry

4119

Dexamethasone Vineristine
NH;
e \l | |)§N
B W W 5
i J o
: A A S
" e OH
1
Daunorubicin Methotrexate Cytarabine
Ccl Cl

Prednisone

Figure 1. Chemical structures of curcumin and the 10 chemotherapeutic
agents used in the present study.

was performed using 7-AAD. To determine the effect of
curcumin on the viability of REH cells, six different concen-
trations were investigated (10, 20, 25, 30, 40 and 50 uM).
Curcumin decreased cell viability in a dose-dependent
manner in REH cells, and following treatment with 25, 30,
40 and 50 M curcumin, the cell viability was significantly
decreased when compared with the control (P<0.001). A dose
of 20 uM curcumin was selected for further experiments, as
the next tested dose of 25 M curcumin had statistical differ-
ences in cell viability compared with the control group from
a pilot study.

Combined treatment with chemotherapeutic agents and
curcumin decreases cell viability in REH cells. 7-AAD flow
cytometry was performed to investigate whether curcumin
potentiates the effect of chemotherapeutic agents and decreases
the cell viability of REH cells. The results revealed that treatment
with all chemotherapeutic agents reduced cell viability when
compared with the control. Furthermore, combined treatment
with curcumin resulted in a further decrease in cell viability for
all chemotherapeutic drugs (Fig. 2A). The group treated with
curcumin alone exhibited a cell viability of 86.3%, whereas the
group treated with l-asparaginase alone exhibited a cell viability
of 89.7%. Notably, combined treatment with l-asparaginase and
curcumin decreased cell viability to 59.9% (Fig. 2B). The same
potentiating effect of curcumin was observed with prednisone,
cyclophosphamide, 6-mercaptopurine, dexamethasone, vincris-
tine and methotrexate (P<0.05).

Curcumin prevents DNA oxidation. It has been demonstrated
that chemotherapeutic agents induce DNA damage in normal
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Figure 2. Curcumin decreases the viability of the REH cell line following
treatment with 10 therapeutic agents. (A) Curcumin decreased cell viability of
tumor cells in the 10 groups co-treated with curcumin and chemotherapeutic
agents. "P<0.05 vs. control. (B) Treatment with 20 xM curcumin decreased
cell viability in REH cells, when compared with the l-asparaginase treatment
group. However, cell viability was markedly decreased following combined
treatment with curcumin and l-asparaginase. CD, cluster of differentiation;
FITC, fluorescein isothiocyanate; 7-AAD, 7-aminoactinomycin D.

and abnormal cells (15). To determine whether curcumin acts
as an antioxidant when combined with chemotherapeutic
drugs (16), in the present study, oxidative DNA adduct forma-
tion was analyzed in cultures treated with or without curcumin.
The results revealed that oxidative DNA adduct formation was
decreased in all combined treatment groups, with the exception
of the prednisone + curcumin and dexamethasone + curcumin
treatment groups. Significant decreases in DNA adduct forma-
tion were observed in the groups treated with curcumin and
daunorubicin, doxorubicin, methotrexate and cytarabine
(P<0.05) (Fig. 3).

Curcumin decreases NF-xkB activation in cells treated with
chemotherapeutic agents. It has been reported that constitu-
tive NF-«kB activation occurs in ALL (7,17), and a previous
study has suggested that chemotherapy alone may increase this
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activation (18). To determine whether curcumin decreases the
levels of active NF-xB in the REH cell line, the levels of NF-xB
phosphorylated at Ser536 were evaluated by flow cytometry.
The results demonstrated that treatment with 8/10 of the thera-
peutic agents led to increased NF-«xB activity when compared
with the control group (P<0.05), whereas all of the combined
treatment groups (chemotherapeutic agent + curcumin)
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nuclear factor-kappa B.

exhibited decreased NF-«kB activation (Fig. 4A). The control
and curcumin alone treatment groups exhibited an NF-xB
activation rate of 24.8 and 11.7%, respectively. The cyclophos-
phamide treatment group exhibited an NF-kB activation rate
of 81%, while combined treatment with cyclophosphamide
and curcumin decreased the NF-«kB activation rate to 55.3%
(P<0.05) (Fig. 4B). The most significant NF-kB inactivation
was observed following combined treatment with curcumin
and 6-mercaptopurine, cyclophosphamide, vincristine, dauno-
rubicin, doxorubicin, methotrexate and cytarabine (P<0.05).

Curcumin affects the expression of NF-kB target genes.
Since apoptosis and proliferation-related genes Bcl-2, Bcl-xl,
survivin, cyclin DI and c-Myc, have all been demonstrated to
be regulated by NF-«B (19), in the present study, the expression
of these genes was analyzed. Gene expression was analyzed in
the chemotherapy-treated groups with and without curcumin.
The gene expression fold change was calculated using the
group with chemotherapy without curcumin as calibrator and
the chemotherapy with curcumin group as a target group.
The gene expression of the anti-apoptosis gene Bcl-xL was
decreased by 2.5 fold in the vincristine group; however, this
difference was not significant (P=0.513) (Fig. 5A). Furthermore,

Bcl-2 gene expression was decreased by 6.5 fold in the vincris-
tine + curcumin group (P<0.05) (Fig. 5B). The expression of
the survivin gene was decreased by 9.7 fold in the vincris-
tine + curcumin group (P<0.05), when compared with the
vincristine group (Fig. 5C). The expression of the proliferative
gene c-Myc increased in the methotrexate + curcumin group
and decreased by 3.8 fold in the doxorubicin + curcumin group
when compared with their calibrator (same chemotherapy
without curcumin); however, these changes were not signifi-
cant (P=0.827 and P=0.275, respectively) (Fig. 5D). Notably,
the expression of the cyclin DI gene was increased in 9/10 of
the co-treated groups (with the exception of the doxorubicin
group) compared with their calibrator; however, no significant
differences were identified (Fig. SE). These findings indicate
that curcumin did not result in a downregulation pattern in the
c-Myc and cyclin DI groups.

Curcumin activates caspase-3. As NF-xB has been demon-
strated to exhibit an anti-apoptosis effect (20), in the present
study, the effect of curcumin on apoptosis was investigated.
The activity of cleaved caspase-3, the effector protein of the
receptor-mediated and chemical-induced apoptosis path-
ways (21), was evaluated. To determine if curcumin induces
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caspase-3 activation, flow cytometry was performed to analyze
the percentage of active caspase-3 in the chemotherapy-treated
cultures with or without curcumin. The results demonstrated
that curcumin increased caspase-3 activity following treatment
with all the chemotherapeutic agents tested (Fig. 6A). The most
significant increases in caspase-3 activity were identified in the
prednisone + curcumin (Fig. 6B), l-asparaginase + curcumin
and methotrexate + curcumin groups. However, treatment with
curcumin alone also significantly increased caspase-3 activity
(P<0.05).

Discussion

In the present study, the effect of curcumin as a phytochemical
with chemopreventive and antitumor properties was investi-
gated, as curcumin has been previously used in herbal medicine
and as a dietary compound with non-toxic effects (22). The
aim of the present study was to evaluate the effect of curcumin
in the human ALL REH cell line in combination with a variety
of therapeutic agents used to treat ALL. The results revealed
that NF-kB activation was decreased in all chemotherapeutic
agent + curcumin groups, and a subsequent increase in apop-
tosis was also observed.
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Curcumin was demonstrated to decrease the chemothera-
peutic activation of NF-kB. Previous studies have revealed that
chemotherapeutic agents increase NF-kB activation (18), while
curcumin is able to reduce it (23). In the present study, with the
exception of prednisone, treatment with all the chemothera-
peutic agents tested resulted in increased NF-xB activation
when compared with the control groups. However, treatment
with 20 yM curcumin downregulated the constitutively active
NF-«xB in the REH cell line, both alone and in combination
with all the therapeutic agents tested. It is postulated that
this downregulation occurs via activation of the inhibitor of
kappa B a (24).

The results of the present study indicate that curcumin
functions as a sensitizer in tumor cells and potentiates the
antitumor effect of the tested chemotherapeutic agents, as
shown by the decreased cell viability observed. Previous
evidence that curcumin may potentiate the antitumor effect
of chemotherapeutic agents in ALL, was initially observed
in ALL-derived Jurkat, REH and RS4;11 cell lines exposed
to l-asparaginase and curcumin via inhibition of protein
kinase B (AKT) and AKT-regulated gene products (25).
In the present study, a decrease in cell viability and an
increase in apoptosis was observed following treatment with
cyclophosphamide, which was potentiated by curcumin. By
contrast, curcumin has been demonstrated to inhibit cyclo-
phosphamide-induced tumor regression in a breast cancer
murine model (26). The results of the present study are in
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agreement with previous studies that have demonstrated a
decrease in cell viability following curcumin treatment and
the synergistic effect of curcumin following co-treatment
with l-asparaginase in leukemia Jurkat, REH and RS4;11 cell
lines (25), and vincristine in multiple myeloma cells (27).
In the present study, the observed decrease in cell viability
following co-treatment with curcumin and vincristine,
daunorubicin or doxorubicin was not statistically significant,
which may be due to cytotoxicity. Notably, the chemothera-
peutic agents in which the decrease in cell viability was most
evident in the presence of curcumin exhibited the highest
levels of cell viability following treatment with the chemo-
therapeutic agents alone. Thus, the decrease in cell survival
may be attributed to curcumin.

It was also reported that the downregulation of NF-kB led to
apoptosis of ALL cells, as indicated by the increased expression
of the apoptosis effector protein caspase-3 (27). Previously, the
antitumoral effect of curcumin was associated with caspase-3
activation (28), and in the present study, all co-treatment groups
exhibited an increase in caspase-3 activity. In contrast to a
previous study (29), in the present study, treatment with vincris-
tine alone activated caspase-3, and the reported increase in
caspase-3 activity following combined treatment with l-aspara-
ginase and curcumin was confirmed (30). Notably, in the present
study, in the 6-mercaptopurine + curcumin group, the marked
increase in caspase-3 activity was not significant, despite the
significant decrease in cell viability observed. Therefore, it can
be hypothesized that cell death may be activated via an alterna-
tive pathway. In the present study, curcumin treatment did not
lead to the downregulation of anti-apoptosis and proliferative
genes, as previously described (31), indicating that an alternative
pathway may be activated, instead of that involving NF-xB. A
previous study revealed that, in AML daunorubicin-resistant cell
lines, apoptosis increased following combined treatment with
daunorubicin and curcumin (32), and in the present study, an
increase in caspase-3 activity was observed in the daunorubicin
and curcumin co-treated cell cultures, although this increase
was not statistically significant.

Oxidative stress caused by therapeutic agents used for the
treatment of ALL cause damage in non-cancerous tissues (33)
leading to the formation of oxidative DNA adducts (34).
Curcumin may act as a scavenger of the free radicals caused
by the therapy, subsequently reducing these molecules (35).
Notably, a previous study revealed that in the NG108-15
(glioblastoma/neuroblastoma hybrid) cell line, curcumin
protected the cells from oxidative damage when administered
in combination with hydrogen peroxide, but not following
pre-treatment (36). In the present study, cell cultures were
treated simultaneously with the chemotherapeutic agents and
curcumin, which may explain the free radical scavenging prop-
erties of curcumin. Notably, not all of the chemotherapeutic
agents tested in the present study exhibited increased levels of
8-OHdG when compared with the control group. However, all
co-treated groups exhibited a reduction in 8-OHdG molecules
compared with the control group, indicating that curcumin
controlled the free radicals produced by the therapeutic
agents, resulting in less DNA damage. A proposed model that
demonstrates the possible mechanism of action of combined
treatment with curcumin and chemotherapeutic agents for
ALL is shown in Fig. 7.
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Clinical studies investigating the efficacy of curcumin for
the treatment of pancreatic (37) and colorectal cancer (38) have
yielded positive results. However, to the best of our knowl-
edge, no studies have investigated pediatric hematological
neoplasias to date. These promising clinical trials in solid
tumors, considered together with the decrease in multi-drug
resistance gene expression over curcumin in primary ALL cell
cultures (39) and potentiation through curcumin of l-asparagi-
nase (25) correspond to the only studies in vitro, highlighting
the importance of the present study. Additional in vitro and
mice models to assess the effect of combined treatment with
chemotherapeutic agents and curcumin are required. Possible
interactions between curcumin at various concentrations and
chemotherapeutic agents cannot be excluded and thus, more
studies that investigate the possible interactions between
curcumin and chemotherapeutic agents are also required.

In conclusion, the present study revealed that curcumin
inhibits survival, increases apoptosis and decreases DNA
oxidation of REH leukemia cells in an NF-xB-dependent
manner, both alone and in combination with all the therapeutic
agents tested (prednisone, 6-mercaptopurine, dexamethasone,
cyclophosphamide, I-asparaginase, vincristine, daunorubicin,
doxorubicin, methotrexate and cytarabine). The application
of this compound in the treatment of pediatric lymphoblastic
leukemia may improve the outcome of patients. Overall, the
present results indicate that curcumin may improve the effi-
cacy of chemotherapeutic agents against ALL.
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