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Abstract. Acute lymphoblastic leukemia (ALL) accounts for 
30% of all pediatric cancers. Currently available treatments 
exhibit toxicity and certain patients may develop resistance. 
Thus, less toxic and chemoresistance-reversal agents are 
required. In the present study, the potential effect of curcumin, 
a component of Curcuma longa, as a pharmacological 
co-adjuvant of several chemotherapeutic agents against ALL, 
including prednisone, 6-mercaptopurine, dexamethasone, 
cyclophosphamide, l-asparaginase, vincristine, daunorubicin, 
doxorubicin, methotrexate and cytarabine, was investigated 
in the REH ALL cell line cultures treated in combination 
with chemotherapeutic agents and curcumin. The results of 
cell viability, gene expression and activation of NF-κB and 
caspase 3 indicated that curcumin potentiates the anticancer 
effects of the aforementioned chemotherapeutic agents in 
the REH ALL cell line. Following treatment with the above 
chemotherapeutic agents, curcumin enhanced caspase-3 acti-
vation and downregulated nuclear factor-kappa B (NF-κB) 
activation. Curcumin also downregulated the oxidative stress 
induced by certain chemotherapies. Notably, curcumin did 
not affect the gene expression of cell survival proteins such 
as B-cell lymphoma (Bcl)-2, Bcl-extra large, survivin, c-Myc 
and cyclin D1, which are regulated by the NF-κB transcription 

factor. In conclusion, curcumin has the potential to improve 
the effect of chemotherapeutic agents against ALL.

Introduction

Acute lymphoblastic leukemia (ALL) is one of the most 
malignant types of hematological disease, which accounts 
for 30% of all pediatric cancers (1). Chemotherapeutic 
drugs commonly used for ALL treatment include predni-
sone, 6-mercaptopurine, dexamethasone, cyclophosphamide, 
l-asparaginase, vincristine, daunorubicin or doxorubicin, 
methotrexate and cytarabine; with overall cure rates of 80% 
(Fig. 1) (2). However, a significant number of patients develop 
resistance to these drugs and outcome is poor among patients 
who relapse (2). The pathogenesis of ALL includes changes 
in gene expression, which are regulated by diverse transcrip-
tion factors (3) such as nuclear factor-kappa B (NF-κB), which 
has been associated with cell proliferation and survival (4). 
Additionally, in solid tumors, NF-κB exhibits an important 
function in invasion, angiogenesis, aggressive tumor growth 
and chemoresistance (4-6). Constitutive activation of NF-κB 
is observed in ~92% of pediatric ALL patients (7) and thus is 
one of the targets for chemosensitization.

Since ~80% of clinical drugs are derived from natural 
products, numerous compounds have been identified that 
downmodulate NF-κB (8). Curcumin (diferuloylmethane), a 
polyphenol derived from the plant Curcuma longa, has been 
demonstrated to inhibit NF-κB activation, which is induced by 
a wide variety of carcinogens and chemotherapeutic agents (9). 
The use of curcumin was classified by  the USA Food and 
Drug Administration as ‘generally recognized as safe’ (10). 
Furthermore, various clinical trials indicate that curcumin 
may be administered at oral doses as high as 8 g/day with no 
side effects (11).

The aim of the present study was to investigate the potential 
anticancer effect of curcumin on the human REH ALL cell line, 
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when administered alone and in combination with currently 
used therapies. The results indicate that curcumin potentiates 
the effect of chemotherapeutic agents against ALL cells by 
activation of caspase-3 through downregulation of oxidative 
stress, NF-κB activation and various NF-κB-regulated cell 
survival gene products.

Materials and methods

Reagents. Curcumin and sodium dodecyl sulfate were obtained 
from Sigma-Aldrich (St. Louis, MO, USA). Penicillin, strepto-
mycin, RPMI-1640 medium, phosphate-buffered saline (PBS), 
fetal bovine serum (FBS) and TaqMan Assays for B-cell 
lymphoma (Bcl)-extra large (xL), Bcl-2, cyclin D1, survivin, 
c-Myc and beta-glucuronidase (GUSB) were obtained from 
Life Technologies (Thermo Fisher Scientific, Inc., Waltham, 
MA, USA). DNA and RNA extraction was performed using 
QIAzol Lysis reagent and QIAmp Circulating Nucleic Acid kit, 
which were obtained from Qiagen GmbH (Hilden, Germany). 
Monoclonal anti-NF-κB (dilution, 1:50; cat. no. A88940), 
anti-cluster of differentiation (CD)45 (dilution, 1:10; 
cat. nos. IM2652U and IM0782U) and anti-caspase-3 (dilu-
tion, 1:50; cat. no. A88950) antibodies, 7-aminoactinomycin D 
(7-AAD) viability dye, PerFix EXPOSE Phospho-Epitopes 
Exposure kit and IntraPrep™ permeabilization reagent were 
obtained from Beckman Coulter, Inc. (Brea, CA,  USA). 
Anti-NF-κB p65 antibody (dilution, 1 µg; cat. no. sc-8008) 
was obtained from Santa Cruz Biotechnology, Inc. (Dallas, 
TX, USA). Highly sensitive 8-hydroxy-2'-deoxyguanosine 
(8-OHdG) was supplied by the Japanese Institute for the 
Control of Aging (Fukuroi, Japan). Prednisone, 6-mercapto-
purine, dexamethasone, cyclophosphamide, l-asparaginase, 
vincristine, daunorubicin, doxorubicin, methotrexate and 
cytarabine were provided by PiSA Farmacéutica (Guadalajara, 
México).

Cell culture. The REH cell line (St. Jude Children's Research 
Hospital, Memphis, TN, USA) was cultured in RMPI-1640 
medium supplemented with 100 U/ml penicillin and 100 g/ml 
streptomycin with 10% FBS in a humidified incubator at 37˚C 
with an atmosphere of 5% CO2. Next, 5x105 REH cells were 
treated for 48 h in triplicate with 125 µg/ml prednisone, 
250 µg/ml 6-mercaptopurine, 0.4 µg/ml dexamethasone, 
50 µg/ml cyclophosphamide, 5 U l-asparaginase, 25 µg/ml 
vincristine, 1 µg/ml daunorubicin, 0.5 µg/ml doxorubicin, 
7.5 µg/ml methotrexate and 1.25 µg/ml cytarabine, with or 
without 20 µM curcumin. Untreated cells served as the control 
group.

Viability assay. Cell viability was determined by flow cytom-
etry using a 7-AAD dye exclusion test. After treatment with 
the various drugs, cells were harvested, washed once in PBS 
and centrifuged at 100 x g at room temperature for 1 min, and 
incubated with 100 µl PBS, 20 µl anti-CD45-FITC (dilution, 
1:10; cat. no. IM0782U; Beckman Coulter, Inc.) and 100 µl 
7-AAD for 20 min at room temperature in the dark. Following 
incubation, the cells were suspended in PBS and 20,000 events 
were analyzed using a Gallios Flow Cytometer (Beckman 
Coulter, Inc.). Gating was set to exclude cell debris and auto-
fluorescence.

DNA oxidation. To determine if curcumin prevents oxidative 
damage to DNA caused by chemotherapy treatment, oxida-
tive DNA adducts were measured using the highly sensitive 
8-OHdG. DNA was isolated from the cells using QIAamp DNA 
Mini kit (Qiagen GmbH) and mixed with 50 µl nuclease-free 
water. Later, the cells were digested with Mung Bean Nuclease 
(6 U;  Promega, Madison, WI, USA)  at  37˚C  for  45 min, 
followed by treatment with alkaline phosphatase (2 U) for 
an additional 45 min. DNA was precipitated with absolute 
ethanol and centrifuged at 2,370 x g for 2 min, followed by 
hydration with 50 µl nuclease-free water. The digested DNA 
was added to the 8-OHdG (Highly Sensitive 8-OHdG Check 
ELISA kit; cat. no. KOG-HS10E;  Japan  Institute  for  the 
Control of Aging, Fukuroi, Japan.) well strip and incubated 
with 50 µl primary monoclonal antibody (dilution, 1 µg/50 µl) 
specific for 8-OHdG at 4˚C overnight. Following incubation, 
3 washes were performed with 250 µl washing solution (Japa-
nese Institute for the Control of Aging) at room temperature, 
with agitation of the plate from side to side for 20 seconds, 
disposing washing solution each time. The samples were then 
incubated with 50 µl horseradish peroxidase-conjugated anti-
mouse secondary antibody (dilution, 1 µg/5 µl; cat. no. 405310) 
for 1 h at room temperature in the dark. After 3 washes, 
50 µl chromatic solution (Japanese Institute for the Control of 
Aging) was added and incubated for 15 min at 4˚C. The reac-
tion was terminated following addition of 100 µl termination 
solution (Japanese Institute for the Control of Aging), and the 
samples were analyzed at a wavelength of 450 nm in a plate 
spectrophotometer.

NF-κB detection. To assess the involvement of curcumin 
in NF-κB activation, flow cytometry was performed using 
anti-human-phospho-NF-κB p65 antibody (Beckman Coulter, 
Inc.). After the treatment the cells were fixed using PerFix 
Fixative reagent (Beckman Coulter, Inc.) for 10 min at room 
temperature and permeabilized using PerFix Permeabilizing 
reagent for 5 min at 37˚C in a water bath (PerFix EXPOSE 
Phospho-Epitopes Exposure kit; Beckman Coulter, Inc.). A 
total of 50 µl staining reagent pre-mixed with 2 µl conjugated 
anti-NF-κB-AlexaFluor 647 (dilution, 1:50; cat. no. A88940; 
Beckman Coulter, Inc.) and 10 µl anti-CD45-FITC antibodies 
were added to each tube immediately and incubated at room 
temperature for 30 min in the dark. Cells were then washed 
with  3 ml  1X wash  reagent  (PerFix  EXPOSE; Beckman 
Coulter, Inc.) at room temperature, centrifuged at 300 x g 
for 5 min. The washing solution was removed and the cells 
were suspended in 500 µl final 1X reagent (PerFix EXPOSE; 
Beckman Coulter, Inc.), and 20,000 events were analyzed 
using Gallios software version 10 (Beckman Coulter, Inc.). 
Gating was set to exclude cell debris and autofluorescence.

Gene expression. To determine changes in the expression of 
various genes that are downregulated by NF-κB, RNA extrac-
tion was performed using QIAzol Lysis reagent. The cells were 
washed with PBS at room temperature, centrifuged at 100 x g 
for 2 min at room temperature and incubated with 1 ml QIAzol 
Lysis reagent for 5 min, followed by the addition of 200 µl 
chloroform and centrifugation at 12,350 x g at 4˚C for 10 min. 
The aqueous phase was recovered in 500 µl isopropanol and 
incubated at -20˚C overnight. Next, samples were centrifuged at 



ONCOLOGY LETTERS  12:  4117-4124,  2016 4119

12,350 x g at 4˚C for 10 min and washed twice with 70% ethanol, 
with centrifugation performed at 9,680 x g at 4˚C for 5 min 
between each wash, and then air dried for 30 min. The samples 
were reconstituted in 30 µl diethylpyrocarbonate-treated water 
(Invitrogen; Thermo Fisher Scientific, Inc.). Reverse transcrip-
tion was performed using 1 µg total RNA and a High-Capacity 
cDNA Reverse Transcription kit (Applied Biosystems; Thermo 
Fisher Scientific,  Inc.)  in  a GeneAmp  PCR System  9700 
thermal cycler (Applied Biosystems; Thermo Fisher Scien-
tific, Inc.). The reaction conditions were as follows: 25˚C for 
25 min, 37˚C for 120 min, 85˚C for 5 min and infinite hold 
at 4˚C. Quantitative polymerase chain  reaction  (PCR) was 
performed using TaqMan Assays for the different genes and 
the TaqMan Universal PCR Master Mix (Applied Biosystems; 
Thermo Fisher Scientific, Inc.) in a 7900HT Fast Real-Time 
PCR System using SDS 2.4 software (Applied Biosystems; 
Thermo Fisher Scientific, Inc.). PCR was performed according 
to the manufacturer's protocol, and the cycling conditions were 
as follows: 50˚C for 2 min, 95˚C for 10 min, 95˚C for 15 sec and 
60˚C for 1 min (40 cycles). Data was quantified according to the 
relative quantitation 2-∆∆Cq method (12), using the GUSB gene as 
an endogenous control and the chemotherapy treatment groups 
without curcumin as a calibrator (13).

Caspase-3 detection. To determine whether curcumin potenti-
ates caspase-3 activity, flow cytometry was performed using 
polyclonal anti-human cleaved caspase-3 (Asp-175). The cells 
(5x105) were mixed with 20 µl anti-CD45-PC5 (dilution, 1:10; 
cat. no. IM2653U; Beckman Coulter, Inc.) and incubated for 
20 min at room temperature in the dark. Cells were fixed 
using 100 µl IntraPrep Fixation reagent (Beckman Coulter, 
Inc.) for 15 min at room temperature, washed in 4 ml PBS and 
centrifuged at 300 x g for 5 min. Subsequent to washing, the 
cells were permeabilized for 5 min at room temperature using 
IntraPrep™ Permeabilization reagent (Beckman Coulter, Inc.). 
Next, the cells were incubated with 2 µl polyclonal anti-human 
cleaved caspase-3 (Asp-175) for 45 min at room temperature in 
the dark. The cells were then washed and suspended in 500 µl 
PBS and 20,000 events were analyzed using Gallios software 
version 10 (Beckman Coulter, Inc.). Gating was set to exclude 
cell debris and autofluorescence.

Statistical analysis. Differences in various parameters were 
compared in the control and treatment groups using the 
PASW 18.0 Software  (SPSS,  Inc., Chicago,  IL, USA). The 
data were  firstly analyzed using  the Kolmogorov-Smirnov 
test. When the data had a normal distribution, the groups were 
compared using the Student's t-test. When the distribution did 
not have a normal distribution, the data were analyzed using 
Mann-Whitney U test. P<0.05 was considered to indicate a 
statistically significant difference.

Results

The antitumor properties of curcumin have been evaluated in 
a large number of solid tumors (14), however, less is known 
regarding hematological neoplasias.

Curcumin decreases cell viability of REH cells. To evaluate 
the effect of curcumin alone on cell viability, flow cytometry 

was performed using 7-AAD. To determine the effect of 
curcumin on the viability of REH cells, six different concen-
trations were investigated (10, 20, 25, 30, 40 and 50 µM). 
Curcumin decreased cell viability in a dose-dependent 
manner in REH cells, and following treatment with 25, 30, 
40 and 50 µM curcumin, the cell viability was significantly 
decreased when compared with the control (P<0.001). A dose 
of 20 µM curcumin was selected for further experiments, as 
the next tested dose of 25 µM curcumin had statistical differ-
ences in cell viability compared with the control group from 
a pilot study.

Combined treatment with chemotherapeutic agents and 
curcumin decreases cell viability in REH cells. 7-AAD flow 
cytometry was performed to investigate whether curcumin 
potentiates the effect of chemotherapeutic agents and decreases 
the cell viability of REH cells. The results revealed that treatment 
with all chemotherapeutic agents reduced cell viability when 
compared with the control. Furthermore, combined treatment 
with curcumin resulted in a further decrease in cell viability for 
all chemotherapeutic drugs (Fig. 2A). The group treated with 
curcumin alone exhibited a cell viability of 86.3%, whereas the 
group treated with l-asparaginase alone exhibited a cell viability 
of 89.7%. Notably, combined treatment with l-asparaginase and 
curcumin decreased cell viability to 59.9% (Fig. 2B). The same 
potentiating effect of curcumin was observed with prednisone, 
cyclophosphamide, 6-mercaptopurine, dexamethasone, vincris-
tine and methotrexate (P<0.05).

Curcumin prevents DNA oxidation. It has been demonstrated 
that chemotherapeutic agents induce DNA damage in normal 

Figure 1. Chemical structures of curcumin and the 10 chemotherapeutic 
agents used in the present study.
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and abnormal cells (15). To determine whether curcumin acts 
as an antioxidant when combined with chemotherapeutic 
drugs (16), in the present study, oxidative DNA adduct forma-
tion was analyzed in cultures treated with or without curcumin. 
The results revealed that oxidative DNA adduct formation was 
decreased in all combined treatment groups, with the exception 
of the prednisone + curcumin and dexamethasone + curcumin 
treatment groups. Significant decreases in DNA adduct forma-
tion were observed in the groups treated with curcumin and 
daunorubicin, doxorubicin, methotrexate and cytarabine 
(P<0.05) (Fig. 3).

Curcumin decreases NF-κB activation in cells treated with 
chemotherapeutic agents. It has been reported that constitu-
tive NF-κB activation occurs in ALL (7,17), and a previous 
study has suggested that chemotherapy alone may increase this 

activation (18). To determine whether curcumin decreases the 
levels of active NF-κB in the REH cell line, the levels of NF-κB 
phosphorylated at Ser536 were evaluated by flow cytometry. 
The results demonstrated that treatment with 8/10 of the thera-
peutic agents led to increased NF-κB activity when compared 
with the control group (P<0.05), whereas all of the combined 
treatment groups (chemotherapeutic agent + curcumin) 

Figure 2. Curcumin decreases the viability of the REH cell line following 
treatment with 10 therapeutic agents. (A) Curcumin decreased cell viability of 
tumor cells in the 10 groups co-treated with curcumin and chemotherapeutic 
agents. *P<0.05 vs. control. (B) Treatment with 20 µM curcumin decreased 
cell viability in REH cells, when compared with the l-asparaginase treatment 
group. However, cell viability was markedly decreased following combined 
treatment with curcumin and l-asparaginase. CD, cluster of differentiation; 
FITC, fluorescein isothiocyanate; 7-AAD, 7-aminoactinomycin D.

Figure 3. Effect of curcumin on DNA oxidation. Comparison of DNA oxi-
dation in the groups treated with the chemotherapeutic agents alone and in 
those co-treated with 20 µM curcumin. *P<0.05 vs. control.

Figure 4. Effect of curcumin and chemotherapy on NF-κB activity. 
(A) Comparison of NF-κB activity in the groups treated with chemotherapeutic 
agents alone and in those co-treated with 20 µM curcumin. *P<0.05 vs. control. 
(B) Treatment with 20 µM curcumin increased NF-κB activity in REH cells, 
and this increase was most evident in the cyclophosphamide-treated group 
compared with the cyclophosphamide + curcumin-treated group. NF-κB, 
nuclear factor‑kappa B.

  A

  B

  A

  B
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exhibited decreased NF-κB activation (Fig. 4A). The control 
and curcumin alone treatment groups exhibited an NF-κB 
activation rate of 24.8 and 11.7%, respectively. The cyclophos-
phamide treatment group exhibited an NF-κB activation rate 
of 81%, while combined treatment with cyclophosphamide 
and curcumin decreased the NF-κB activation rate to 55.3% 
(P<0.05) (Fig. 4B). The most significant NF-κB inactivation 
was observed following combined treatment with curcumin 
and 6-mercaptopurine, cyclophosphamide, vincristine, dauno-
rubicin, doxorubicin, methotrexate and cytarabine (P<0.05).

Curcumin affects the expression of NF-κB target genes. 
Since apoptosis and proliferation-related genes Bcl-2, Bcl-xl, 
survivin, cyclin D1 and c-Myc, have all been demonstrated to 
be regulated by NF-κB (19), in the present study, the expression 
of these genes was analyzed. Gene expression was analyzed in 
the chemotherapy-treated groups with and without curcumin. 
The gene expression fold change was calculated using the 
group with chemotherapy without curcumin as calibrator and 
the chemotherapy with curcumin group as a target group. 
The gene expression of the anti-apoptosis gene Bcl-xL was 
decreased by 2.5 fold in the vincristine group; however, this 
difference was not significant (P=0.513) (Fig. 5A). Furthermore, 

Bcl-2 gene expression was decreased by 6.5 fold in the vincris-
tine + curcumin group (P<0.05) (Fig. 5B). The expression of 
the survivin gene was decreased by 9.7 fold in the vincris-
tine + curcumin group (P<0.05), when compared with  the 
vincristine group (Fig. 5C). The expression of the proliferative 
gene c-Myc increased in the methotrexate + curcumin group 
and decreased by 3.8 fold in the doxorubicin + curcumin group 
when compared with their calibrator (same chemotherapy 
without curcumin); however, these changes were not signifi-
cant (P=0.827 and P=0.275, respectively) (Fig. 5D). Notably, 
the expression of the cyclin D1 gene was increased in 9/10 of 
the co-treated groups (with the exception of the doxorubicin 
group) compared with their calibrator; however, no significant 
differences were identified (Fig. 5E). These findings indicate 
that curcumin did not result in a downregulation pattern in the 
c-Myc and cyclin D1 groups.

Curcumin activates caspase-3. As NF-κB has been demon-
strated to exhibit an anti-apoptosis effect (20), in the present 
study, the effect of curcumin on apoptosis was investigated. 
The activity of cleaved caspase-3, the effector protein of the 
receptor-mediated and chemical-induced apoptosis path-
ways (21), was evaluated. To determine if curcumin induces 

Figure 5. Effect of curcumin on NF-κB-regulated gene expression. (A) Changes in fold expression of the (A) Bcl-extra large, (B) Bcl-2, (C) survivin, 
(D) c-Myc and (E) cyclin D1 genes. The data are presented as the fold-change in gene expression between the groups treated with chemotherapy alone and 
the groups treated with chemotherapy and curcumin.*P<0.05 vs. control. P, prednisone; 6MP, 6-mercaptopurine; D, dexamethasone; C, cyclophosphamide; L, 
l-asparaginase; V, vincristine; Da, daunorubicin; Do, doxorubicin; M, methotrexate; A, cytarabine; Ctrl, control; Bcl, B-cell lymphoma; xL, extra large; NF-κB, 
nuclear factor-kappa B.

  A   B

  C   D

  E
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caspase-3 activation, flow cytometry was performed to analyze 
the percentage of active caspase-3 in the chemotherapy-treated 
cultures with or without curcumin. The results demonstrated 
that curcumin increased caspase-3 activity following treatment 
with all the chemotherapeutic agents tested (Fig. 6A). The most 
significant increases in caspase-3 activity were identified in the 
prednisone + curcumin (Fig. 6B), l-asparaginase + curcumin 
and methotrexate + curcumin groups. However, treatment with 
curcumin alone also significantly increased caspase-3 activity 
(P<0.05).

Discussion

In the present study, the effect of curcumin as a phytochemical 
with chemopreventive and antitumor properties was investi-
gated, as curcumin has been previously used in herbal medicine 
and as a dietary compound with non-toxic effects (22). The 
aim of the present study was to evaluate the effect of curcumin 
in the human ALL REH cell line in combination with a variety 
of therapeutic agents used to treat ALL. The results revealed 
that NF-κB activation was decreased in all chemotherapeutic 
agent + curcumin groups, and a subsequent increase in apop-
tosis was also observed.

Curcumin was demonstrated to decrease the chemothera-
peutic activation of NF-κB. Previous studies have revealed that 
chemotherapeutic agents increase NF-κB activation (18), while 
curcumin is able to reduce it (23). In the present study, with the 
exception of prednisone, treatment with all the chemothera-
peutic agents tested resulted in increased NF-κB activation 
when compared with the control groups. However, treatment 
with 20 µM curcumin downregulated the constitutively active 
NF-κB in the REH cell line, both alone and in combination 
with all the therapeutic agents tested. It is postulated that 
this downregulation occurs via activation of the inhibitor of 
kappa B α (24).

The results of the present study indicate that curcumin 
functions as a sensitizer in tumor cells and potentiates the 
antitumor effect of the tested chemotherapeutic agents, as 
shown by  the decreased cell viability observed. Previous 
evidence that curcumin may potentiate the antitumor effect 
of chemotherapeutic agents in ALL, was initially observed 
in ALL-derived Jurkat, REH and RS4;11 cell lines exposed 
to l-asparaginase and curcumin via inhibition of protein 
kinase B (AKT)  and AKT-regulated gene products (25). 
In the present study, a decrease in cell viability and an 
increase in apoptosis was observed following treatment with 
cyclophosphamide, which was potentiated by curcumin. By 
contrast, curcumin has been demonstrated to inhibit cyclo-
phosphamide-induced tumor regression in a breast cancer 
murine model (26). The results of the present study are in 

Figure 6. Curcumin induces apoptosis via caspase-3 activation, leading to 
apoptosis. (A) Caspase-3 activity in the groups treated with chemotherapy 
alone and co-treated with 20 µM curcumin. (B) Curcumin treatment 
increased caspase-3 activity in REH cells, which was most evident in the 
prednisone + curcumin group. *P<0.05 vs. control.

Figure 7. Proposed model of the mechanism of action of curcumin in ALL 
treatment. In ALL cells, the chemotherapeutic agents cause oxidative stress, 
which activates the transcription factor NF-κB and subsequently leads to the 
activation of anti-apoptotic and proliferative genes. Consequently, apoptosis 
is inhibited and chemoresistance is increased. Curcumin decreases the 
oxidative stress caused by the chemotherapeutic agents and blocks NF-κB 
activation, consequently increasing apoptosis via caspase-3 activation, which 
prevents chemoresistance. NF-κB, nuclear factor-kappa B; Bcl, B-cell lym-
phoma; xL, extra large; ALL, acute lymphoblastic leukemia.
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agreement with previous studies that have demonstrated a 
decrease in cell viability following curcumin treatment and 
the synergistic effect of curcumin following co-treatment 
with l-asparaginase in leukemia Jurkat, REH and RS4;11 cell 
lines (25), and vincristine in multiple myeloma cells (27). 
In the present study, the observed decrease in cell viability 
following co-treatment with curcumin and vincristine, 
daunorubicin or doxorubicin was not statistically significant, 
which may be due to cytotoxicity. Notably, the chemothera-
peutic agents in which the decrease in cell viability was most 
evident in the presence of curcumin exhibited the highest 
levels of cell viability following treatment with the chemo-
therapeutic agents alone. Thus, the decrease in cell survival 
may be attributed to curcumin.

It was also reported that the downregulation of NF-κB led to 
apoptosis of ALL cells, as indicated by the increased expression 
of the apoptosis effector protein caspase-3 (27). Previously, the 
antitumoral effect of curcumin was associated with caspase-3 
activation (28), and in the present study, all co-treatment groups 
exhibited an increase in caspase-3 activity. In contrast to a 
previous study (29), in the present study, treatment with vincris-
tine alone activated caspase-3, and the reported increase in 
caspase-3 activity following combined treatment with l-aspara-
ginase and curcumin was confirmed (30). Notably, in the present 
study, in the 6-mercaptopurine + curcumin group, the marked 
increase in caspase-3 activity was not significant, despite the 
significant decrease in cell viability observed. Therefore, it can 
be hypothesized that cell death may be activated via an alterna-
tive pathway. In the present study, curcumin treatment did not 
lead to the downregulation of anti-apoptosis and proliferative 
genes, as previously described (31), indicating that an alternative 
pathway may be activated, instead of that involving NF-κB. A 
previous study revealed that, in AML daunorubicin-resistant cell 
lines, apoptosis increased following combined treatment with 
daunorubicin and curcumin (32), and in the present study, an 
increase in caspase-3 activity was observed in the daunorubicin 
and curcumin co-treated cell cultures, although this increase 
was not statistically significant.

Oxidative stress caused by therapeutic agents used for the 
treatment of ALL cause damage in non-cancerous tissues (33) 
leading to the formation of oxidative DNA adducts (34). 
Curcumin may act as a scavenger of the free radicals caused 
by the therapy, subsequently reducing these molecules (35). 
Notably, a previous study revealed that in the NG108-15 
(glioblastoma/neuroblastoma hybrid) cell line, curcumin 
protected the cells from oxidative damage when administered 
in combination with hydrogen peroxide, but not following 
pre-treatment (36). In the present study, cell cultures were 
treated simultaneously with the chemotherapeutic agents and 
curcumin, which may explain the free radical scavenging prop-
erties of curcumin. Notably, not all of the chemotherapeutic 
agents tested in the present study exhibited increased levels of 
8-OHdG when compared with the control group. However, all 
co-treated groups exhibited a reduction in 8-OHdG molecules 
compared with the control group, indicating that curcumin 
controlled the free radicals produced by the therapeutic 
agents, resulting in less DNA damage. A proposed model that 
demonstrates the possible mechanism of action of combined 
treatment with curcumin and chemotherapeutic agents for 
ALL is shown in Fig. 7.

Clinical studies investigating the efficacy of curcumin for 
the treatment of pancreatic (37) and colorectal cancer (38) have 
yielded positive results. However, to the best of our knowl-
edge, no studies have investigated pediatric hematological 
neoplasias to date. These promising clinical trials in solid 
tumors, considered together with the decrease in multi-drug 
resistance gene expression over curcumin in primary ALL cell 
cultures (39) and potentiation through curcumin of l-asparagi-
nase (25) correspond to the only studies in vitro, highlighting 
the importance of the present study. Additional in vitro and 
mice models to assess the effect of combined treatment with 
chemotherapeutic agents and curcumin are required. Possible 
interactions between curcumin at various concentrations and 
chemotherapeutic agents cannot be excluded and thus, more 
studies that investigate the possible interactions between 
curcumin and chemotherapeutic agents are also required.

In conclusion, the present study revealed that curcumin 
inhibits survival, increases apoptosis and decreases DNA 
oxidation of REH leukemia cells in an NF-κB-dependent 
manner, both alone and in combination with all the therapeutic 
agents tested (prednisone, 6-mercaptopurine, dexamethasone, 
cyclophosphamide, l-asparaginase, vincristine, daunorubicin, 
doxorubicin, methotrexate and cytarabine). The application 
of this compound in the treatment of pediatric lymphoblastic 
leukemia may improve the outcome of patients. Overall, the 
present results indicate that curcumin may improve the effi-
cacy of chemotherapeutic agents against ALL.
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