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Abstract. Mutations in the epidermal growth factor receptor 
(EGFR) are commonly occurring in glioblastoma. Enhanced 
activation of EGFR can occur through a variety of different 
mechanisms, both ligand-dependent and ligand-independent. 
Numerous evidence has suggested that EGFR is overexpressed 
in most of primary glioblastomas and some of the secondary 
glioblastomas and is characteristic of more aggressive glioblas-
toma phenotypes. Additionally, recent studies have revealed 
that wild‑type EGFR, and to a greater extent hyper‑activating 
EGFR mutants induced a substantial upregulation of Fyn 
expression. Furthermore, it was determined that Fyn expression 
is upregulated across a panel of patient‑derived glioblastoma 
stem cells (GSCs) relative to normal progenitor controls. 
Moreover, researchers are continuously involved in elucida-
tion of novel mechanism linking EGFR EGFR‑expressing 
glioblastoma. The present review highlights current aspects 
of EGFR receptor in glioblastoma and concludes that the 
concept of EGFR signaling and related receptors and associ-
ated factors is evolving, however, it needs detailed evaluation 
for future clinical applications in cancer patients.
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1. Introduction

Epidermal growth factor receptor (EGFR), also referred to 
as HER1/ErbB1, belongs to a larger family of ErbB receptors 
with tyrosine kinase activity (1,2). Other members of the HER 
family include ErbB2/HER2, ErbB3/HER3 and ErbB4/HER4. 
EGFR is frequently overexpressed and/or hyper‑activated in 
human malignancies, including glioblastoma, and therefore 
EGFR‑directed therapeutic strategies are often utilized. 
Increased activation of EGFR can occur through a variety of 
different mechanisms, both ligand‑dependent and ligand‑inde-
pendent (3‑5). Among these mechanisms include: Aberrant 
enhancement of ligand production; constitutive receptor 
activation by multiple exon deletion or missense mutations (6); 
crosstalk with other receptors; increased receptor protein 
level via gene amplification; and malfunction in receptor 
degradation. EGFR overexpression and activation are known 
to significantly impact cancer cell hallmark traits, such as 
increased cell survival, proliferation and invasion (7) (Fig. 1).

2. EGFR alterations in glioblastoma

EGFR is overexpressed in ~60% of primary glioblastomas 
versus only 10% of secondary glioblastomas and is char-
acteristic of more aggressive glioblastoma phenotypes. In 
addition to overexpression, several alternative mechanisms 
account for aberrant induction of EGFR activation in glio-
blastoma, including enhanced autocrine expression of cognate 
ligands (8). Gene amplification and mutation of EGFR also 
enhance EGFR activation and occur in upwards of 57% of 
glioblastomas as determined by the TCGA dataset (9). From 
a subtype perspective, classical glioblastoma are synonymous 
with focal amplification of EGFR (~95%), whereas mesen-
chymal, neural and proneural glioblastomas are associated 
with reduced rates of EGFR amplification at 29, 67 and 17%, 
respectively. Mutations of EGFR occur in roughly one‑third of 
all classical tumors and often in mesenchymal, proneural and 
neural glioblastomas as well (10). Of these mutations, extracel-
lular domain EGFR mutations are most commonly observed 
in glioblastoma (11).

The most frequently occurring EGFR mutation in glioblas-
toma, EGFRΔIII, arises from an in‑frame deletion of 801 bp 
in the DNA sequence encoding the extracellular domain, 
rendering a truncated yet constitutively active form of the 
receptor (12) EGFRΔIII is a cancer specific mutation, as it 

Epidermal growth factor receptor in glioblastoma (Review)
HONGSHENG XU*,  HAILIANG ZONG*,  CHONG MA,  XING MING, 
MING SHANG,  KAI LI,  XIAOGUANG HE,  HAI DU  and  LEI CAO

Department of Neurosurgery, Central Hospital of Xuzhou, Affiliated Hospital of 
Southeast University, Xuzhou, Jiangsu 221009, P.R. China

Received June 6, 2016;  Accepted March 21, 2017

DOI: 10.3892/ol.2017.6221

Correspondence to: Dr Hongsheng Xu, Department of 
Neurosurgery, Central Hospital of Xuzhou, Affiliated Hospital of 
Southeast University, Xuzhou, Jiangsu 221009, P.R. China
E‑mail: xu_hongsheng111@163.com

*Contributed equally

Key words: epidermal growth factor receptor, glioblastoma, 
oncology, nervous system



XU et al:  EPIDERMAL GROWTH FACTOR RECEPTOR IN GLIOBLASTOMA 513

not detected in normal tissues, making it an attractive target 
for therapeutic intervention. Several different studies (12-14) 
have indicated that EGFRΔIII is expressed in ~50% of glio-
blastomas that amplify wild‑type EGFR (13). Additionally, 
data mined from the TCGA indicates that EGFRΔIII is most 
commonly present in the classical tumors (23%), where EGFR 
amplification is most prevalent.

Despite being constitutively active, EGFRΔIII sustains 
a low‑level signal capable of evading internalization and 
downregulation, which primarily result from inefficient dimer-
ization (14). In contrast, wild‑type EGFR is rapidly degraded 
following acute stimulation with ligand (15). Though low‑level 
in nature, constitutive signaling downstream of EGFRΔIII 
leads to increased glioblastoma cell survival in vivo through 
selective augmentation of various mitogenic factors, namely 
Akt and repression of apoptosis via enhanced Bcl2 family 
member expression (16).

EGFRΔIII has also been associated with transformative 
properties, as INK4A/Arf depleted astrocytes and neural 
stem cells form high grade tumors in vivo when expressing 
EGFRΔIII (17). Given this, EGFRΔIII may act as a critical 
initiating event in tumor development. Not only is EGFRΔIII 
likely an important factor in gliomagenesis, but the tumori-
genic potential of glioma cells in  vivo are significantly 
increased by EGFRΔIII expression when compared to 
xenografts expressing the wild‑type EGFR (18,19). Studies 
have also shown that EGFRΔIII‑expressing glioblastoma 
cells are approvingly resilient towards both chemotherapy 
as well as radiation (19-21). Interestingly, recent reports indi-
cate that co‑expression of EGFRΔIII and the GSC marker 
CD133+ defines a population of GSCs harboring the greatest 
tumor‑initiating ability, thus further defining its importance 
in glioblastoma. Taken together, it is not surprising that 
EGFRΔIII expression has been strongly associated with a 
poor survival prognosis for patients whose tumors amplify 
EGFR (21). In addition to EGFRΔIII, sequence analysis of the 
EGFR coding region in a cohort of 151 glioblastoma tumors 
and cell lines identified a number of novel ectodomain missense 
mutations (22). Approximately 14% of glioblastoma patient 
samples and 13% of glioblastoma cell lines displayed this form 
of mutation. Using missense mutants encoding R108K, T263P, 
A289V, G598V, and L861Q it was determined that these muta-
tions were: i) hyper‑phosphorylated receptor in the absence of 
ligand; ii) accompanied by an increased EGFR gene dosage; 
and iii) exhibited a stronger transforming phenotype relative 
to wild‑type EGFR as determined by anchorage‑independent 
growth in NIH‑3T3 cells. Importantly, of the missense muta-
tions evaluated, EGFR‑R108K shares the greatest degree of 
signaling and behavioral homology to EGFRΔIII, particularly 
as it relates to therapeutic resistance (23).

3. EGFR therapies in glioblastoma

Overexpression of EGFR has been noted in multiple epithe-
lial tumors, supporting the notion that deregulated EGFR 
expression and signaling are pivotal events in the origin of 
human cancers (24). This led to the development of multiple 
inhibitors of EGFR, including EGFR‑targeted monoclonal 
antibodies (mAB) such as mAB C225 69 and mAB 528 (25). 
Mechanistically, EGFR‑directed mAbs compete with 

cognate ligands for binding, effectively down‑regulating 
receptor expression and leading to inhibition of cell growth 
by induction of cell cycle arrest (26). Initially, mAB C225, 
dubbed cetuximab, demonstrated promising antitumor 
effects in cell cultures and xenograft models, leading to its 
implementation as a therapeutic agent (27). Since, cetuximab 
has been approved for use in metastatic colorectal cancer 
(CRC) as well as squamous cell carcinoma of the head and 
neck  (HNSCC)  (28,29). Cetuximab has additionally been 
under evaluation in progressive non‑small cell lung cancer 
(NSCLC), where activating mutations of EGFR commonly 
occur (30). Notably, preclinical studies in glioblastoma cell 
cultures and mouse models have demonstrated the antitumor 
and radio‑sensitizing effects of cetuximab in this setting (31). 
Preclinical data also suggest that cetuximab is active against 
EGFRΔIII, where it binds to and engenders receptor inter-
nalization, rendering a reduction in kinase activation (32). 
Though cetuximab has displayed promising effects in clinical 
trials involving CRC, HNSCC and NSCLC, phase I/II trials in 
patients with recurrent glioblastoma have failed to confer any 
efficacious advantages over standard of care regimens (33). 
Insufficient intratumoral accumulation of cetuximab was 
cited in the failed inhibition of EGFR autophosphorylation 
and degradation in these studies.

Small molecule tyrosine kinase inhibitors (TKIs) that 
competitively target receptor catalytic activity via the EGFR 
kinase domain adenosine triphosphate (ATP)‑binding pocket, 
present another approach to targeting EGFR (34). Despite 
being low in molecular weight and more likely to penetrate 
the BBB, the specificity of these inhibitors is diminished by 
the fact that the EGFR ATP‑binding pocket shares homology 
with that of other RTKs, resulting in off‑target effects (35). 
Three TKIs of EGFR (gefitinib, erlotinib and lapatinib) have 
previously received regulatory approval for use in NSCLC and 
breast cancer (36). In contrast, several phase II clinical trials 
evaluating gefitinib, erlotinib or lapatinib in newly diagnosed or 
recurrent glioblastoma have yielded minimal clinical activity 
as either a monotherapy or in combination regimens (37-39). 
The lack of clinical effects were attributed to insufficient 
inhibition of Akt activation, which correlated most strongly 
with EGFRΔIII expression and loss of PTEN. Collectively, 
these findings highlight the need for novel therapeutic targets 
capable of improving clinical responses in this deadly disease.

4. Dysregulated EGFR signaling networks in glioblastoma

The EGFR family is a complex system involved in growth 
factor cellular signaling. Phosphorylation of EGFR at the 
plasma membrane leads to the recruitment of multiple effector 
proteins via recognition and binding of Src homology 2 (SH2) 
and phosphotyrosine‑binding (PTB) domains to phosphotyro-
sine motifs on the receptor. Formation of the EGFR signaling 
complex, in turn, triggers a variety signaling cascades involved 
in tumor cell proliferation, angiogenesis, motility, differentia-
tion, and survival (Fig. 1) (40). Interestingly, similar substrates 
are activated downstream of EGFR and EGFRΔIII, but with 
differing levels of intensity. These pathways include the 
phosphoinositide 3‑kinase (PI3K), mitogen‑activated protein 
kinase (MAPK), signal transducer and activator of transcrip-
tion 3 (STAT3) pathways and Src family kinases (41).
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5. PI3K

The class IA PI3Ks form heterodimers that are recruited 
to trigger RTKs and adaptor proteins through regulatory 
subunits, including p85a, p55a and p50a, or PIK3R1; p85b or 
PIKR2; and p55y or PIKR3. p85a associates with EGFR either 
through ErbB3 heterodimerization or through phosphorylation 
of EGFR by the SFK c‑Src (42). p85a association with EGFR 
results in a conformational change in p85a, releasing the 
inhibition of the catalytic subunit p110 of PI3K. PI3K then 
localizes to the plasma membrane, where it functions to catalyze 
the formation of phosphatidylinositol 3,4,5‑trisphosphate 
(PIP3) via the phosphorylation of phosphatidylinositol 
4,5‑bisphosphate (PIP2). The resulting PIP3 is a critical 
activator of Akt, which consequently phosphorylates, or 
inhibits, numerous target proteins involved in regulating 
cellular metabolism, motility and protein synthesis  (43). 
Akt activation additionally results in phosphorylation of 
Bad, a Bcl family member, which when phosphorylated 
fails to inhibit the survival protein Bcl‑xL, thus precluding 
apoptotic induction (44). Activation of PI3K can also arise 
from point mutations, of which ~15% have been catalogued in 
glioblastoma tumors. These mutations occur most commonly 
in the adaptor‑binding domain (ABD) and less frequently in 
the C2 helical and kinase domains of the catalytic subunit 
(PIK3CA) (45). Though mutations in the regulatory subunit 
(PI3KR1) are uncommon, prior sequencing analysis from the 
TCGA indicated the presence of 9 such mutations occurring 
among a cohort of 91  glioblastoma samples. As a result, 
aberrant PI3K activation and subsequent activation of Akt is 
observed in upwards of 85% of glioblastoma samples (46). 
PI3K signaling is negatively regulated by various proteins, 
most notably PTEN; PTEN, however, is commonly inactivated 

(~50%) in glioblastoma by either epigenetic silencing or 
deletion mutation (37). Loss of PTEN, therefore, disrupts the 
PI3K:PTEN balance resulting in increased Akt activation 
and uncontrolled cell growth. Given the frequency of PI3K 
pathway aberrations occurring in glioblastoma, inhibition 
of its signaling components is an important contribution for 
a therapeutic avenue. Based on this, the rapamycin analogs, 
everolimus (Afinitor) and temsirolimus (Torisel), both of 
which inhibit mammalian target of rapamycin complex 1 
(mTORC1) are regulatory‑approved for treatment of advanced 
renal cell carcinoma and have been evaluated in glioblastoma 
patients. Unfortunately, the clinical application of rapamycin 
analogs has yielded infrequent and short‑lived responses in 
glioblastoma. Additionally, the PKC/PI3K/AKT inhibitor, 
enzastaurin, was the first targeted therapy for glioblastoma 
evaluated in a phase III clinical trial (47).

6. MAPK

Following EGFR activation, the MAPK signaling pathway is 
triggered by the growth factor receptor‑bound protein 2 (Grb2) 
binding directly to EGFR via Y1068 and Y1086 or indirectly 
by SHC binding Y1173 and Y1143  (48). Grb2 also houses 
2 SH3 domains, allowing for interactions with proline‑rich 
sequences, namely those of son of sevenless (SOS) (49). The 
Grb2/Shc/EGFR interaction precedes recruitment of SOS to 
the plasma membrane. SOS is a guanine nucleotide exchange 
factor, which functions to promote the conversion of Ras‑GDP 
to the active Ras‑GTP. Subsequently, Ras activates Raf, a 
serine‑threonine protein kinase, which then phosphorylates 
and activates MEK1/2, resulting in activation of ERK1/2 
(MAPK) (50).

7. Conclusions

The present study concludes that the concept of EGFR 
signaling and related receptors and associated factors is 
evolving, however, it needs detailed evaluation for future 
clinical applications in cancer patients.
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