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Abstract. SET and MYND domain containing 3 (SMYD3) is 
a histone methyltransferase (HMT) and transcription factor, 
which serves important roles in carcinogenesis. Numerous 
downstream target genes of SMYD3 have been identified 
in previous studies. However, the downstream microRNA 
(miRNA) s regulated by SMYD3 are yet to be elucidated. In 
the present study, the results of miRNA microarray demon-
strated that 30 miRNA expression profiles were upregulated, 
whilst 24 miRNAs were downregulated by >2.0-fold in the 
SMYD3-overexpressed MCF-7 breast cancer cells. The HMT 
activity was demonstrated to be essential for SMYD3-medi-
ated transactivation of miR-200c-3p and the overexpression of 
miR-200c-3p inhibited the transactivation effects of SMYD3 
on myocardin-related transcription factor-A-dependent migra-
tion-associated genes. To our best knowledge, the current 
study is the first to report on the transcriptional regulation of 
SMYD3 on miRNAs, and miR-200c may be a downstream 
negative regulator of the SMYD3-mediated pathway in the 
migration of breast cancer cells. These results may provide a 
novel theoretical basis to understand the mechanisms under-
lying the initiation, progression, diagnosis, prevention and 
therapy of breast cancer.

Introduction

SET and MYND domain containing 3 (SMYD3) is a novel 
histone methyltransferase gene identified in hepatoma and 

colon carcinoma cells by Hamamoto et al (1). SMYD3 is 
located on human chromosome 1 and encodes two protein 
isoforms that are composed of 428 and 369 amino acids. 
Previous studies have demonstrated that SMYD3 is frequently 
overexpressed in numerous types of cancer cells, including 
hepatic, colon, gastric and cervical carcinoma, and breast 
cancer (2-4), whilst the expression levels were lower in the 
corresponding normal tissue. A number of previous studies 
have demonstrated that SMYD3 has vital roles in the process 
of tumor development via its functions as a histone methyla-
tion enzyme and a transcription factor (5,6). SMYD3 modifies 
chromatin structure by catalyzing the methylation of histone 
H3 at lysine 4 (H3K4), H4K20 and H4K5 (5,6). Also, SMYD3 
regulates the transcription of target genes via associating with 
RNA polymerase II or HELZ RNA helicase and binding at the 
motif CCCTCC or GGAGGG in the promoter (1).

MicroRNAs (miRNAs) are small, non-coding, endogenous 
RNA molecules of 18‑22 nucleotides that were first identified 
in Caenorhabditis elegans. miRNAs suppress gene expres-
sion by binding the targeted mRNA transcripts, which causes 
translational repression or mRNA degradation. Previous 
studies demonstrated that miRNAs serve important roles in 
tumorigenesis through the regulation of genes involved in 
cancer development and maintenance (7,8).

A number of studies have identified that histone methyla-
tion and miRNAs are essential in the initiation and progression 
of cancer (7-9). However, the association between SMYD3 and 
miRNAs is yet to be elucidated. To investigate this further, 
the current study analyzed the global regulatory effects of 
SMYD3 on miRNAs in breast cancer cells using miRNA 
microarrays and reverse transcription-quantitative polymerase 
chain reaction (RT-qPCR).

Materials and methods

Cell lines and plasmids. The MCF-7 human breast 
cancer cell line was obtained from the American Type 
Culture Collection (Manassas, VA, USA). The plasmid 
pcDNA5-TO/TAP-DEST-SMYD3 was a gift from Professor 
Philip Tucker from the Institute for Cellular and Molecular 
Biology, University of Texas (Austin, TX, USA). The CON049 
(GeneChem, Co., Ltd., Shanghai, China) plasmid was used as 
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a negative control for short hairpin (sh)SMYD3 (GeneChem, 
Co., Ltd.). The SMYD3-ΔNHSC plasmid was constructed 
by deleting the 205-208th amino acids (Asn-His-Ser-Cys) of 
pcDNA5-TO/TAP-DEST-SMYD3. The miR-200c-3p mimic 
and its negative control were obtained from Qiagen, Inc., 
(Valencia, CA, USA).

Cell culture and transfection. The MCF-7 cells were cultured 
in Dulbecco's modified Eagle's medium (DMEM/F-12; 
Gibco; Thermo Fisher Scientific, Inc., Waltham, MA, 
USA) supplemented with 10% fetal bovine serum (Tianjin 
Kangyuan Biotechnology Co., Ltd., Beijing, China) at 37˚C 
in an atmosphere containing 5% CO2. For plasmid transfec-
tion experiments, MCF-7 cells were cultured in DMEM/F-12 
medium without added hormones at 60% confluence for 12 h, 
and then transfected using TurboFect™ in vitro transfection 
reagent (Roche Diagnostics, Indianapolis, IN, USA) according 
to the manufacturer's protocol. Following incubation for 
6 h, the medium was removed and replaced with normal 
culture medium (DMEM/F-12 medium without hormones) 
for 24 h. Then, the RT-qPCR was performed as described 
below. For miR-200c-3p mimic transfection experiments, 
Lipofectamine® 2000 reagents (Invitrogen; Thermo Fisher 
Scientific, Inc.) were used following the manufacturer's 
protocol.

RNA extraction and complementary DNA (cDNA) synthesis. 
Briefly, total cellular RNA was extracted from cultured cells 
using TRIzol reagent according to the manufacturer's protocol 
(Invitrogen; Thermo Fisher Scientific, Inc.) and 2 µg total RNA 
was reverse-transcribed using M-MLV reverse transcriptase 
(Promega Corporation, Madison, WI, USA) according to the 
manufacturer's protocols. miRNA was isolated using the 
miRcute miRNA isolation kit (#DP501; Tiangen Biotech, Co., 
Ltd., Beijing, China), followed by cDNA synthesis using Super-
Script First-Strand Synthesis system (Invitrogen; Thermo 
Fisher Scientific, Inc.), but with the specific stem loop primer 
primers. The miRNA RT-PCR primer sequences were as 
follows: JH6-miR200c-3p, 5'-CTCAACTGGTGTCGTGGAG 
TCGGCAATTCAGTTGAGTCCATC-3'; JH7-miR200c-3p, 
5'-CTCAACTGGTGTCGTGGAGTCGGCAATTCAGTTGA 
GTCCATCA-3'; JH7-miR149-3p, 5'-CTCAACTGGT-
GTCGTG GAGTCGGCAATTCAGTTGAGGGGAGTG-3'. 
The total RNA and dNTPs were incubated at 65˚C for 5 min, 
cooled on ice briefly. Subsequently, the miRNA specific primer, 
RNase inhibitor and reverse transcriptase were added. After 
being incubated at 25˚C for 10 min, 37˚C for 50 min and 70˚C for 
15 min, the cDNA was synthesized and used as a template of 
qPCR.

miRNA microarray chip analysis. miRNA expression profiling 
microarray was completed using Agilent human miRNA 
(8x60K) V18.0 miRNA array (LC Sciences, LLC., Houston, 
TX, USA). The microarray probe sequence was derived 
from Sanger MiRBase version 15.0 (http://microrna.sanger.
org). Each chip contained multiple quality control probes 
and employed dual-color chip to examine miRNA expression 
profiling in MCF‑7 cells with overexpressed or normal endog-
enous expression of SMYD3. Probes were synthesized in situ 
with photosensitive photogenerated reagents. The sequence 

consisted of two fragments: A chemically modified oligonu-
cleotide encoding fragment complementary to target miRNA; 
and an extension arm at the distance specific to the connected 
encoding sequence that reduced the hybridization spatial 
impairment. Slides were scanned on an Agilent microarray 
scanner (model G2565A; Agilent Technologies, Inc., Santa 
Clara, CA, USA) at 100 and 5% sensitivity settings. Agilent 
Feature Extraction software version 8.1 (Agilent Technologies, 
Inc.) was used for image analysis (10-12).

RT‑qPCR of mRNA and miRNA. RT-qPCR was performed 
using a StepOne™ Real-Time PCR system (Applied Biosys-
tems; Thermo Fisher Scientific, Inc.). Bestar® SYBR-Green 
qPCR Mastermix was obtained from DBI Bioscience 
(http://www.xinghanbio.com/cpzs; Shanghai, China). The 
thermal profiles were 95˚C for 10 sec and 60˚C for 1 min. 
Melting curve analysis was performed for each PCR to confirm 
the specificity of amplification. At the end of each phase, fluo-
rescence was measured and quantified. Data is presented as 
the relative expression level of mRNA following normaliza-
tion to GAPDH or the relative expression levels of miRNA 
following normalization to U6 following calculations using 
the 2-ΔΔCq method (13). The PCR primer sequences were as 
follows: GAPDH forward, 5'-ATTCAACGGCACAGTCA 
AGG-3' and reverse, 5'-GCAGAAGGGGCGGAGATGA-3'; 
zinc finger E‑box binding homeobox (ZEB)1 forward, 5'‑AAG 
GGCAAGAAATCCTGGGG-3' and reverse, 5'-CTCTGGTC 
CTCTTCAGGTGC-3'; ZEB2 forward, 5'-AAATGCACAGA 
GTGTGGCAAGG-3' and reverse, 5'-CTGCTGATGTGCGA 
ACTGTAGGA-3'; SMYD3 forward, 5'-AAGTTCGAACCGC 
CAAGAG-3' and reverse, 5'-AAGGCAGCGGTCGCAGA 
CGA-3'; myosin light chain 9 (MYL9) forward, 5'-GAGCCCA 
AGCGCCTTCT-3' and reverse, 5'-GTCAATGAAGCCATCA 
CGGT-3'; cysteine rich angiogenic induced 61 (CYR61) 
forward, 5'-AAGGGGCTGGAATGCAACTT-3' and reverse, 
5'-TTGGGGACACAGAGGAATGC-3'; U6 forward, 5'-CTC 
GCTTCGGCAGCACA-3'; and reverse, 5'-AACGCTTCACG 
AATTTGCGT-3'; miR200c-3p forward, 5'-ACACTCCAGCT 
GGGTAATACTGCCGGGTAAT-3'; miR149-3p forward, 
5'-ACACTCCAGCTGGGTCTGGCTCCGTGTCTTG-3'; and 
general reverse, 5'-TGGTGTCGTGGAGTCG-3'. All experi-
ments were repeated three times.

miRNA target gene prediction. In total 5 online prediction 
software programs, including miRDB (http://mirdb.org/), 
TargetScan (http://www.targetscan.org/), DIANA-microT 
(http://diana.cslab.ece.ntua.gr/microT/), microRNA.org 
(http://www.microrna.org/microrna/home.do) and RNA22 
(https://cm.jefferson.edu/rna22), were used to predict the target 
genes of miRNAs. The intersection of 3/5 of these software 
programs were selected as the potential target genes.

Statistical analysis. Statistical evaluations were performed 
using GraphPad Prism (version 5.0; GraphPad Software, Inc., 
La Jolla, CA, USA), using 3 independent experiments and were 
analyzed using Student's t-test. P<0.05 was considered to indicate 
a statistically significant difference. The homologous alignment 
analysis was performed using DNAMAN (version 6.0; Lynnon 
LLC., San Ramon, CA, USA) and Primer Premier (version 5.0; 
Premier Biosoft International, Palo Alto, CA, USA).
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Results

Effects of SMYD3 overexpression on the miRNA expression 
profile of MCF‑7 cells. To investigate the regulatory effects 
of SMYD3 on global miRNA in breast cancer cells, MCF-7 
cells were transfected with SMYD3 and microarray analysis 
was performed using the Agilent human miRNA (8x60K) 
V18.0 microarrays chip that contains 1,871 miRNAs. As 
presented in Fig. 1A, the expression profile analysis identi-
fied 1,871 microRNAs with altered expression, including 
191 miRNAs that were upregulated in SMYD3-transfected cells 
compared with mock transfected cells, whilst 1,680 miRNAs 
were downregulated. Amongst these, 30 miRNAs were 
upregulated >2.0-fold and 24 miRNAs were downregulated 
<2.0-fold (Fig. 1B and C). Furthermore, to investigate the 
function of these miRNAs in more depth, the potential target 
genes of these miRNAs and their functions were summarized 
using bioinformatic analysis (Table I) (14-57).

Verifying the transcriptional regulatory effect of SMYD3 on 
the target miRNAs, miR‑200c‑3p and miR149‑3p. To confirm 
the results of miRNA microarray, miR-200c-3p, a predicted 
target that was upregulated by 37.9-fold, and miR149-3p, 
a predicted target that was downregulated by 20.9-fold by 
SMYD3 in the chip assay, were selected for further investiga-
tion. The pcDNA5-TO/TAP-DEST-SMYD3 plasmid and the 
shSMYD3 plasmid were transfected into MCF-7 cells for the 
overexpression and knockdown of SMYD3, respectively. In 
accordance with the results of miRNA microarray, the results 
of RT‑qPCR identified that miR‑200c‑3p was significantly 
upregulated following SMYD3 overexpression (P<0.001) and 
downregulated following RNA interference (RNAi) -mediated 
suppression of SMYD3 (P<0.05; Fig. 2A and B), whereas the 
level of miR149‑3p exhibited a significant negative association 
with the expression of SMYD3 (P<0.001; Fig. 2C and D).

The promoter sequence of miR-200c-3p from a number 
of species, including of Homo sapiens, Macaca mulatta, 
Pan troglodytes, Monodelphis domestica, Equus caballus and 
Rattus norvegicus, were analyzed using bioinformatic methods. 
The results identified that 8 conserved SMYD3 binding sites 
exist in the promoter region (-2500 to +1) of miR-200c-3p 
from numerous species, indicating that miR-200c-3p may be 
a target for the transcriptional regulation of SMYD3 (Fig. 3).

Furthermore, the results of RT-qPCR assay demonstrated 
that the mRNA level of ZEB1 and ZEB2, two predicted 
target genes of has-miR-200c-3p presented in Table I, was 
decreased by SMYD3-overexpression, whereas they were 
increased by RNAi-induced suppression of endogenous 
SMYD3 (Fig. 4A and B). Taken together, these results demon-
strate that SMYD3 activates the transcription of miR-200c-3p 
and therefore indirectly decreases the mRNA levels of ZEB1/2.

Histone methylation activity is essential in the SMYD3‑medi‑
ated transactivation of miR‑200c‑3p. Considering the 
results of the present study and the previous studies that 
focusing on the histone methylation activity of SMYD3, it 
was hypothesized that SMYD3 may function as a transac-
tivator of miR-200c-3p via its histone methylation function. 
To investigate this, MCF-7 cells were treated with 100 µM 
methylthioadenosine, a histone methylation inhibitor, with 

or without physiological concentration of estradiol (10-11 M) 
and subsequently the transcription level of miR-200c-3p 
was detected using RT-qPCR. As presented in Fig. 5, the 
transcription level of miR‑200c‑3p was significantly down-
regulated by the histone methylation inhibitor (Fig. 5A). 
Consistently, SMYD3-ΔNHSC, a histone methyltrans-
ferase-activity-depleted mutant of SMYD3 (58,59), also 
decreases the transcription level of miR-200c-3p (Fig. 5B). 
These results suggested that the histone methylation activity 
may have vital roles in SMYD3-mediated transactivation of 
miR-200c-3p.

Regulatory effects of SMYD3 and miR‑200c‑3p on target 
genes of the RhoA‑myocardin‑related transcription factor 
A (MRTF‑A) signaling pathway. The authors' previous study 
demonstrated that SMYD3 promotes MRTF-A-mediated 
transactivation of MYL9 and migration of MCF-7 breast 

Figure 1. Expression profile of miRNAs following the overexpression of 
SMYD3 in MCF-7 cells. (A) The percentage of differentially expressed 
miRNAs following the overexpression of SMYD3 in MCF-7 cells. (B) The 
30 miRNAs that were upregulated by >2.0-fold. (C) The 24 miRNAs that 
were downregulated by >2.0-fold. miRNA/miR, microRNA; SMYD3, SET 
and MYND domain containing 3.
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cancer cells (59). However, other previous studies have identi-
fied that miR‑200c represses migration and invasion of breast 
cancer cells via suppression of the RhoA-MRTF-A signaling 
pathway (60,61). As the results of the present study demon-
strated the overexpression of SMYD3 directly transactivates 
miR-200c-3p, whether SMYD3 and miR-200c-3p supports or 
opposes each others' effects on the transcription of MYL9 and 
CYR61, two MRTF-A-dependent migration-related genes, was 
investigated. The miR-200c-3p mimic and/or SMYD3-over-
expression plasmid were transfected into MCF7 cells and the 
transcription level of MYL9 and CYR61 were detected using 
RT-qPCR. The results of RT-qPCR demonstrated that the tran-
scriptional level of SMYD3 and the miR-200c-3p increased 
significantly following the transfection (Fig. 6A and B). As 
presented in Fig. 6C, the mRNA levels of MYL9 and CYR61 
were suppressed by miR-200c-3p and increased by the overex-
pression of SMYD3. Furthermore, the upregulation of MYL9 
and CYR61 remained after SMYD3 was co-transfected with 
miR-200c-3p mimics, but the effect in combination group was 
reduced compared with that of the SMYD3-transfected group. 
These results demonstrated that miR-200c-3p may be a down-
stream negative regulator of the SMYD3-mediated pathway in 
the migration of breast cancer cells.

Discussion

The primary focus of epigenetics is to elucidate the heritable 
changes in gene expression and regulation, which occur 
without mutation to the DNA sequence, in the process of 
gene transcription in eukaryotic cells. The heritable altera-
tions include DNA methylation, histone modification and 
regulation by noncoding RNAs. A number of studies have 
established that the majority of malignant tumor types exhibit 
cancer-associated epigenetics alterations (62). However, the 
interdisciplinary investigation of miRNA and histone modifi-
cation has received increasing interest.

A previous study has analyzed downstream coding genes 
of SMYD3 using cDNA microarray and the results identi-
fied that there were 61 genes upregulated >3‑fold and genes 
downregulated <3-fold by SMYD3 (1). However, to date, the 
downstream miRNAs regulated by SMYD3 are yet to be 
elucidated. Therefore, the present study focused on the effect 
of SMYD3 on the miRNA expression profile in MCF‑7 breast 
cancer cells by analyzing microarray and RT-qPCR data. 
These results demonstrated that 30 miRNAs were upregulated 
>2.0-fold, whilst 24 miRNAs were downregulated <2.0-fold 
following the overexpression of SMYD3. The analysis of 
bioinformatic and previously published data identified that the 
majority of these potential downstream miRNAs of SMYD3 
were associated with the proliferation, migration and therapy 
resistance of tumor.

To further validate the results of microarray, RT-qPCR was 
performed to detect the effects of SMYD3 on the expression 
of miR-200c-3p and miR-149, which are 2 representative target 
miRNAs of SMYD3 with opposing alterations, and the results 
were in accordance with those of the microarray. Previous 
studies have demonstrated that miR-149 and miR-200c are 
associated with the progression of cancer (63-65). miR-149 
has been established as a tumor suppressor by inhibiting the 
spreading, migration and invasion of basal-like breast cancer 
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cells (63). However, the roles of miR-200c in cancer remain to 
be fully understood. A number of previous studies have reported 
that miR-200c may inhibit the epithelial-mesenchymal transi-
tion and enhance the chemosensitivity and radiosensitivity of 
cancer cells (64,65), whereas another previous study reported 
a metastasis-promoting role of miR-200 in breast cancer (64). 
In addition, a separate study demonstrated that the expression 
level of miR-200c different between the subtypes of breast 
cancer (65). Compared with the normal breast epithelial cells 
(MCF-10A), the basal cancer cells (MDA-MB-231 and BT549) 
exhibited a reduced expression of miR-200c (65). However, 
the expression of miR-200c in luminal cancer cells (MCF-7 
and BT474) was increased compared with that in the normal 
breast epithelial cells (65). Additionally, previous studies have 

suggested that miR-200c may repress migration and invasion 
of breast cancer cells via the suppression of RhoA-MRTF-A 
signaling pathways (60,61), whereas the current study suggests 
that SMYD3 promotes MRTF-A-mediated transactivation 
of MYL9 and migration of MCF-7 breast cancer cells (59). 
The results in the present study have demonstrated that the 
expression of miR-200c in MCF-7 breast cancer cells may be 
upregulated by SMYD3, and the overexpression of miR-200c 
partially inhibits the transactivation effects of SMYD3 on 
the MRTF-A-dependent migration-associated genes. Taken 
together, these results indicated that miR-200c may be a down-
stream negative regulator of the SMYD3-mediated pathway in 
the migration of breast cancer cells, and may promote a nega-
tive feedback loop to prevent excessive induction of migration 

Figure 3. Conserved SMYD3 binding sites in miR-200c-3p promoter from numerous species. The homologous alignment analysis of the binding sides of 
SMYD3 in miR-200c-3p promoter from a number of species was performed using DNAMAN (version 6.0) and Primer Premier (version 5.0). miR, microRNA; 
SMYD3, SET and MYND domain containing 3.

Figure 2. SMYD3 upregulates miR-200c-3p and downregulates miR149-3p in MCF-7 cells. The transcriptional levels of (A and B) miR-200c-3p 
and (C and D) miR149-3p in MCF-7 cells transfected with pcDNA5-TO/TAP-DEST-SMYD3 and shSMYD3 was detected using reverse transcription-quanti-
tative polymerase chain reaction. *P<0.05, ***P<0.001. miRNA/miR, microRNA; SMYD3, SET and MYND domain containing 3; sh, short hairpin.
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Figure 6. miR‑200c‑3p may be a downstream negative regulator of SMYD3‑mediated pathway. (A) The transfection efficiency of SMYD3 was detected using 
RT‑qPCR. (B) The transfection efficiency of miR‑200c‑3p mimics was detected using RT‑qPCR. (C) miR‑200c‑3p mimics and/or SMYD3‑overespression 
plasmids were transfected into MCF7 cells and the transcription levels of MYL9 and CYR61 were detected using RT-qPCR. **P<0.01, ***P<0.001. miR/miRNA, 
microRNA; SMYD3, SET and MYND domain containing 3; RT-qPCR, reverse transcription-quantitative polymerase chain reaction; CYR61, cysteine rich 
angiogenic induced 61; MYL9, myosin light chain.

Figure 5. Histone methylation activity of SMYD3 has vital roles in promoting miR-200c-3p. (A) The difference of miR-200c-3p levels in MCF-7 cells treated 
by MTA with or without E2 (10-11 M) was detected by RT‑qPCR. (B) The difference of miR‑200c‑3p levels in MCF‑7 cells transfected with SMYD3‑ΔNHSC 
(Asn-His-Ser-Cys) plasmid and treated with or without E2 (10-11 M) was detected by RT-qPCR. **P<0.01, ***P<0.001. miR/miRNA, microRNA; SMYD3, SET 
and MYND domain containing 3; RT-qPCR, reverse transcription-quantitative polymerase chain reaction; MTA, methylthioadenosine; E2, estradiol.

Figure 4. SMYD3 decreases the mRNA level of ZEB1/2, 2 predicted target genes of miR-200c-3p. (A) The mRNA level of ZEB1/2 in MCF-7 cells transfected 
with pcDNA5-TO/TAP-DEST-SMYD3 plasmid was detected using RT-qPCR. (B) The mRNA level of ZEB1/2 in MCF-7 cells transfected with shSMYD3 
plasmid was detected using RT-qPCR. *P<0.05, ***P<0.001. miR/miRNA, microRNA; SMYD3, SET and MYND domain containing 3; ZEB, zinc finger E‑box 
binding homeobox; sh, short hairpin; RT-qPCR, reverse transcription-quantitative polymerase chain reaction.
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of breast cancer cells. However, the underlying mechanism of 
miR-200c in breast cancer remains to be elucidated by future 
investigation.

Additionally, previous studies have identified that SMYD3 
alters chromatin structure by catalyzing the di-/tri-methylation 
of histone H3 at lysine 4 (H3K4me2/3), H4K20me3 and 
H4K5me (5,6). As part of the established methylation marks at 
H3K4 or H3K36, mono-methylations of H3K9, H3K27, H3K79, 
H4K20 and H2BK5 are associated with transcriptional activa-
tion, whereas trimethylations of H3K9, H3K27, H3K79 and 
H4K20 are associated with transcriptional repression (5,6). 
The current study demonstrates that the histone methylation 
activity is essential for SMYD3-mediated transactivation of 
miR-200c-3p. Therefore, SMYD3 antagonistic regulation of 
the downstream miRNAs may also depend on the distinct 
modification on the histone adjacent to the promoter.

In conclusion, the effect of SMYD3 on the miRNA expres-
sion profile in MCF‑7 breast cancer cells was analyzed using 
microarray and RT-qPCR in the present study. To the best of 
our knowledge, this is the first study focused on the transcrip-
tional regulation of SMYD3 on miRNAs. These results may 
provide a novel theoretical basis to elucidate the mechanism 
underlying the initiation, progression, diagnose, prevention 
and therapy of breast cancer.
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