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Abstract. The aim of the present study was to identify the key 
genes associated with osteosarcoma (OS) using a bioinformatics 
approach. Microarray data (GSE36004) was downloaded from 
the Gene Expression Omnibus database, including 19 OS cell 
lines and 6 normal controls. Differentially expressed genes 
(DEGs) in the OS cell lines were identified using the Limma 
package, and differentially methylated regions were screened 
with methyAnalysis in R. Copy number analysis was performed 
and genes with copy number gains/losses were further 
screened using DNAcopy and cghMCR packa ges. Functional 
enrichment analyses were performed using the Database for 
Annotation, Visualization and Integrated Discovery online 
tool, and protein‑protein interactions were identified based on 
information obtained from the Search Tool for the Retrieval of 
Interacting Genes database. A total of 47 downregulated genes 
were screened in hyper-methylated regions, including the frag-
ment crystallizable (Fc) region of immunoglobulin E, high 
affinity I, receptor for; γ polypeptide (FCER1G), leptin (LEP) 
and feline Gardner-Rasheed sarcoma viral oncogene homolog 
(FGR). In addition, a total of 17 upregulated genes, including 
the TPase family, AAA domain containing 2 (ATAD2) and 
cyclin-dependent kinase 4 (CDK4), exhibited copy number 
gains, while 5 downregulated genes, including Rho GTPase 
activating protein 9 (ARHGAP9) and major histocompa-
tibility complex, class II, DO α (HLA‑DOA), exhibited copy 
number losses. These results indicate that hyper-methylation 
of FCER1G, LEP, and FGR may serve a crucial function in 
the development of OS. In addition, copy number alterations 
of these DEGs, including ATAD2, CDK4, ARHGAP9 and 
HLA‑DOA, may also contribute to OS progression. These 
DEGs may be candidate targets for the diagnosis and treat-
ment of this disease.

Introduction

Osteosarcoma (OS) is the most common type of primary bone 
malignancy in children and adolescents (1). It is a high-grade 
malignant tumor with a poor prognosis, and ~20% of patients 
with OS present with metastases at diagnosis (2,3). Treat-
ment generally involves surgery and adjuvant chemotherapy, 
and a positive response to chemotherapy is considered to be 
a prognostic marker for OS, indicating a favorable overall 
outcome (4,5). Although neoadjuvant chemotherapy has 
improved the survival rate by a considerable amount, progress 
in treatment regimens remains at a plateau.

At the molecular level, OS is characterized by gross 
changes in gene expression and highly heterogeneous 
karyotypes with variable genomic aberrations (6-8). DNA 
methylation, particularly at cytosine-phosphate-guanine sites 
in the promoter region of genes, is a crucial mechanism for the 
downregulation of gene expression (9,10). Expression levels of 
Ras association domain family member 1A have been demon-
strated to decrease due to promoter methylation in primary OS 
cell lines (11,12). Hypermethylation of the hypermethylated in 
cancer 1 promoter has been revealed to be present in 17% of 
pediatric patients with OS (13). In addition, genetic variations, 
particularly single nucleotide polymorphisms, may contribute 
to cancer risk and progression (14). Copy number variations 
across the whole genome, including deletions, amplifications 
and duplications, are associated with OS tumorigenesis (15). 
In addition, the mutation or loss of gene expression of the 
tumor protein p53 tumor suppressor gene is commonly asso-
ciated with OS (16,17). Despite these data, there is limited 
understanding of the molecular pathogenesis of OS, and a lack 
of good diagnostic and prognostic tools.

A number of previous studies have combined gene expression 
data with DNA copy number data to screen for tumor-asso-
ciated genes in OS genetic variants (18,19). The microarray data 
GSE36004 has been used in the integrative analysis of mRNA 
expression, DNA methylation and DNA copy number in OS for 
elucidating dependencies, and the association between genetic 
and epigenetic alterations in OS (20). In contrast to a previous 
study (20), the present study aimed to utilize an integrative 
bioinformatics approach to map the genetic and epigenetic 
changes in OS, and to identify key genes associated with OS 
oncogenesis. Microarray data from 19 OS cell lines and normal 
controls was used to screen differentially expressed genes 
(DEGs) and differentially methylated regions (DMRs), and to 
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perform copy number analysis. Then, functional enrichment 
analysis was performed and protein-protein interactions (PPI) 
were identified to additionally screen for the key genes. The 
identification of molecular targets that are specific for OS will 
be critical to the development of novel targeted therapeutic 
strategies to improve patient outcomes.

Materials and methods

Microarray data. The microarray data GSE36004, which 
was contributed by Kresse et al (20), were downloaded from 
the public repository Gene Expression Omnibus (GEO, 
http://www.ncbi.nlm.nih.gov/geo/) (21). It contained expression 
profiling data, methylation profiling data and genome variation 
single nucleotide polymorphism (SNP) profiling data, which 
were respectively based on Illumina HumanMethylation27 
BeadChip (Illumina, Inc., San Diego, CA, USA), Affymetrix 
Genome-Wide Human SNP 6.0 Array (Affymetrix, Inc., Santa 
Clara, CA, USA) and Illumina human-6 v2.0 expression Bead-
Chip (Illumina, Inc.) analyses. A total of 25 samples, including 
19 OS cell lines and 6 normal controls (osteoblasts and bones), 
were applied to develop expression profiling data and methyla-
tion profiling data, respectively, while only the 19 OS cell lines 
were utilized to develop SNP profiling data. All the raw data 
and annotation files were obtained for subsequent analysis.

DEG screening. According to the expression profiling data of 
GSE36004, DEGs in OS cell lines compared with normal controls 
were identified using the Limma package (available at http://www.
bioconductor.org/packages/release/bioc/html/limma.html) (22) 
in Bioconductor package version 1.0.2 (23). Significant P‑values 
were adjusted for multiple testing using the Benjamini-Hochberg 
method (24). A log fold-change (FC) >1 and adjusted P<0.05 
were considered to indicate a statistically significant diffe-
rence. Unsupervised hierarchical clustering of 25 samples was 
performed using the R package (v2.13.0; R Project for Statistical 
Computing, Vienna, Austria) (25) based on microarray data.

Analysis of methylated regions. Quantile normalization 
of the methylation profiling data was first performed using 
the Lumi package (available at http://www.bioconductor.
org/packages/release/bioc/html/lumi.html) (26) in Biocon-
ductor package version 1.0.2, then DMRs were identified 
using methyAnalysis (27) with minimum P-values adjusted 
to <0.01.

Copy number analysis. Copy number analysis of the raw 
data from the SNP profiling data was performed using 
the crlmm package (http://www.Bioconductor.org/pack-
ages/release/bioc/html/crlmm.html) (28) in Bioconductor 
package version 1.0.2. Then, genes with copy number 
gains/ losses were additionally screened using the 
DNAcopy (29) and cghMCR package (http://www.biocon-
ductor.org/packages/2.4/bioc/html/cghMCR.html). Genes 
with copy number gains/losses (0.2 for gain, -0.2 for loss) in 
>30% samples was the threshold value for the DNAcopy and 
cghMCR packages.

Functional enrichment analysis of DEGs. Gene Ontology 
(GO; http://www.geneontology.org) (30) is a tool for the 

unification of biology functions based on gene annota-
tion information, which primarily consists of biological 
process (BP), molecular function (MF), and cellular 
component (CC) analysis. The Kyoto Encyclopedia of Genes 
and Genomes (KEGG; available at http://www.genome.
ad.jp/kegg/) (31) is a pathway-associated database which 
connects known information on molecular interaction 
networks. To understand the biological significance of the 
identified DEGs, the upregulated and downregulated genes 
were input into the Database for Annotation Visualization 
and Integrated Discovery (DAVID; http://david.abcc.ncifcrf.
gov/) (32) for GO BP terms and KEGG pathway analyses. 
P<0.05 and gene counts >2 were considered to indicate a 
statistically significant difference.

PPI network construction. The Search Tool for the Retrieval 
of Interacting Genes database (STRING; http://www.bork 
.embl-heidelberg.de/STRING/) (33) provides comprehensive 
information on the functional interactions between DEGs and 
other genes by calculating their combined score. PPI pairs 
with a combined score of >0.7 as a cutoff value were identified. 
PPI networks were then constructed using Cytoscape software 
(version 2.6.3) (available at http://cytoscapeweb.cytoscape.
org/) (34) based on the PPI pairs.

Statistical analysis. The correlation between the expression 
levels and the methylation levels of genes was analyzed by 
Pearson correlation coefficient test (35) using SPSS 19.0 
software (IBM Corp., Armonk, NY, USA). The correlation 
coefficient takes a value between ‑1 and 1, where the value 
closer to -1 (or 1) indicates a negative (or positive) high asso-
ciation and closer to 0 indicates no association between the 
two variables.

Results

DEG screening. A total of 663 DEGs with log FC>1 and 
adjusted P<0.05 were screened using the Limma package of R, 
including 227 upregulated and 436 downregulated DEGs. The 
resultant heat map of DEGs is depicted in Fig. 1.

Analysis of methylated regions. A total of 2,368 DMRs were 
identified using methyAnalysis with minimum P-values 
adjusted to <0.01, and 1,093 hyper- and 162 hypo-methylated 
regions were located in the gene promoter regions. Notably, 
there were 47 downregulated genes in the 1,093 hyper-methy-
lated regions, while no genes were upregulated in the 
162 hypo-methylated regions. Pearson correlation coefficient 
tests (35) was then used to calculate the correlation between the 
gene expression levels and the methylation levels of 47 down-
regulated genes. The correlation results demonstrated that 
the median, minimum and maximum values of the Pearson 
correlation coefficient were -0.4987, -0.7902 and -0.1573, 
respectively. The genes with the strongest correlations were 
intercellular adhesion molecule 3 (r=-0.7902), cytochrome c 
oxidase subunit VIIa polypeptide 1 (r=-0.7743), aminomethy-
ltransferase (r=-0.7554), retinoic acid receptor responder 
(tazarotene induced) 1 (r=-0.7517) and Fc fragment of IgE, 
high affinity I, receptor for; gamma polypeptide (FCER1G; 
r=-0.7366).
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Copy number analysis. Based on the microarray data for SNP 
profiling, 2,838 genes exhibited copy number gains and 415 
exhibited copy number losses. Among them, 17 genes with 
copy number gains were upregulated, while 5 genes with copy 
number losses were downregulated. The genes with upregu-
lated expression and copy number gains were as follows: 
ATPase family, AAA domain containing 2 (ATAD2), small 
nuclear ribonucleoprotein polypeptide A', ribosomal protein L7 
(RPL7), cyclin-dependent kinase 4 (CDK4) and tubulin, α 1a 
(TUBA1A). The genes with downregulated expression and 
copy number losses were Rho GTPase activating protein 9 
(ARHGAP9), chromosome 1 open reading frame 54, leio-
modin 3 (fetal), major histocompatibility complex, class II, 
DO α (HLA‑DOA) and Rh blood group, D antigen (RHD).

Functional enrichment analysis of DEGs. DAVID was used 
to perform functional enrichment analysis of the DEGs. The 
over-represented GO BP terms and significantly enriched 
KEGG pathways are summarized in Tables I and II, respec-
tively. According to the enrichment results, the upregulated 
genes were mainly associated with carboxylic acid biosynthetic, 
organic acid biosynthetic and L-serine metabolic processes 
(Table I). In addition, the upregulated genes were significantly 
enriched in 6 KEGG pathways, including glycine, serine and 
threonine metabolism, ribosome and one carbon pool by folate 
(Table II). Downregulated genes were mainly associated with 
functions including the immune response, defense response 
and gas transport (Table I), and were significantly enriched 
in 20 KEGG pathways, including asthma, viral myocarditis 
and intestinal immune network for immunoglobulin (Ig) A 
production (Table II).

Notably, the enrichment results demonstrated that 
47 downregulated genes in the hyper-methylated regions 

were significantly enriched in the ECM‑receptor interaction 
pathway, and were associated with the regulation of cytokine 
production, regulation of tumor necrosis factor production and 
cell adhesion.

PPI network analysis. Based on the information from 
the STRING database, PPI networks of upregulated and 
downregulated genes were constructed. MAD2 mitotic 
arrest deficient‑like 1 (degree=9), BUB1 mitotic checkpoint 
serine/threonine kinase (degree=8) and PDZ binding kinase 
(degree=7) were selected as the hub nodes in the PPI network 
of upregulated genes (Fig. 2). Notably, the upregulated genes, 
including ATAD2, RPL7 and CDK4, exhibited copy number 
gains and may interact with other upregulated genes (Fig. 2).

In the PPI network of downregulated genes, TYRO protein 
tyrosine kinase binding protein (degree=37), immunoglobulin 
superfamily, member 6 (degree=20) and lysosomal protein 
transmembrane 5 (degree=19) with the highest degrees were 
hub nodes (Fig. 3). In addition, the hyper-methylated hub nodes 
were FCER1 G, leptin (LEP), and feline Gardner-Rasheed 
sarcoma viral oncogene homolog (FGR). Concurrently, 
ARHGAP9, HLA‑DOA and RHD exhibited copy number 
losses and may interact with other downregulated genes.

Discussion

The cell line panel provides a valuable model system for 
analysis of genetic and epigenetic aberrations in OS (36). In 
the present study, a comprehensive bioinformatics approach 
was utilized for analysis of the effects of genome-wide 
changes in gene expression, DNA methylation and DNA 
copy number alterations in OS cell lines compared with the 
normal controls. The results demonstrated that a total of 

Figure 1. Heat map of DEGs. Samples with the serial numbers GSM879175-GSM879180 represent normal controls, and the others represent OS cell lines. 
The left vertical strips represent DEGs in OS cell lines compared with normal controls, with yellow strips representing downregulated genes and blue strips 
representing upregulated ones. DEGs, differentially expressed genes; OS, osteosarcoma.
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Table II. The significant KEGG pathways enriched by differentially expressed genes.

Description Counts % P-value

Upregulated
  hsa00260: Glycine, serine and threonine metabolism 5 3.125 6.26x10-04

  hsa03010: Ribosome 6 3.75 0.005144
  hsa00670: One carbon pool by folate 3 1.875 0.017709
  hsa00100: Steroid biosynthesis 3 1.875 0.019904
  hsa01040: Biosynthesis of unsaturated fatty acids 3 1.875 0.032434
  hsa00450: Selenoamino acid metabolism 3 1.875 0.04415
Downregulated
  hsa05310: Asthma 11 2.820513 9.14x10-09

  hsa05416: Viral myocarditis 13 3.333333 1.71x10-06

  hsa04672: Intestinal immune network for IgA production 11 2.820513 2.17x10-06

  hsa05330: Allograft rejection 9 2.307692 1.21x10-05

  hsa04514: Cell adhesion molecules (CAMs) 16 4.102564 1.45x10-05

  hsa05332: Graft-versus-host disease 9 2.307692 2.26x10-05

  hsa04940: Type I diabetes mellitus 9 2.307692 4.00x10-05

  hsa05322: Systemic lupus erythematosus 13 3.333333 5.72x10-05

  hsa04640: Hematopoietic cell lineage 12 3.076923 7.14x10-05

  hsa05320: Autoimmune thyroid disease 9 2.307692 1.69x10-04

Description represents the identification number and the name of the KEGG pathway. Counts represent the number of upregulated or down-
regulated target genes. KEGG, Kyoto Encyclopedia of Genes and Genomes.

Table I. The top 10 GO terms enriched among differentially expressed genes.

GO ID Description Counts P-value

Upregulated
  GO:0046394 Carboxylic acid biosynthetic process 13 1.33x10-8

  GO:0016053 Organic acid biosynthetic process 13 1.33x10-8

  GO:0006563 L-serine metabolic process 5 4.15x10-7

  GO:0008652 Cellular amino acid biosynthetic process 7 5.86x10-6

  GO:0006412 Translation 13 4.05 x10-5

  GO:0009069 Serine family amino acid metabolic process 5 7.82x10-5

  GO:0009309 Amine biosynthetic process 7 8.49x10-5

  GO:0009070 Serine family amino acid biosynthetic process 4 1.09x10-4

  GO:0006564 L-serine biosynthetic process 3 2.37x10-4

  GO:0006633 Fatty acid biosynthetic process 6 7.00x10-4

Downregulated
  GO:0006955 Immune response 68 9.91x10-24

  GO:0006952 Defense response 52 3.80x10-15

  GO:0015669 Gas transport 9 3.36x10-9

  GO:0009611 Response to wounding 38 4.05x10-9

  GO:0032101 Regulation of response to external stimulus 20 7.43x10-9

  GO:0048584 Positive regulation of response to stimulus 23 4.88x10-8

  GO:0002504 Antigen processing and presentation of peptide or  10 5.12x10-8

 polysaccharide antigen via MHC class II
  GO:0002684 Positive regulation of immune system process 23 5.67x10-8

  GO:0050727 Regulation of inflammatory response 13 2.14x10-7

  GO:0006954 Inflammatory response 26 2.54x10-7

GO ID represents the identification number of the enriched GO term. Description represents the name of the GO term. Counts represent the 
number of upregulated or downregulated target genes. GO, gene ontology.
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47 downregulated genes were located in hyper-methylated 
regions, while no genes were upregulated in hypo-methyla ted 
regions, including FCER1G, FGR and LEP. In addition, 

downregulated genes including ARHGAP9 and HLA‑DOA, 
exhibited copy number losses, and upregulated genes, 
including ATAD2 and CDK4, exhibited copy number gains. 

Figure 3. Protein-protein interaction network of downregulated genes. Green nodes represent downregulated genes. (A) Blue nodes represent downregulated 
genes with copy number loss. (B) Yellow nodes represent hyper-methylated downregulated genes.

Figure 2. Protein-protein interaction network of upregulated genes. Red nodes represent upregulated genes. Blue nodes represent upregulated genes with copy 
number gain.
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All these genes may act a key function in OS progression and 
merit additional discussion.

FCER1G, LEP and FGR were hyper-methylated in the 
present study. FCER1G, the γ subunit gene of the high‑affinity 
receptor for IgE (FcεRI), is considered to serve a crucial 
function in upregulating FcεRI on atopic antigen-presenting 
cells (37). Demethylation of the FCER1G promoter results in 
the overexpression of FcεRI on monocytes of patients with 
atopic dermatitis (38). Epigenetic deregulation may serve an 
important function in cancer development (39). LEP encodes 
the leptin protein which is expressed in and secreted from 
mature primary cultures of human osteoblasts, which is of 
importance for osteoblastic cell growth and bone mineraliza-
tion (40). LEP may increase bone mass by stimulating OS cell 
proliferation via activation of the phosphoinositide 3-kinase 
and mitogen-activated protein kinase (MAPK) signaling 
pathways (41). The FGR gene is a member of the Src family 
of protein tyrosine kinases. This gene functions as a negative 
regulator of cell migration and adhesion, and is triggered by the 
β-2 integrin signal transduction pathway (42). The chemokine 
receptor 4/stromal cell-derived factor 1 serves an important 
function in OS tumor progression via the regulation of cell 
migration and adhesion (43), suggesting that FGR may be 
involved in OS development via regulating cell migration and 
adhesion. In the present study, these hyper-methylated genes 
were revealed to be downregulated, thus, it was hypothe-
sized that these genes may be involved in OS progression 
via decreased expression following hyper-methylation. The 
results may assist in understanding the epigenetic regulation 
of specific genes in OS tumor development.

In addition, OS is a copy number alteration-rich malignant 
bone tumor, and candidate genes with copy number changes 
are being identified in OS (44). In the present study, DEGs 
including ARHGAP9 and HLA‑DOA, exhibited copy number 
losses while ATAD2 and CDK4 exhibited copy number gains. 
ARHGAP9, which is a novel MAP kinase docking protein, 
interacts with mitogen-activated protein kinase 1 (ERK2) and 
p38α (45). Silencing ERK2 in human U2OS cells may inhibit 
the expression and function of glycoprotein 130, which serves 
a pivotal function in cancer and inflammation (46). In addi-
tion, HLA‑DOA is a key molecule in the antigen processing 
and presentation pathway, and this pathway has also been 
suggested to be involved in OS progression via downregu-
lated expression of HLA‑DOA (47,48). In addition, ATAD2 is 
highly expressed and genetically amplified in several types of 
human cancer (49). ATAD2 binds to the v-Myc avian myelo-
cytomatosis viral oncogene homolog (c-Myc) oncogene and 
stimulates its transcriptional activity (49). A previous study 
demonstrated that overexpression of c‑Myc may promote 
OS cell invasion via the activation of the mitogen activated 
protein kinase kinase-extracellular signal-regulated kinase 
pathway (50). ATAD2 is also confirmed to exhibit prognostic 
significance in high-grade OS (51). The amplification and 
overexpression of CDK4 tends to be associated with improved 
prognosis in low-grade OS (52). 12q13‑14 CDK4 amplicons are 
frequently observed in OS (53). CDK4 and other CDK inhibi-
tors are regarded as promising anticancer agents in cancer 
treatment (54). Therefore, these DEGs may serve important 
functions in the development and progression of OS. The 
results of the present study are consistent with these data, 

suggesting that copy number alterations of key genes may be 
associated with OS.

In conclusion, hyper-methylation of FCER1G, LEP and 
FGR is observed in OS, suggesting that epigenetic alterations 
of these specific genes may act crucial functions in OS develo‑
pment. In addition, copy number alterations of these DEGs, 
including ARHGAP9, HLA‑DOA, ATAD2 and CDK4, may 
also contribute to OS progression. These results indicate that 
genetic and epigenetic alterations are important mechanisms 
involved in OS, and these DEGs may serve as candidate targets 
for the diagnosis and treatment of this disease. However, no 
experimental validation and the relatively small sample size 
are the limitations of the present study. The results require 
additional validation.
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