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Abstract. Urinary bladder cancer (UBC) is one of the most 
common urological cancer types. Muscle invasive bladder 
cancer possesses high propensity for metastasis with poor 
prognosis. Honokiol is a lignan isolated from Magnolia offi‑
cinalis with high bioavailability and potent anticancer effects. 
The results of the present study demonstrated that honokiol 
significantly inhibited UBC cell migration and invasion in a 
dose‑dependent manner compared with the vehicle‑treated 
control group. In addition, honokiol treatment suppressed 
epithelial‑mesenchymal transition by induction of E‑cadherin 
and repression of N‑cadherin. Honokiol was capable of 
significantly downregulating the expression of cell inva-
sion‑associated genes, steroid receptor coactivator‑3 (SRC‑3), 
matrix metalloproteinase (MMP)‑2 and Twist1. Notably, the 
inhibition of UBC cell invasion by honokiol was reversed 
by reintroduction of oncoprotein SRC‑3 expression, with the 
restoration of MMP‑2 and Twist1, and reduction of E‑cadherin 
expression. Furthermore, the results of the luciferase assay 
confirmed that SRC‑3 could regulate Twist1 promoter activity. 
Taken together, the results of the present study suggest that 

honokiol is a promising agent against UBC cell invasion via 
downregulation of SRC‑3 and its target genes.

Introduction

Urinary bladder cancer (UBC) is one of the most common types 
of malignant tumor in the United States, with an estimated 
58,950 new cases and 11,820 UBC‑associated mortalities in 
2016 (1). Data between 2005 and 2011 in USA revealed that the 
5‑year survival rate for localized UBC was ~70%, whereas the 
rate for patients with UBC with distant lesions was ~5% (1). 
In China, bladder cancer prevalence ranks the 9th and the 
2nd positions for the entire population, and people >65 years, 
respectively  (2). However, current treatments, including 
chemotherapy and radiotherapy possess limited effects on 
muscle invasive bladder cancer (>stage 2). Therefore, studies 
investigating the underlying molecular mechanisms of UBC 
development and the development of efficacious therapeutic 
reagents for UBC, particularly for patients with invasive 
cancer are warranted.

Steroid receptor coactivator‑3 (SRC‑3) and alias amplifi-
cation in breast cancer 1 belong to the p160 steroid receptor 
coactivator family  (3). Amplification and/or overexpres-
sion of SRC‑3 have been implicated in steroid‑targeted 
tissues, including in breast and prostate cancer  (4‑6), and 
in non‑steroid‑targeted tissues, including lung and bladder 
cancer (7‑10). Accumulating evidence indicates that SRC‑3 
can activate steroid and non‑steroid receptors. For example, 
SRC‑3 serves as a co‑activator for transcription factors ETS 
variant 4 (PEA3) and JunB proto‑oncogene AP‑1 transcrip-
tion factor subunit, which leads to the upregulation of matrix 
metalloproteinase (MMP)‑2, and ‑13 in androgen receptor‑null 
PC3 prostate cancer cells (11). Furthermore, SRC‑3 facilitates 
E2F transcription factor 1 (E2F1) to promote the proliferation 
of breast cancer cells  (12). Previous studies, including our 
previous study, have demonstrated that SRC‑3 cooperates 
with hypoxia‑inducible factor 1‑α and E2F1, thus promoting 
the survival and proliferation of UBC cells (9,13). However, 
whether SRC‑3 serves a role in cell migration and invasion of 
UBC remains unclear.

Honokiol is the major active component derived from 
the stem and bark of the plant Magnolia  officinalis, a 
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traditional Chinese medicine. As one of the major lignans 
with high bioavailability, honokiol exhibits multiple biological 
properties, including muscle relaxant, neuroprotective, 
anti‑inflammatory and anticancer effects (14‑19). However, 
whether honokiol exhibits an effect UBC cell migration and 
invasion remains unclear. The present study demonstrated 
that honokiol inhibited UBC cell invasion by repressing 
the process of epithelial‑mesenchymal transition (EMT). It 
was further revealed that honokiol downregulated Twist1 
(an EMT‑associated transcription factor) and MMP‑2 (an 
enzyme associated with cell invasion) via suppressing SRC‑3 
expression. However, overexpression of SRC‑3 reversed the 
honokiol‑mediated inhibition of UBC cell migration and inva-
sion.

Materials and methods

Human bladder cancer cell line and reagents. The human 
bladder cancer J82 cell line was obtained from the Type 
Culture Collection of the Chinese Academy of Sciences 
Cell Bank (Shanghai, China) and maintained in RPMI‑1640 
medium (cat no. 31800‑022; Gibco; Thermo Fisher Scientific, 
Inc., Waltham, MA, USA) supplemented with 10% fetal 
bovine serum (FBS‑12A; Capricorn Scientific GmbH, 
Ebsdorfergrund, Germany). Cells were cultured at 37˚C in 
a humidified atmosphere with 5% CO2. HonoPure (98% 
honokiol; EcoNugenics, Santa Rosa, CA, USA) was dissolved 
in dimethyl sulfoxide and further diluted with RPMI‑1640 
medium immediately prior to use. For each protocol, cells 
treated with DMSO vehicle were used as the negative control.

Luciferase assay. Luciferase assays were performed using 
a Dual‑Luciferase Reporter Assay System kit (cat no. 1910; 
Promega Corporation, Madison, WI, USA) according to 
the manufacturer's protocol. The Twist1 gene promoter was 
inserted into the pGL3‑basic vector (Promega Corporation) to 
generate the 100 ng Twist1 reporter plasmid (Twist1‑Luc) (20). 
Subsequent to the J82 cells reaching 60% confluency in 24‑well 
plates, Twist1‑Luc plasmid was co‑transfected into cells with 
100 ng SRC‑3 expression plasmid, which was constructed by 
the insertion of the open reading frame of the human SRC‑3 
gene into pCMV10‑3xFLAG (Sigma‑Aldrich; Merck KGaA, 
Darmstadt, Germany) (9). Honokiol at various concentrations 
(0‑4.8 µg/ml) were added 1 day following plasmid transfec-
tion. After 24 h of incubation at 37˚C, the cells were lysed for 
use in the luciferase assay. A total of 100 µl 1X Passive Lysis 
Buffer (Promega Corporation) were used to lyse the cells, and 
then they were tested for luciferase activity according to the 
protocol. Renilla luciferase activity was used for normaliza-
tion.

RNA isolation and reverse transcription‑quantitative PCR 
(RT‑qPCR). Total RNA was isolated using TRIzol reagent 
(cat no.  15596018; Invitrogen; Thermo Fisher Scientific, 
Inc.). RT was conducted with random primers in the Takara 
PrimeScript™ RT reagent system (Takara Biotechnology 
Co., Ltd., Dalian, China) according to the manufacturer's 
protocol. The expression levels of genes were measured 
using SYBR-Green‑based qPCR (Takara Biotechnology Co., 
Ltd.). The thermocycler protocol was 95˚C for 10 sec, then 

95˚C for 5 sec, 60˚C for 31 sec for 40 cycles from step 2 
to step 3. The formula 2‑ΔΔCq (Cq cycle threshold) was used 
to determine the expression levels of target genes normal-
ized by β‑actin (21). qPCR was performed in triplicate for 
each sample. The primer sequences used were as follows: 
SRC‑3 forward, 5'‑GGG​ACT​AAG​CAA​CAG​GTG​TTT‑3' and 
reverse, 5'‑TTT​GGC​CCA​CCC​ATA​CTT​GAG‑3'; MMP‑2 
forward, 5'‑CCG​TCG​CCC​ATC​AT​CAA​GTT‑3' and reverse, 
5'‑CTG​TCT​GGG​GCA​GTC​CAA​AG‑3'; Twist1 forward, 
5'‑TGG​AGG​ACC​TGG​TAG​AGG​AA‑3' and reverse, 5'‑GTC​
CGC​AGT​CTT​ACG​AGG​AG‑3'; β‑actin forward, 5'‑CAT​
GTA​CGT​TGC​TAT​CCA​GGC‑3' and reverse, 5'‑CTC​CTT​
AAT​GTC​ACG​CAC​GA‑3'.

Western blotting. Cells were lysed in RIPA buffer containing 
a phosphatase inhibitor cocktail I (Sigma‑Aldrich; Merck 
KGaA) and a protease inhibitor cocktail mini‑tablet (Roche 
Diagnostics, Indianapolis, IN, USA). Subsequently, Bradford 
regent was used to determine protein concentration, and 
20 µg protein/lane were separated using 10% SDS‑PAGE and 
transferred onto a polyvinylidene difluoride membrane. The 
membrane was blocked by 5% non‑fat milk at room tempera-
ture for 1 h. Primary antibodies directed against E‑cadherin 
(cat no. BS1098; 1:1,000; Bioworld Technology, Inc., St. Louis 
Park, MN, USA), N‑cadherin (cat no. 22018‑1‑AP; 1:1,000; 
ProteinTech Group, Inc., Chicago, IL, USA), SRC‑3 (cat 
no. 611104; 1:1,000; BD Biosciences, San Jose, CA, USA), 
MMP‑2 (cat no. 29090; 1:1,000), Twist1 (cat no. 21642; 1:1,000) 
(both from Signalway Antibody, College Park, MA, USA), 
and β‑actin (cat no. 05‑0079; 1:1,000; AbMax Biotechnology 
Co., Ltd., Beijing, China) were incubated with the membrane 
overnight at 4˚C. Subsequent to washing three times with 1X 
PBST [1 ml Tween‑20 diluted in 1,000 ml 1X PBS (140 mM 
NaCl, 2.7 mM KCl, 1.8 mM KH2PO4, 10 mM Na2HPO4)], 
corresponding mouse and rabbit secondary antibodies conju-
gated with horseradish peroxidase (cat nos. 7076 and 7074; 
Cell Signaling Technology, Inc., Danvers, MA, USA) were 
then used at room temperature for 2 h. The western blots 
were visualized using enhanced chemiluminescence reagents 
(cat no. 180‑501; Tanon Science and Technology Co., Ltd., 
Shanghai, China).

Wound healing assay. Cells were seeded at a density of 
5x105 cells/well into 35‑mm dishes and treated with 0, 2.4 or 
4.8 µg/ml honokiol. After 24 h, a wound scratch was made 
with a 100 µl pipette tip on cell monolayer and images were 
captured after 24 h to estimate the area occupied by migratory 
cells. Cells were maintained at 37˚C throughout the protocol.

Transwell invasion assay. Following treatment with different 
concentrations of honokiol, 1x105 J82 cells were diluted in 
500 µl serum‑free RPMI‑1640 medium and inoculated in the 
upper Transwell chamber coated with growth factor‑reduced 
Matrigel. RPMI‑1640 medium containing 10% FBS was added 
to the lower chamber as a chemoattractant. Following 16 h, 
cells on upper surface of the membrane were removed using a 
Q‑tip, and invaded cells were fixed with 4% formaldehyde for 
10 min at room temperature followed by 0.5% crystal violet 
staining (Sigma‑Aldrich; Merck KGaA) for another 10 min at 
room temperature. The numbers of invaded cells were counted 
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in five randomly chosen fields under a light microscope at x20 
magnification.

Cell viability assay. J82 cells were seeded into 96-well plates 
at a density of 1x104 cells/well. Honokiol at various concentra-
tions (0‑4.8 µg/ml) were added 1 day after cell inoculation. 
Following treatment with honokiol for 16 h, cells were washed 
with PBS and 5  mg/ml MTT was added for 3  h at 37˚C. 
Subsequently, 100 µl DMSO/well was loaded to dissolve the 
formazan crystals. Plates were incubated at 37˚C for 15 min. 
Absorbance at 490  nm was examined using a microplate 
reader (BioTek Instruments, Inc., Winooski, VT, USA) and 
absorbance at 680 nm was used as reference.

Immunofluorescence staining. Cells growing on the coverslips 
in 24‑well plates were fixed by 4% paraformaldehyde for 
15 min and washed with PBS three times. After blocking with 
5% BSA in PBS for 60 min, the coverslips were incubated in the 
primary antibodies against E‑cadherin (Bioworld Technology) 
and N‑cadherin (ProteinTech Group, Inc.) were used overnight 
at 4˚C. Fluorescein‑conjugated secondary antibodies were 
applied, followed by DAPI counterstaining.

Statistical analysis. Each experiment was repeated three 
times. Data are represented as the mean ± standard deviation 
following experiments performed in triplicate. The significant 
difference between control and experimental groups was 
analyzed using the Student's t‑test. P<0.05 was considered 

to indicate a statistically significant difference. All of the 
statistical analyses were performed with Graphpad Prism 5 
software (GraphPad Software, Inc., La Jolla, CA, USA).

Results

Honokiol inhibits UBC cell migration and invasion. Patients 
with bladder cancer with metastatic lesions have poor 
prognosis. Thus, an investigation into whether honokiol, an 
anticancer traditional medicine, has any effects on bladder 
cancer cell migration and invasion was performed. The highly 
metastatic human bladder cancer J82 cell line was chosen 
for the present study. J82 cells were treated with different 
concentrations of honokiol (0, 2.4 and 4.8 µg/ml). The results 
from the wound healing assay demonstrated that honokiol was 
capable of inhibiting the migratory capacity of J82 cells in a 
dose‑dependent manner (Fig. 1A). Following 24 h treatment 
with honokiol at 2.4 and 4.8 µg/ml, the wound closures were 
significantly reduced by 23, and 75%, respectively, compared 
with that in the vehicle‑treated cell group (Fig. 1B). Invasion 
capacity of UBC cells was measured using Transwell assays. 
The cells invading into the lower chambers were significantly 
decreased upon treatment with honokiol for 16 h compared with 
the vehicle‑treated control group (Fig. 1C and D). The numbers 
of the invading cells significantly reduced by 67 and 92% upon 
2.4, and 4.8 µg/ml honokiol treatment, respectively (Fig. 1D). 
In order to confirm that the honokiol‑induced decrease in 
migration and invasion ability was not merely due to the 

Figure 1. Honokiol inhibits UBC cell migration and invasion. (A) Representative image and (B) quantification of the wound healing assay results, which 
revealed that honokiol (2.4 and 4.8 µg/ml) significantly inhibited the migration capacity of J82 cells following 24 h of treatment in a dose‑dependent manner. 
Scale bar, 200 µm. (C) Representative image and (D) quantification of the Transwell assay results demonstrated that honokiol (2.4 and 4.8 µg/ml) repressed 
J82 cells invasion capacity following 16 h of treatment in a dose‑dependent manner. Scale bar, 100 µm. **P<0.01, ***P<0.001, ****P<0.0001. Data are represented 
as the mean ± standard deviation following experiments performed in triplicate.
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decrease of cell number associated with honokiol‑induced cell 
growth arrest, a MTT assay was applied to determine UBC 
cell viability. J82 cell viability was significantly decreased by 
17 and 33% when treated with 2.4, and 4.8 µg/ml honokiol 
for 16 h, respectively, compared with the vehicle control group 
(data not shown). The inhibition on cell viability observed was 
less compared with the effects on cell invasion demonstrated 
using the Transwell assay. These data suggest that honokiol 
can inhibit UBC cell migration and invasion.

Honokiol suppresses EMT of bladder cancer cells. Since EMT 
has been implicated in cancer cell invasion, whether EMT 
could be suppressed by honokiol treatment (4.8 µg/ml) was 
investigated in J82 cells. Morphological changes, including 
cell‑cell adhesion, were observed upon honokiol treat-
ment (Fig. 2A). Loss of E‑cadherin and gain of N‑cadherin 
are considered to be the fundamental events of EMT (22‑24). 
Immunofluorescence staining assays revealed increased 
expression of E‑cadherin and the decreased expression of 
N‑cadherin (Fig. 2B), which were further confirmed by the 
western blotting assay (Fig. 2C). These results suggest that 
honokiol suppresses EMT of UBC cells via regulating the 
expression levels of E‑ and N‑cadherin.

Honokiol downregulates expression levels of cancer cell 
invasion‑associated genes. To investigate the mechanism 

underlying the inhibition of UBC cell invasion induced by 
honokiol, the expression levels of genes associated with cell 
invasion were determined using RT‑qPCR and western blot-
ting assays. The results demonstrated that the expression of 
SRC‑3, MMP‑2 and Twist1 was significantly downregulated 
by honokiol at the mRNA (Fig. 3A) and protein (Fig. 3B) level 
compared with the vehicle‑treated control group. The positive 
association between SRC‑3 and MMP‑2 is consistent with the 
fact that MMP‑2 is a direct target of SRC‑3 gene (11). Twist1 
is a basic helix‑loop‑helix transcription factor and serves an 
essential role in cancer metastasis (20,25). To examine whether 
Twist1 is downregulated by honokiol through inhibition of its 
promoter activity, J82 cells were transfected with a reporter 
plasmid, firefly luciferase driven by human Twist1 promoter 
(Twist1‑Luc). Following 24 h of transfection, cells with were 
treated honokiol for another 24 h. As a result, honokiol (2.4 
and 4.8 µg/ml) significantly reduced the luciferase activity of 
Twist1‑reporter in a dose‑dependent manner (Fig. 3C). Overall, 
these data indicate that honokiol represses the expression 
of genes involved in cancer cell invasion, including SRC‑3, 
MMP‑2 and Twist1.

Overexpression of SRC‑3 inhibits the effects of honokiol on 
cell migration and invasion. To further investigate whether 
honokiol inhibits bladder cancer cells migration and inva-
sion through SRC‑3, SRC‑3 expression was reintroduced into 

Figure 2. Honokiol suppresses epithelial‑mesenchymal transition of bladder cancer cells. (A) Morphologic changes of J82 cells treated with honokiol for 24 h. 
DMSO was used as vehicle control. Scale bar, 200 µm. (B) Honokiol treatment increased E‑cadherin expression and decreased N‑cadherin expression as 
demonstrated through the immunofluorescence staining assay. Scale bar, 20 µm. (C) E‑ and N‑cadherin protein expression determined using a western blotting 
assay. β‑actin was used as a loading control.
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honokiol‑treated J82 cells. Empty vector‑transfected J82 cells 
(mock transfectants) were used as a control. In the presence of 
honokiol (4.8 µg/ml), the ectopic expression of SRC‑3 in J82 
cells significantly increased the number of invading cells to 
lower chamber in the Transwell assay compared with that of the 
mock transfectants (Fig. 4A and B). Furthermore, the ectopic 
expression of SRC‑3 reversed the honokiol‑induced changes 
to E‑cadherin, MMP‑2 and Twist1 expression (Fig.  4C). 
Consistently, SRC‑3 overexpression almost restored the 
Twist1‑reporter activity under honokiol treatment, suggesting 
that Twist1 could be a target gene of SRC‑3 (Fig. 4D). Taken 
together, these data suggest that honokiol inhibits UBC cell 
invasion via repression of EMT and regulation of the expres-
sion of cell invasion‑associated genes, including SRC‑3, 
MMP‑2 and Twist1.

Discussion

Cell invasion is a highly coordinated cellular process, including 
secretion of MMPs for degradation of extracellular matrix and 
morphological changes to facilitate EMT. The cadherin switch 
from E‑cadherin to N‑cadherin in EMT has been demonstrated 
to be essential for bladder cancer‑associated mortality (24,26). 
In the present study, it was demonstrated that a low concentra-
tion of honokiol (4.8 µg/ml) was capable of inhibiting UBC 
cell migration and invasion, which was accompanied with the 

induction of the epithelial marker E‑cadherin, and the reduc-
tion of two mesenchymal markers Twist‑1 and N‑cadherin. 
Mechanistically, SRC‑3, the transcriptional factor coactivator, 
is indispensable in honokiol‑mediated cell invasion inhibition.

SRC‑3 is a bona fide oncoprotein in multiple types of 
solid tumor, including in breast and prostate cancer  (5). It 
was reported that SRC‑3 overexpression and amplification 
occurred in 32.5, and 7.0% human UBC specimens (n=163), 
respectively (10). The expression levels of SRC‑3 in patients 
with UBC have been suggested to be an independent prog-
nostic marker (10). In addition, data from the present study and 
other studies indicate that overexpression of SRC‑3 is essential 
for UBC cell survival and proliferation  (9,10). Therefore, 
SRC‑3 is an important oncoprotein and serves essential roles 
in UBC development.

Multiple lines of evidence suggest that different mecha-
nisms are used in SRC‑3‑mediated cancer cell migration 
and invasion in a cancer‑specific manner (10,11,27‑29). An 
inverse correlation between SRC‑3 and E‑cadherin has been 
reported in human pancreatic adenocarcinoma, implying that 
SRC‑3 regulates E‑cadherin directly or indirectly (27). By 
co‑activating estrogen receptor α (ERα) in T47D breast cancer 
cells, SRC‑3 also transcriptionally upregulates Snail, which 
directly represses E‑cadherin (28). However, SRC‑3 overex-
pression is not associated with the levels of ERα in UBC tissue 
samples (10), and urothelial specific ERα‑knockout enhanced 

Figure 3. Honokiol reduces genes involved in cancer cell invasion. (A) mRNA and (B) protein expression levels of SRC‑3, MMP‑2 and Twist1 genes in J82 
cells treated with honokiol for 24 h. β‑actin was used as a normalization control. (C) Honokiol significantly suppressed Twist1 gene promoter activity in J82 
cells as demonstrated through the luciferase reporter assay. **P<0.01, ***P<0.001. Data are represented as the mean ± standard deviation following experiments 
performed in triplicate. SRC‑3, steroid receptor coactivator‑3; MMP‑2, matrix metalloproteinase 2.
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carcinogen‑induced UBC development, suggesting that ERα 
behaves as a tumor suppressor in UBC (30). Therefore, SRC‑3 
is likely to induce EMT through transcription factors other than 
ERα in UBC cells. It has been reported that SRC‑1, another 
member of the p160 family, can induce EMT‑associated tran-
scription factor Twist1 by co‑activating PEA3 (29). In prostate 
cancer cells, SRC‑3 is capable of upregulating MMP‑2 by 
co‑activating the PEA3/activator protein‑1 complex (11). In the 
present study, it was demonstrated that SRC‑3 is essential for the 
expression of MMP‑2 and Twist1. Notably, the overexpression 
of SRC‑3 in UBC cells reversed honokiol‑mediated invasion 
repression, and upregulated MMP‑2 and EMT‑associated 
marker Twist1 expression. Therefore, it was hypothesized that 
SRC‑3 enhances UBC cell invasion by co‑activating transcrip-
tional factors similar to those activated by PEA3, in order to 
upregulate Twist1 and MMP‑2.

Intensive screening for small molecular inhibitors targeting 
the oncoprotein SRC‑3 is ongoing (31‑33). Several potential 
agents from different chemical libraries, including gossypol, 
bufalin and verrucarin, have been identified, which all induce 
the instability of SRC‑3 protein (31‑33). In the current study, it 
was demonstrated that honokiol is capable of downregulating 
the mRNA expression of SRC‑3. However, the suppressive 
effect of honokiol on cancer cell migration and invasion 
may not be limited to target SRC‑3. It has been reported 
that honokiol targets multiple signaling pathways, including 
KiSS‑1 metastasis‑suppressor (KISS1)/KISS1 receptor in 
renal cell carcinoma (18), signal transducer and activator of 
transcription 3 signaling in breast cancer  (34), epidermal 
growth factor receptor signaling in head and neck squamous 
cell carcinoma (35), and the inflammation‑associated nuclear 
factor κB pathway in other cancer cells (36,37). Penetration 

through the endothelial cell layer is one of the prerequisite 
steps in metastasis. Joo et al demonstrated that by reducing 
the interaction between cancer and endothelial cells, honokiol 
suppresses EMT and transendothelial invasion of glioblastoma 
cells via targeting vascular cell adhesion molecule 1  (38). 
Taken together, these data suggest that honokiol serves a range 
of inhibitory roles in cancer cell invasion and metastasis, 
therefore further in vivo studies are warranted to confirm the 
results presented.

In conclusion, to the best of our knowledge, this is the first 
study to demonstrate that honokiol inhibits UBC cell migra-
tion and invasion via suppression of oncoprotein SRC‑3, and 
two SRC‑3 downstream targets, MMP‑2 and Twist1. Further 
clinical trials are required to confirm whether honokiol is a 
chemotherapeutic agent for patients with UBC, particularly for 
the muscle invasive subtype.
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