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Abstract. Wild‑type p53‑induced phosphatase (Wip1) is a 
member of the protein phosphatase type 2C family and is an 
established oncogene due to its dephosphorylation of several 
tumor suppressors and negative control of the DNA damage 
response system. It has been reported to dephosphorylate p53, 
ataxia telangiectasia mutated, checkpoint kinase 1 and p38 
mitogen activated protein kinases, forming negative feedback 
loops to inhibit apoptosis and cell cycle arrest. Wip1 serves 
a major role in tumorigenesis, progression, invasion, distant 
metastasis and apoptosis in various types of human cancer. 
Therefore, it may be a potential biomarker and therapeutic 
target in the diagnosis and treatment of cancer. Furthermore, 
previous evidence has revealed a new role for Wip1 in the regu-
lation of chemotherapy resistance. In the present review, the 
current knowledge on the role of Wip1 in cancer is discussed, 
as well as its potential as a novel target for cancer treatment 
and its function in chemotherapy resistance.
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1. Introduction

Genetic stability ensures the inheritance of the correct genetic 
information and preserves the function of normal physiological 

processes. However, cells living in a constantly changing 
environment are influenced by various stresses, which may 
alter DNA sequences and induce DNA damage (1). During 
the evolution of genes, cells have developed a DNA damage 
response system including cell cycle checkpoints, senescence 
and apoptosis (2). If that system is not able to repair DNA 
damage, DNA replication, transcription and recombination 
may be altered, leading to gene mutation and chromosomal 
rearrangements or loss, which promotes the development of 
cancer (3). Wild‑type p53‑induced phosphatase 1 (Wipl) is an 
oncogene that negatively regulates the DNA damage response 
system and serves a role in tumorigenesis, therapy and prog-
nosis in various types of human cancer (4).

Wip1 was originally identified as a target protein in the 
p53‑dependent response to ionizing radiation (5). Wip1 is a 
serine/threonine protein phosphatase that is encoded by the 
protein phosphatase magnesium‑dependent 1 δ (gene, PPM1D) 
in the 17q22/q24 human chromosomal region, and is a member 
of the protein phosphatase type 2C (PP2C) family (6). It is 
605 amino acids long and consists of a central phosphatase 
catalytic domain and a non‑functional region (7). Wip1 is a 
monomeric enzyme, similar to other members of the PP2C 
family, the dephosphorylation of which requires catalysis by 
bivalent cations, including magnesium and manganese ions (5).

Previous studies have revealed that Wip1 dephosphorylates 
several key DNA damage response proteins, including p53, 
ataxia telangiectasia mutated, checkpoint kinase (Chk) 1, Chk2, 
murine double minute 2 (Mdm2) and p38 mitogen activated 
protein kinases (p38 MAPK), exercising negative feedback 
loops that lead to cell cycle arrest, increased tumorigenesis and 
the inhibition of apoptosis (Fig. 1) (8‑12). Among these loops, 
negative regulation of p53 is vital. TP53 may be the most 
important tumor suppressor gene, the mutation or depletion of 
which is present in ~50% of all human tumors (13). However, 
Wip1 is not only able to directly dephosphorylate p53 protein 
at serine 15, but also indirectly inactivate p53 protein through 
p38 MAPK and Mdm2 (8,14,15), which attenuates the p53 
function. Furthermore, dephosphorylation of p53 by Wip1 
induces inappropriate re‑initiation of mitosis and uncontrolled 
polyploid progression that may be a potential underlying 
mechanism of tumor progression (14). Previous studies have 
identified additional Wip1 targets, including murine double 
minute X, xeroderma pigmentosum complementation group A 
and C, nuclear factor kappa B (NF‑κB) and DNA methylation, 
resulting in the promotion of proliferation, inhibition of inflam-
mation and nucleotide excision repair (9,16‑19). On the other 
hand, cytotoxic drugs, including cisplatin and doxorubicin, 
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are able to induce senescence and apoptosis in tumor cells, an 
effect that is dependent on p53 signaling pathway in vitro and 
in vivo (20,21). This indicates that Wip1 phosphatase activity 
may mediate the cytotoxicity of chemotherapeutic agents via 
targeting p53. The present review summarizes the regulatory 
mechanisms and functions of Wip1 as an oncogene in various 
types of cancer. In addition, the potential role of Wip1 as a 
tumor biomarker and therapeutic target in these cancer types 
was investigated.

2. Wip1 in breast cancer

The role of Wip1 in breast cancer is the most studied compared 
with all other types of human cancer (22). In 28% of primary 
breast cancer cases, the amplification of the 17q22/q24 chro-
mosomal region has been demonstrated through cytogenetic 
analysis, a phenomenon that is more common in high‑grade 
breast cancer  (23). In addition, a number of studies have 
identified that the overexpression of Wip1 negatively regulates 
the p53, p38 MAPK and p16 signaling pathways, which may 
lead to breast cancer tumorigenesis, proliferation and poor 
prognosis (24,25). Previous reports have demonstrated that the 
upregulation of Wip1 may reverse the induction of apoptosis 
by microRNA (miRNA/miR)‑16 and miRNA‑34a, which are 
tumor suppressors of breast cancer (26,27). Therefore, high 
Wip1 expression levels may be a predisposing factor for breast 
cancer. Spike and Wahl  (28) revealed that Wip1 regulated 
chemosensitivity by controlling the p53 signaling pathway. 
Downregulation of Wip1 enhanced the chemosensitivity of 
breast cancer to adriamycin via targeting wild‑type p53 and 
reducing cell growth and cell survival; however, these effects 
were not present in cell lines with mutant‑type p53 (Table I; 
Fig. 1) (29,30). Although the occurrence of breast cancer is 
regulated by various oncogenes, including ErbB2, Wnt1 and 
breast cancer susceptibility protein type 1 and 2 (22), these 
results suggested that Wip1 may be considered as a potential 
biomarker for tumorigenesis and index of prognosis in patients 
with breast cancer. In addition, decreasing its expression levels 
may have a therapeutic effect during the chemotherapy of 
breast cancer with wild‑type p53.

3. Wip1 in childhood glioma

Overexpression of Wip1 and gain‑of‑function mutations of 
PPM1D have been detected in numerous types of pediatric 
cancer, including glioma  (31), neuroblastoma  (32) and 
medulloblastoma (33).

Wip1 in glioma. Zhang  et  al  (34) identified that carboxy 
terminal truncating mutations of PPM1D occur in 37.5% of 
glioma cases, and these gain‑of‑function PPM1D mutants 
suppressed phosphorylation of Chk2 at threonine 68 and p53 
at serine 15, resulting in dysfunction of the DNA damage 
response network (Table I) (34). This result may be associated 
with predisposition to and the tumorigenesis of glioma.

Wip1 in neuroblastoma. Overexpression of Wip1 in neuroblas-
toma may repress p53 function by two signaling pathways, one 
is the Wip1‑p53 pathway, and the other is the Wip1‑Mdm2‑p53 
pathway (35), resulting in tumorigenesis. In addition, a previous 

report demonstrated that Wip1 was significantly overexpressed 
in 56% of cancer tissues, and promoted tumor progression to 
a higher stage, poor prognosis and chemotherapy resistance 
(Table I) (32). Therefore, these data suggest that the inhibi-
tion of Wip1 expression levels may be a potential therapeutic 
target. GSK2830371 is a Wip1 selective antagonist able to 
significantly inhibit 96.5% of Wip1 activity in neuroblas-
toma cell lines, which promotes p53 function and apoptotic 
responses (32). Furthermore, GSK2830371 had a synergistic 
effect on the antiproliferative properties of the chemothera-
peutic agents adriamycin and carboplatin (32).

Wip1 in medulloblastoma. Previous studies have reported that 
the amplification and overexpression of Wip1 occurred in 64% 
of human medulloblastomas, and it is more common in highly 
aggressive medulloblastomas  (36,37). Buss et al  (37) also 
identified that high levels of Wip1 expression were associated 
with increased expression of Mdm2, which may be an under-
lying mechanism of promoting medulloblastoma growth via 
targeting p53 (37). In addition, Pfister et al (38) demonstrated 
that the upregulation of Wip1 expression was associated with 
poor prognosis in medulloblastoma (Table I) (38). Furthermore, 
the results of a previous study have revealed that Wip1 is able 
to promote the progression and invasion of aggressive medul-
loblastoma by regulating C‑X‑C chemokine receptor type 4 
and protein kinase B (Akt; Fig. 1) (33). These data suggest that 
Wip1 serves an important role in tumorigenesis and cancer 
progression and may be an indicator for the prognosis of 
medulloblastoma.

In pediatric types of cancer, overexpression of Wip1 
contributes to a number of malignant characteristics, 
including tumor progression, aggressive phenotype and poor 
prognosis (32,34,37). In addition, a Wip1 inhibitor may be a 
promising novel candidate for targeted therapeutic strategies 
for these severe tumors.

4. Wip1 in ovarian clear cell carcinoma

A previous study identified that the amplification and 
overexpression of the PPM1D gene occurred in ≥40% of cases 
of ovarian clear cell carcinoma, which is higher compared 
with other ovarian tumor subtypes (39). A gene knockdown 
study revealed the viability of ovarian clear cell carcinoma cell 
lines depended on the phosphatase activity of Wip1, indicating 
that the Wip1 and PPM1D genes may be drivers of ovarian 
clear cell carcinoma (40). Another previous study reported that 
Wip1 is able to negatively regulate the Chk1 and p53 signaling 
pathway, resulting in tumorigenesis (41). However, cisplatin 
mediates tumor cell DNA damage and apoptotic function 
through these signaling pathways, suggesting that Wip1 may 
be responsible for the cisplatin resistance of ovarian clear cell 
carcinoma (41). In addition, a recent study demonstrated that 
Akt confers cisplatin resistance in part through the regulation 
of PPM1D protein stability, preventing its proteasomal degra-
dation and consequently increasing its half‑life (Table I) (42). 
Accumulating evidence has indicated that Wip1 is directly 
associated with tumor cell survival and chemoresistance (43). 
Due to its late diagnosis and the development of chemore-
sistance, ovarian clear cell carcinoma is characterized by 
the poorest prognosis among ovarian types of cancer (44). 
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Therefore, Wip1 expression levels may be a biomarker of diag-
nosis and index of prognosis. In addition, targeting Wip1 may 
improve therapeutic outcomes in ovarian clear cell carcinoma.

5. Wip1 in liver cancer

miR‑29c belongs to the miR‑29 family, which are established 
tumor suppressors (45). A previous study demonstrated that 
miR‑29c is downregulated in liver cancer and may affect the 
apoptosis, tumorigenesis, and prognosis of tumor cells (46). 
Previous studies have revealed that the overexpression of 
miR‑29c inhibits cancer cell proliferation and metastasis, 
as well as inducing cell cycle arrest (47,48). Wip1 was also 
revealed to be significantly upregulated in hepatocellular 
carcinoma and may contribute to the development of this 
cancer (49). Wang et al (49) were the first to investigate the 
association between Wip1 and miR‑29c, revealing an inverse 
correlation. In addition, the overexpression of Wip1 may 
suppress miR‑29c‑induced apoptosis and cell cycle arrest via 
dephosphorylating wild‑type p53 (49). Although mutations of 
p53 occur in ~50% of human cancer cases, this rate is <30% 
for liver cancer cases, the majority of which express wild‑type 
p53  (50). These findings suggest that Wip1 and miR‑29c 
serve roles in the development of hepatocellular carcinoma. 
Furthermore, a previous study demonstrated that Wip1 was 
overexpressed in hepatocellular carcinoma tissues, compared 
with in non‑cancerous tissues, and high Wip1 expression levels 
were associated with a more advanced tumor‑node‑metastasis 
stage, as well as being a significantly independent prognostic 
factor (51). Therefore, Wip1 not only participates in tumori-
genesis but also indicates poor prognosis in liver cancer.

6. Wip1 in bladder cancer

Amplification and overexpression of Wip1 were also identified 
in bladder cancer (52). Wang et al (53) demonstrated that RNA 

Figure 1. Targets and functional consequences of Wip1 signaling. Wip1 
directly dephosphorylates target proteins including ATM, Chk1/2, Mdm2/X, 
p53, p38 MAPK, p16, CXCR4 and AKT, resulting in inhibition of apoptosis 
and cell cycle arrest, which promotes tumorigenesis, invasion and migration. 
Wip1 leads to chemoresistance in tumor cell with wild‑type p53. However, 
Wip1 increases chemosensitivity in p53‑negative tumor cells by regulating 
Bax/Bcl‑xl and RUNX‑2. P38 MAPK, p38 mitogen activated protein 
kinases; Chk1/2, checkpoint kinase 1/2; Mdm2/X, murine double minute 
2/X; CXCR4, C‑X‑C chemokine receptor type 4; AKT, protein kinase B; 
Bax, B‑cell lymphoma‑2 associated X protein; Bcl‑xl, B‑cell lymphoma‑xl; 
RUNX‑2, runt‑related transcription factor‑2; ATM, ataxia telangiectasia 
mutated; Wip1, wild‑type p53‑induced phosphatase 1.

Ta
bl

e 
I. 

R
ol

es
 o

f W
ip

1 
in

 v
ar

io
us

 ty
pe

s o
f c

an
ce

r.

	
O

ve
re

xp
re

ss
io

n/
C

an
ce

r t
yp

e	
m

ut
at

io
n 

le
ve

l, 
%

	
Ta

rg
et

s	
Tu

m
or

ig
en

es
is

	
D

iff
er

en
tia

tio
n	

C
he

m
or

es
is

ta
nc

e	
Pr

og
no

si
s

B
re

as
t	

28
	

p5
3,

 p
16

, p
38

 M
A

PK
	

+	
+	

+	
+

G
lio

m
a	

37
.5

	
C

hk
2,

 p
53

	
+	

N
D

	
N

D
	

N
D

N
eu

ro
bl

as
to

m
a	

56
	

M
dm

2,
 p

53
	

+	
+	

+	
+

M
ed

ul
lo

bl
as

to
m

a	
64

	
M

dm
2,

 p
53

, C
X

C
R

4,
 A

K
T	

+	
+	

N
D

	
+

O
va

ria
n 

cl
ea

r c
el

l c
ar

ci
no

m
a	

40
	

C
hk

1,
 p

53
	

+	
N

D
	

+	
+

Li
ve

r 	
65

	
P5

3	
+	

+	
N

D
	

+
B

la
dd

er
 	

N
D

	
P5

3	
+	

N
D

	
+	

N
D

K
id

ne
y 

	
67

	
N

D
	

+	
+	

N
D

	
+

N
as

op
ha

ry
ng

ea
l c

ar
ci

no
m

a	
69

	
N

D
	

+	
+	

N
D

	
+

W
ip

1,
 w

ild
‑ty

pe
 p

53
‑in

du
ce

d 
ph

os
ph

at
as

e 
1;

 P
38

 M
A

PK
, p

38
 m

ito
ge

n 
ac

tiv
at

ed
 p

ro
te

in
 k

in
as

es
; C

hk
1,

 c
he

ck
po

in
t k

in
as

e 
1;

 C
hk

2,
 c

he
ck

po
in

t k
in

as
e 

2;
 M

dm
2,

 m
ur

in
e 

do
ub

le
 m

in
ut

e 
2;

 C
X

C
R

4,
 C

‑X
‑C

 
ch

em
ok

in
e 

re
ce

pt
or

 ty
pe

 4
; A

K
T,

 p
ro

te
in

 k
in

as
e 

B
; +

, p
os

iti
ve

 c
or

re
la

tio
n;

 N
D

, n
o 

da
ta

 a
va

ila
bl

e.



WANG et al:  ROLE OF Wip1 PHOSPHATASE IN CANCER3896

interference of PPM1D inhibited bladder cancer cell prolifera-
tion and tumorigenesis in mice, potentially through targeting 
of the p53, p38 MAPK and Akt signaling pathways. This 
indicates that targeting PPM1D may be a potential therapeutic 
strategy for the treatment of bladder cancer. Furthermore, 
Lin et al (54) revealed that the level of Wip1 expression in 
cisplatin‑resistant bladder cancer was high compared with 
the control tumor tissue (54). In addition, loss of homeodo-
main‑interacting protein kinase‑2 enhanced Wip1 expression, 
which subsequently increased tumor cell viability in cell lines 
with wild‑type p53 during cisplatin treatment  (54). These 
results suggest that Wip1 upregulation decreases the tumor 
response to cisplatin, resulting in tumor cell‑survival and 
resistance to apoptosis that is induced by chemotherapeutic 
drugs. Therefore, Wip1 may lead to chemotherapy resistance in 
bladder cancer. Conversely, previous studies have revealed that 
chemotherapy resistance induced by Wip1 is dependent on the 
presence of wild‑type p53; however, in p53‑negative cell lines, 
Wip1 sensitizes tumor cells to chemotherapeutic drugs by 
regulating the B‑cell lymphoma‑2 associated X protein:B‑cell 
lymphoma‑extra large ratio and runt related transcription 
factor‑2 and protects normal tissues (Fig. 1) (55,56). Therefore, 
Wip1 inhibition is a potential therapeutic target in bladder 
cancer with preserved wild‑type p53, but the reverse effect 
may occur in p53‑negative tumors; however, this remains to 
be elucidated.

7. Wip1 in kidney cancer

Two previous studies demonstrated that Wip1 is amplified 
and overexpressed in kidney cancer, the pathological types of 
which included clear cell type, granule cell type and papillary 
cell type (57,58). These reports revealed that Wip1 expression 
levels are correlated with the clinical characteristics of kidney 
cancer, including lymph node metastasis, distant metastasis, 
Fuhrman grade, clinical stage and pathological differen-
tiation (57,58). In addition, these studies also identified that 
patients with high levels of Wip1 expression had significantly 
lower survival rates than those with low levels of Wip1 expres-
sion, and the downregulation of Wip1 promoted apoptosis and 
decreased migration and invasion in kidney cancer cell lines 
(Table I) (57,58). These results indicate that Wip1 may serve 
an important role in the tumorigenesis and the progression of 
kidney cancer.

8. Wip1 in nasopharyngeal carcinoma

Sun et al (59) also observed the tumorigenic action of Wip1 
in nasopharyngeal carcinoma, leading to a more aggressive 
grade, distant metastasis and a poorer prognosis (Table I). 
Therefore, all the aforementioned evidence suggests that Wip1 
overexpression promotes tumorigenesis in a number of solid 
tumors and indicates that Wip1 is a potential molecular target 
for tumor therapy.

9. Conclusion

Wip1 has received increasing attention since it was first 
identified in 1997 (5). A number of studies have demonstrated 
that Wip1 negatively regulates various signaling pathways 

and feedback loops, particularly p53‑induced mechanisms, 
resulting in tumorigenesis of multiple tissues and organs. 
In addition, Wip1 expression serves a critical role in the 
progression, migration, invasion and apoptosis of cancer. As 
an oncogene, its expression levels indicate a poor prognosis 
of disease. Therefore, Wip1 may act as a potential tumor 
biomarker, therapeutic target and index of prognosis in various 
types of cancer.

In conclusion, a number of studies have demonstrated that 
Wip1 is an attractive chemotherapeutic target. Its overexpres-
sion and amplification increases chemotherapy resistance in 
tumors with wild‑type p53, but the reverse of this effect is 
observed in p53‑negative tumor cells. However, the underlying 
mechanisms by which Wip1 affects chemotherapy remain to 
be investigated.
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