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Abstract. Non-small cell lung cancer (NSCLC) is a 
leading cause of cancer-associated mortality worldwide. 
Adenocarcinoma (AC) and squamous cell carcinoma (SCC) 
are two primary histological subtypes of NSCLC, accounting 
for ~70% of lung cancer cases. Increasing evidence suggests 
that AC and SCC differ in the composition of genes and 
molecular characteristics. Previous research has focused on 
distinguishing AC from SCC or predicting the NSCLC patient 
survival rates using gene expression profiles, usually with the 
aid of a feature selection method. The present study conducted 
a pre-filtering to identify the genes that have significant 
expression values and a high connection with other genes in 
the gene network, and then used the radial coordinate visu-
alization method to identify relevant genes. By applying the 
proposed procedure to NSCLC data, it was demonstrated that 
there is a clear segmentation between AC and SCC, however 
not between patients with a good prognosis and bad prognosis. 
The focus of discriminating AC and SCC differs from survival 
prediction and there are almost no overlaps between the two 
gene signatures. Overall, a supervised learning method is 
preferred and future studies aiming to identify prognostic gene 
signatures with an increased prediction efficiency are required.

Introduction

Non-small cell lung cancer (NSCLC) is one leading cause 
of cancer deaths in many countries (1). It can be catego-
rized into three major histological subtypes among which 
adenocarcinoma (AC) and squamous cell carcinoma (SCC) 
account roughly for 40 and 30% of the lung cancer (LC) 
cases, respectively (2). Increasing evidence supports that AC 
and SCC differ in the composition of genes and molecular 

characteristics. For instance, Hou et al (3) found that in contrast 
to the AC-associated genes are highly enriched to tight junc-
tion and cell adhesion molecules, the SCC-associated genes 
are more correlated to cell communication. Therefore, they are 
currently regarded as two distinct diseases.

Currently, treatment choices for the NSCLC patients 
mainly depend on the stage at which cancer was diagnosed 
regardless of the histological subtype. For example, patients 
at the stage IA usually undergo surgical resection and rarely 
prescribe to adjuvant chemotherapy. But the recurrence rates 
of patients at the same stage of cancer are heterogeneous, 
making such homogeneous treatment choices implausible. It 
is becoming critical to evaluate the risk profiles of patients 
using a reliable molecular/gene signature. Nevertheless, due to 
the fundamental differences between AC and SCC of NSCLC 
patients, it is hypothesized that specific genes are related to 
recurrence/survival rates for each histology subtype (4-6).

To deal with the issue of high dimensionality commonly 
existing in gene expression profiles, downsizing from thou-
sands of genes to a minimal gene signature with maximal 
predictive ability is of the essence. In statistics, this process is 
referred to as feature selection (7). Efforts have been devoted 
to distinguish AC from SCC using gene expression profiles and 
various feature selection algorithms (8-12), and more recently 
to identify prognostic markers for each specific subtype (4‑6).

Genes are highly correlated and can be grouped into 
many gene sets correspondingly. Depending on if these group 
structures are taken into account, a feature selection algorithm 
may be classified into either a pathway‑based or a gene‑based 
method. Studies have demonstrated that compared to its 
gene-based counterpart, a pathway-based feature selection 
algorithm in which pathway information is utilized to assist 
the selection process has a better predictive performance, 
stability or biological interpretation (13‑18). Specifically for 
the NSCLC applications, several pathway-based feature selec-
tion algorithms have been applied to distinguish its major 
subtypes and/or histological stages (8,11,14).

As a data visualization method, the Radial Coordinate 
Visualization (RadViz) method (19) can display more than two 
variables in a 2-dimensional projection. It can also be used to 
search for biologically interesting patterns and select relevant 
genes highly associated with the phenotype of interest (9,20). 
In a Radviz projection, features such as genes are presented 
as anchor points spaced around the perimeter of a circle 
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while samples are as points inside the circle. Each point (i.e., 
a sample) is held in place by springs that are attached at the 
other end to the feature anchors (i.e., genes). The stiffness 
of each spring is proportional to the sample's corresponding 
gene expression value and the point ends up at the position 
where the spring forces for these anchors are in equilibrium. 
When used for the purpose of feature selection, RadViz may 
be roughly regarded as a gene-based method since it does not 
account for any pathway information.

In this article, we first ordered genes using a novel ranking 
method in bioinformatics-the GeneRank method (21) which 
ranks genes according to not only its expression level but also 
its connectivity with other genes in the gene-to-gene interaction 
network, and then we restricted the genes under consideration 
to those ranked on the top by the GeneRank method and used 
RadViz to select relevant genes in the restricted search space. 
The proposed procedure is a combination of the pre‑filtering 
and RadViz, in which the connectivity information is also 
incorporated. We applied the proposed procedure to a set of 
NSCLC data to establish diagnostic gene signatures for the 
classification between AC and SCC and prognostic signatures 
for the survival prediction of NSCLC patients.

Materials and methods

Experimental data. One microarray dataset and one RNA-Seq 
dataset were included in this study. The microarray data 
was under the accession number of GSE50081 in the Gene 
Expression Omnibus (GEO: http://www.ncbi.nlm.nih 
.gov/geo/) repository. It was hybridized on Affymetrix HGU133 
Plus 2.0 chips, including 127 AC and 42 SCC patients. We 
excluded those patients censored before a 5-year period and 
then stratified the remaining 133 patients into two categories: 
high-risk patients who had died and low-risk patients who had 
survived more than 5 years. The microarray data set was used 
as the training set to train the final statistical models (i.e., the 
diagnostic/prognostic signatures).

The RNA-Seq data were downloaded from The Cancer 
Genome Atlas (TCGA: https://tcga-data.nci.nih.gov/tcga/) 
on August 13, 2014. After restricting the patients to those at 
early stages and being adjuvant treatment naïve with survival 
information, this leaves 70 AC and 55 SCC subjects in this 
study. In the present study, the RNA-Seq dataset was used 
as the test set to validate the performance of the resulting 
diagnostic/prognostic signatures.

Pre‑processing procedures. For the microarray data, the 
expression values were obtained using the frma algorithm (22) 
and normalization across samples was carried out using 
quantile normalization. The resulting expression values were 
log2 transformed and further standardized to have a mean of 
0 and a standard deviation of 1 for each gene. For the NSCLC 
RNA-seq data, Counts-per-million (CPM) values were calcu-
lated and log2 transformed by the R Voom function (23). Then 
the resulting values were standardized as well.

Statistical analysis. As mentioned in the Introduction section, 
RadViz is a visualization method that can be used for the 
purpose of feature selection and classification. In order to 
obtain a clear and good separation among different classes 

using several genes, Radviz needs to search over a myriad 
of possible combinations. This search is tedious. To auto-
matically solve this problem, an approach called VizRank 
had been proposed by (24), which scores the visualization 
projects according to the degree of class separation and then 
to find those with the highest scores. In VizRank, features are 
ranked using signal-to-noise ratio and a subset of the features 
is randomly chosen favoring features with higher ranks, given 
such genes convey more information about the classifica-
tion under investigation. Lastly, for a selected gene subset, 
VizRank then evaluates exhaustively all possible projections 
defined by different permutations of feature anchors on the 
circle to obtain the optimal projection.

GeneRank. The GeneRank method (21) ranks genes on the 
basis of both genes' expression values and their connectivity 
information. Specifically, it solves the following equation,

here, W denotes the adjacency matrix of genes, and D is a 
diagonal matrix recording the degrees (i.e., the number of 
genes to whom the specific gene is connected in the pathway 
graph) of genes. The gene expression value is represented by 
exp, and d is a tuning parameter, balancing the influence of a 
gene's expression value and its connectivity information. Its 
default value of 0.5 was used in this study. The GeneRank for 
each gene was calculated using the R pathClass package.

In our proposed procedure, all genes under consideration 
were firstly ordered according to their GeneRanks. Then 
upon the first 200, 500, 1,000, and all genes in this list, we 
used RadViz to select the optimal gene subset with the best 
VizRank score (the maximum number of genes was set at 8). 
The proposed procedure is graphically illustrated in Fig. 1.

Statistical metrics. To evaluate the performance of a 
resulting diagnostic signature, two metrics-Generalized Brier 
Score (GBS), and misclassified error rate‑were considered. 
GBS was defined as (25),

where Yik is an indicator function, indicating whether or not 
subject i (i=1,2, …, n) in class k (k=1, 2, …, K). And pik denotes 
the calculated probability of subject i belonging to class k. Of 
note, we normalized the GBS by the sample size n. As a result, 
the normalized GBS falls inside [0, 1], with a value closer to 0 
indicting a better separation among classes.

For a resulting prognostic signature, we used the C-statistic 
over the follow-up period (0, τ) to evaluate its performance. 
Specifically, the censoring-adjusted C-statistic is defined 
by (26) as,

where g(X) is the risk score for a subject with predictor 
vector X. Ti and Tj the survival time for patient i and 
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patient j, respectively. C-statistic can be estimated using R 
package survAUC, with a value closer to 1 indicating a better 
performance.

Additionally, we fitted a multiple Cox regression model 
using the selected genes as covariates and calculated the 
risk scores for each patient using the estimated coefficients 
in this model. Setting the mean value of those risk scores as 
a threshold, we classified patients into a low‑risk group or a 
high-risk group. We obtained Kaplan-Meier curves using 
the resulting risk scores, and compared the two curves using 
log-rank tests. P-value of the log-rank test was the other metric 
used to compare the performance of resulting prognostic 
signatures.

Statistical language and packages. Statistical analysis 
including SVM, GeneRank, and performance metric 
calculation was carried out in the R language version 3.2 
(www.r-project.org). RadViz/VizRank analysis was conducted 
using the Orange software, version 2.7 (www.orange.biolab.si).

Results

We applied the proposed procedure to the NSCLC application 
and obtained two sets of gene signatures-one for the AC/SCC 
segmentation and the other for high/low risk segmentation, 
being herein referred to as the diagnostic signature and the 
prognostic signature, respectively. We consider four scenarios: 
the genes under consideration were restricted to the first 
200, or 500, or 1,000 highest-ranked genes and then were all 
1,952 genes in the last scenario. The corresponding RadViz 

projections with optimal gene subsets are presented in Figs. 2 
and 3, from which we observed that the final diagnostic and 
prognostic gene signatures were barely overlapped in all 
scenarios. As discussed previously (5), it is unsurprising to 
observe no or only limited overlaps between the diagnostic 
signatures and the prognostic signatures since the outcomes 
under investigation for these two sets of signatures differ in 
nature.

The performance statistics of the resulting diagnostic 
signatures for both the training set and the test set are presented 
in Table I. Similarly, the performance statistics of the resulting 
prognostic signatures for both the training set and the test 
set are presented in Table II. There are no significant differ-
ences in terms of predictive performance for either diagnostic 
signatures or prognostic signatures under these four scenarios, 
indicating a prescreening step to downsize the genes under 
consideration to those that are important in terms of both 
pathway connectivity and expression differences shall not 
deteriorate the predictive performance of resulting final signa-
tures. Even though no huge differences among those signatures 
exist, the signatures constructed with the first 1,000 genes 
outperform slightly to the signatures under the other scenarios, 
suggesting 1,000 is the optimal cutoff for the number of genes 
under consideration in this study. The heatmaps of the 8-gene 
diagnostic signature and the 8-gene prognostic signature under 
the first 1,000‑gene scenario are shown in Fig. 4. In consistent 
to the previous observations, there existed a clear separation 
between AC and SCC samples but not so between the high-risk 
and the low-risk patients. Instead, using hierarchical clustering 
(as shown in Fig. 4), the samples may be classified into three 

Figure 1. Study schema.
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clusters-the high-risk patients, the low-risk patients, and those 
with ambiguous labels.

Furthermore, since it is demonstrated that several genes 
are adequate to discriminate AC and SCC apart (9,11), we set 
the maximum number of genes in the RadViz projections as 
3 and redid the selection of relevant genes and the final model 
fitting. In contrast, previous studies (5,27) have shown that 
compared to the diagnostic gene signatures, the identification 
of prognostic gene signatures is much difficult and thus less 

than 10 genes might be incapable of separating patients with 
good prognosis from those with bad prognosis. As a fix to 
this, we resort to the strategy of using genes with the highest 
frequencies in the RadViz projections (9,20). Here the final 
size is set at 40. The performance statistics for the 40-gene 
prognostic signature are tabulated in Table II as well.

The gene symbols of these 3-gene diagnostic signatures 
are presented in Fig. 5. We found the 3-gene signatures 
are very stable. While there is one gene (33.3%) existing 

Figure 2. Graphical illustrations of the best RadViz projections under four scenarios (the first 200/500/1,000 genes, or all genes) for the AC/SCC segmentation. 
The genes were ordered decreasingly based on their GeneRanks, the first 200/500/1,000‑gene scenarios include the highest ranked 200/500/1,000 genes, 
respectively. The table below those projections gives the resulting gene lists and the predictive statistics using 5-fold cross-validations.

Figure 3. Graphical illustrations of the best RadViz projections under four scenarios (the first 200/500/1,000 genes, or all genes) for the high risk and the low 
risk segmentation. The table below those projections gives the predictive statistics of the resulting gene signatures using 5-fold cross-validations.
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in all these signatures, 3 of these four signatures (75%) 
share 2 common genes (66.7%), providing further evidence 
to support that several gene biomarkers are sufficient to 
distinguish AC and SCC. For the prognosis analysis, when 
we increased the size of final models to 40, a better separa-
tion between patients with good prognosis and those with 
bad prognosis has been achieved compared to the 8-gene 
signatures. But the performance of the 40-gene signatures 
is still below satisfactory, which may be explained by the 
following reasons.

First, the patients were stratified into two categories as the 
high-risk one and the low-risk one on the basis of their survival 
time. The risk status served as the outcome when training the 
prognostic signatures. Such an over‑simplified stratification 
might lead to the predictive inferiority of a prognostic signa-
ture, as pointed out by (28). Considering the RadViz method 
is incapable of dealing with the time-to-event outcomes, we 
will definitely replace it with a more novel feature selection 
algorithm e.g., LASSO and reanalyze this NSCLC dataset in 
our future research.

Second, in this study we constructed the overall prognostic 
signature for NSCLC patients without considering their histo-
logical subtypes. As mentioned in the Introduction section, 
there may exist subtype‑specific prognostic genes for AC and 
SCC. Since one major goal of this study is to illustrate the 
point that the diagnostic and prognostic gene signatures differ 
dramatically, a homogenous prognostic signature for both AC 
and SCC is required. Construction of subtype‑specific prog-
nostic signatures using either separate survival analysis for each 

specific subtype or a suitable statistical method such as (4,5) is 
warranted, in order to make better prediction and thus to facili-
tate personalized treatment strategies for NSCLC patients.

Lastly, the gene expression profile alone might not convey 
all information about the prognosis of NSCLC patients. If 
this is true, other omics data such as copy number alternation 
and DNA methylation data need to be integrated in order to 
provide a better survival prediction for the NSCLC early-stage 
patients.

Discussion

In the present study, we trained on the same data to construct 
the diagnostic and prognostic gene signatures with the aids of 
RadViz and SVM. The gene expression profiles may contain 
valuable information on AC/SCC segmentation, and also valu-
able information on prognosis. Nevertheless, those informative 
genes for diagnosis might not be valuable for prognosis, and 
vice verse. It is unsurprising that the diagnostic signatures and 
the prognostic signatures share no or limited overlaps, even 
they are all trained on the same dataset.

With regard to that no significant prognostic gene signa-
tures have been achieved in this study, in the Results section, 
we listed three reasons to explain why this happened. Given 
the fact we obtained substantially better C-statistics using the 
same datasets and Cox-models (unpublished work), we believe 
the stratification of patients into different risk categories on 
the basis of their survival time may result in huge information 

Table II. Performance statistics for the NSCLC high risk/low 
risk segmentation.

A, The maximum size of each projection is fixed at 8

 Training set  
 (GSE50081) Test set
 --------------------------------------- (RNA-Seq)
  P-value  ----------------------------------
Variable C-stat (log rank)  C-stat P-value 

G(1) ~G(200) 0.6276 6.47x10-3 0.4174 0.051
G(1) ~G(500) 0.5783 1.70x10-3 0.5097 0.59
G(1) ~G(1,000) 0.6687 8.11x10-6 0.4207 0.131
All genes  0.6045 4.13x10-5 0.2284 0.799

B, 40 genes with the highest frequencies in RadViz projections

 Training set  
 (GSE50081) Test set
 --------------------------------------- (RNA-Seq)
  P-value  ----------------------------------
Variable C-stat (log rank)  C-stat P-value 

G(1) ~G(200) 0.7035 2.82x10-4 0.4693 0.161
G(1) ~G(500) 0.6965 4.57x10-6 0.5374 0.089
G(1) ~G(1,000) 0.7244 5.23x10-7 0.5436 0.054
All genes  0.7018 3.34x10-6 0.4381 0.112

Table I. Performance statistics for the AC/SCC subtype 
segmentation.

A, The maximum size of each projection is fixed at 8.

 Training set  Test set
 (GSE50081)  (RNA-Seq)
 ---------------------------------- ----------------------------------
 Accuracy   Accuracy
Variable (%) GBS (%)  GBS 

G(1) ~G(200) 90.98 0.092 79.4 0.188
G(1) ~G(500) 90.98 0.092 77.6 0.186
G(1) ~G(1,000) 92.48 0.088 76 0.180
All 1,952 genes  91.73 0.082 78.4 0.165

B, The maximum size of each projection is fixed at 3.

 Training set  Test set
 (GSE50081)  (RNA-Seq)
 ---------------------------------- ----------------------------------
 Accuracy   Accuracy
Variable (%) GBS (%)  GBS 

G(1) ~G(200) 89.47 0.087 76 0.202
G(1) ~G(500) 90.23 0.109 82.4 0.173
G(1) ~G(1,000) 90.23 0.117 84 0.164
All 1,952 genes  90.23 0.107 82.4 0.171
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Figure 4. Heatmaps of the resulting 8‑gene diagnostic and prognostic signatures under the first 1,000‑gene scenario: (A) For the diagnostic signature. According 
to the hierarchical clustering, AC and SCC can be separated using the 8 diagnostic genes. (B) For the prognostic signature. According to the hierarchical 
clustering, these samples could be stratified into three clusters‑patients with high risk of death, patients with low risk, and patients with ambiguous labels.

Figure 5. Venn-diagram of the 3-gene diagnostic signatures under four scenarios. The venn-diagram illustrates that the stability of those 3-gene diagnostic 
signatures are also good. The numbers in blankets are the ranks of corresponding genes given by the GeneRank method.
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loss. Thus, it is emphasized that such an over‑simplification 
shall be avoided in practice.

Depending on if the membership/label information is 
taken into account, a machine learning method is classified 
into either an unsupervised method or a supervised method. 
Without considering the labels/dependent variables, the infor-
mation captured by an unsupervised learning method might 
not be meaningful for both diagnosis and prognosis, let alone 
there are so many irrelevant and redundant genes in gene 
expression profiles to blur the signals from those relevant ones, 
thus the process of variable selection becomes imperative 
where the outcome/label is always taken into consideration. 
Therefore, we prefer to a supervised method over an unsuper-
vised learning method.
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