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Abstract. The circadian clock refers to the inherent biological 
rhythm of an organism, which, is accurately regulated by 
numerous clock genes. Studies in recent years have reported that 
the abnormal expression of clock genes is ubiquitous in common 
abdominal malignant tumors, including liver, colorectal, gastric 
and pancreatic cancer. In addition, the abnormal expression of 
certain clock genes is closely associated with clinical tumor 
parameters or patient prognosis. Studies in clock genes may 
expand the knowledge about the mechanism of occurrence 
and development of tumors, and may provide a new approach 
for tumor therapy. The present study summarizes the research 
progress in this field.
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1. Introduction

The earliest finding of a circadian clock was the change in posi-
tion of plant leaves, which spread during the day and droop at 
night, corresponding to an oscillation with a 24-h period (1,2). 
Subsequently, circadian clocks were also identified in the form 
of clear circadian rhythms in the eclosion of insects (3-6), 
hibernation of animals (7-9), and body temperature, blood 
pressure and pulse in humans (10-13). The circadian clock is 
an inherent rhythm developed by life on the earth's surface 
during the long-term evolutionary process to adapt to ambient 
and external environments (particularly, to the sunrise and 
sunset) (14,15).

Multiple clock genes, including circadian locomotor 
output cycles kaput (CLOCK), brain and muscle arylhy-
drocarbon receptor nuclear translocator (ARNT)-like 1 
(BMAL1), period (Per)1, Per2, Per3, cryptochrome (Cry)1, 
Cry2, neuronal Per-Arnt-Sim (PAS) domain protein 2 
(NPAS2), casein kinase Iε (CKIε), timeless (Tim), nuclear 
receptor subfamily 1, group D, member 1 (NR1D1, also 
known as Rev-Erb-α) and differentiated embryo-chondro-
cyte expressed gene (DEC), accurately regulate the human 
circadian clock at the molecular level (16-18). These genes 
constitute two important feedback loops. CLOCK is the core 
factor of the circadian clock and combines with BMAL1 
to form a heterodimer through its basic helix-loop-helix 
(bHLH)-PAS structural domain. The heterodimer combines 
with the E-box on the promoter of the Per1-3 and Cry1-2 
genes, and activates their transcription. The coding products, 
the Per1-3 and Cry1-2 proteins, are transported from the 
cytoplasm to the nucleus, where they directly combine with 
CLOCK/BMAL1, which inhibits their activities and further 
blocks the transcription of Per1-3 and Cry1-2. In addition 
to activating the transcription of Per1-3 and Cry1-2, the 
CLOCK/BMAL1 heterodimer also activates the transcrip-
tion of the orphan nuclear receptor Rev-Erb gene (17,19) 
(Fig. 1). The protein encoded by the Rev-Erb gene can 
combine with the BMAL1 promoter and block its transcrip-
tion (17). Since genetic transcription, translation and protein 
transport from the cytoplasm to the nucleus lasts a certain 
time, the oscillation of the biological rhythm proceeds with 
a periodic length of ~24 h via self-induction (18,19). Such a 
negative feedback cycle of the clock genes forms a precise 
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endogenous ‘molecular clock’ in the body. Clock genes output 
the rhythm signal of a circadian clock through downstream 
clock controlled genes (CCGs). Thereby, molecular activity 
within the cell also exhibits a temporal rhythm (18,19).

2. CLOCK

In May 1997, the Takahashi research group of Northwestern 
University (Evanston, USA) successfully cloned the murine 
CLOCK gene (20). This represented a milestone in the study 
of the molecular mechanism of circadian clocks in mammals. 
In 1999, this group reported the cloning of the human CLOCK 
gene, which is located on the long arm of chromosome 4 
(4q12) and comprises a protein-coding sequence of 2,538 bp. 
The CLOCK gene belongs to the bHLH-PAS family of 
transcriptional regulatory factors (21). The containing bHLH 
domain participates in protein-protein interactions for the 
formation of protein dimers (21). Two PAS structural domains 
(PAS-A and PAS-B) mediate the combination of the protein 
with DNA. Furthermore, the glutamine-rich C-terminus of 
the CLOCK protein also participates in transcriptional acti-
vation (21). The CLOCK gene is a necessary regulator of the 
circadian rhythm and serves a central role in the circadian 
clock system. Homozygote mice with CLOCK mutations 

develop both circadian clock rhythm and feeding rhythm 
disorders (22,23).

3. BMAL1

BMAL1, also called ARNT3, was identified by Ikeda and 
Nomura in 1997 (24). BMAL1 is 32-kb long and its coding 
product belongs to the bHLH-PAS family (24). A clear 
circadian rhythm was observed in the expression pattern 
of BMAL1 in suprachiasmatic nuclei (SCN) of mice (25). 
BMAL1 knockout mice completely lose their circadian rhythm 
in constant darkness (25). In addition to participating in the 
regulation of the circadian clock, BMAL1 is also associated 
with glucose metabolism (26-28), energy conservation (26-28) 
and aging (29,30).

4. Per1, Per2 and Per3

In 1971, Konopka and Benzer located the Per gene in the 
X chromosome of Drosophila when observing the influence of 
gene mutations on the circadian rhythm (31). The Per gene of 
Drosophila has three mutant types: PerO, PerL and PerS. These 
mutant phenotypes exhibit circadian rhythm disappearance, 
extension and shortening, respectively. Subsequently, similar 

Figure 1. Representation of the circadian clock network. CLOCK or NPAS2 combines with BMAL1 to form a core CLOCK/BMAL1 or NPAS2/BMAL1 
transcriptional complex, which subsequently activates the transcription of Per1-3 and Cry1-2 via E-box elements on their promoters. DEC1 can compete with 
CLOCK/BMAL1 or NPAS2/BMAL1 heterodimers for E-box binding and therefore inhibit CLOCK/BMAL1-mediated transactivation. The coding products, 
the Per1-3 and Cry1-2 proteins, form a multimeric complex, translocate from the cytoplasm to the nucleus and inhibit CLOCK/BMAL1-mediated transcrip-
tion. Degradation of Per1-3 and Cry1-2 proteins prompts a new circadian cycle whereby CLOCK/BMAL1 transcription is reinitiated. The CLOCK/BMAL1 
heterodimer also activates the transcription of the orphan nuclear receptor Rev-Erb gene. The protein encoded by the Rev-Erb gene can combine with the 
BMAL1 promoter and block its transcription. Besides transcriptional regulation, post‑translational modifications are also involved in the modulation of 
circadian proteins. CKIε can phosphorylate Per1-3 and Cry1-2 proteins, and enable Per1-3 and Cry1-2 proteins to be translocated from the cytoplasm to the 
nucleus. In addition, CKIε-mediated phosphorylation can also destabilize Per1-3 proteins. Finally, the CLOCK/BMAL1 complex regulates the expression of 
CCGs, including oncogenes (c-myc), tumor-suppressor genes (P53 and P21), genes involved in the regulation of the cell cycle (cyclins A, B1 and D1, and WEE1 
G2 checkpoint kinase) and VEGF. These target genes regulated by the biological clock genes are involved in DNA repair, cell proliferation and apoptosis. 
Therefore, circadian clock disorders may lead to uncontrolled cell growth and malignant transformation. CLOCK, circadian locomotor output cycles kaput; 
NPAS2, neuronal Per-Arnt-Sim domain-containing protein 2; BMAL1, brain and muscle arylhydrocarbon receptor nuclear translocator-like 1; Per, period; 
Cry, cryptochrome; DEC, differentiated embryo-chondrocyte expressed gene; CKIε, casein kinase Iε; CCG, circadian-clock-controlled gene; VEGF, vascular 
endothelial growth factor.
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genes to the Per gene of Drosophila with genotypes Per1 
Per2 and Per3 were also identified in mice and humans (31). 
The Per1-3 genes not only participate in the regulation of the 
circadian clock, but also inhibit the growth and proliferation 
of tumor cells, and induce apoptosis, thus being considered as 
potential tumor-suppressor genes (32-36).

5. Cry1 and Cry2

The Cry gene was initially discovered in plants (37). It encodes 
the photoreception molecule of blue light and participates in 
the circadian rhythm reaction guided by blue light in plants. 
Although this gene also is present in mammals in the mutant 
forms Cry1 and Cry2, it is unable to act as a photoreceptor 
in mammals (38). The mutation of mouse (m)Cry2 leads to a 
1-h extension of free-motion period. However, the Cry1 mutant 
manifests the reverse phenotype. The mutant of both mCry1 
and mCry2 manifests circadian rhythm disorders, which indi-
cates that mCry1 and mCry2 are core elements of the circadian 
rhythm (38).

6. NPAS2

NPAS2, also known as member of PAS protein 4 (MOP4), 
is located on the human chromosome 2p11.2-2q13. Similar 
to CLOCK, NPAS2 also belongs to the bHLH-PAS family. 
NPAS2 exhibits the bHLH structural domain at its N-terminus, 
and two PAS structural domains (PAS-A and PAS-B) in addi-
tion to a nuclear receptor-joining region at its C-terminus (39). 
NPAS2 can regulate the circadian clock rhythm by forming 
an NPAS/BMAL1 heterodimer with BMAL1, combining with 
the target gene promoter E-box, and regulating the expression 
of the Per and Cry genes (40). NPAS2 is an essential gene 
to maintain a normal biological rhythm. Disorders of the 
circadian rhythm could be caused by mutation or deletion of 
NPAS2 (40). In addition, NPAS2 also regulates and interferes 
with oncogenes, tumor-suppressor genes, and genes associated 
with the cell cycle, cell proliferation and apoptosis (41-43). 
Furthermore, NPAS2 is important in cell cycle regulation, 
DNA damage repair response and tumor growth inhibition, 
and may also act as a tumor-suppressor gene (41-43).

7. CKIε

CKIε was cloned in 1995 (44). Its protein product, CKIε, 
belongs to the serine/threonine kinase family, has a relative 
molecular weight of 43.7 kDa and is widely distributed in 
its monomeric form (44). CKIε can phosphorylate BMAL1, 
Per1, Per2, Per3, Cry1 and Cry2 proteins, thus regulating their 
activity and stability. In addition, CKIε can regulate clock 
genes at the post-translational level (45-47).

8. Rev‑Erb‑α and Rev‑Erb‑β

Rev-Erb-α (identified in 1989) and Rev‑Erb‑β (identified in 
1994) are members of the nuclear receptor superfamily of 
ligand-inducible transcription factors (48,49). Both recep-
tors possess a DNA-binding domain with a conservative 
zinc finger and a ligand‑binding domain. The DNA‑binding 
domain contains the sequence coding the nuclear localization 

signal. Depending on the circadian rhythm, these domains 
are expressed in the human supraoptic nuclei, liver and 
heart (48,49). Rev-Erb-α can inhibit the expression of 
CLOCK (50), BMAL1 (51) and NPAS2 (52). The SCN 
of Rev-Erb-α knockout mice do not periodically express 
BMAL1 and their active phase is shortened. This indicates 
that Rev-Erb-α is required for maintaining the accuracy of the 
circadian clock (53). A previous study indicated that Rev-Erb-α 
and Rev-Erb-β coordinated to protect against major perturba-
tions in circadian and metabolic physiology (54). The periodic 
expression of the core circadian clock and the lipid metabo-
lism network were observed to be markedly dysregulated in 
Rev-Erb-α and Rev-Erb-β knockout mice, which indicates that 
Rev-Erb-α and Rev-Erb-β are also important components of 
the circadian clock core mechanism (17,55,56).

9. DEC1 and DEC2

The genes DEC1 and DEC2 were identified in 1997 (57) and 
2001 (58), respectively. Both transcription factors contain 
the bHLH structure, but not the PAS domain. The level of 
homology of DEC1 and DEC2 in the bHLH region is 97%, 
while that in the orange region (a motif of ~35 amino acids 
located C-terminally of the bHLH domain, providing an addi-
tional protein-protein interaction interface) is only 52% (59). 
In contrast to DEC1, the DEC2 transcription factor is rich in 
alanine and glycine, which may be one of the main reasons for 
their functional difference (59,60). DEC1 is widely expressed 
in multiple tissues, while the expression of DEC2 is highly 
tissue-dependent (59,60). DEC1 can downregulate and inhibit 
the activity of DEC2. Following combination with E-box func-
tional elements (CACGTG) located on the clock gene promoter, 
DEC1 and DEC2 regulate the circadian clock rhythm through 
inhibiting the transcriptional activation process mediated by 
the CLOCK/BMAL1 heterodimer (61,62). Both transcription 
factors, particularly DEC2, are closely associated with sleep 
disorders (61). In addition, DEC1 and DEC2 also participate 
in regulating the expression of factors associated with tumor 
growth and apoptosis, and are linked to tumor occurrence and 
development (63-66).

10. Tim

In 1994, Sehgal et al screened a new mutant influencing the 
biological rhythm of Drosophila in a similar manner than 
PerO. The corresponding wild-type gene of this mutant gene 
was named Tim (67). Since the identification of the Tim gene 
occurred on the 1990s, in-depth studies are still required at 
present to elucidate its role in the regulation of the human 
circadian clock (68).

11. Conclusions

In recent years, due to the accelerated pace of life and an 
increased pressure for competition, a large number of people 
stay awake until late, lose sleep and miss meals, causing a 
circadian clock disorder and an increase in circadian clock 
disorder-related diseases (69-71). Epidemiologic studies 
revealed that circadian rhythm disorders (mainly caused by 
the influence of light) are correlated with breast, ovarian and 
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prostate cancer. Working on night or rotating shifts is linked 
to a greatly increased risk for women to develop breast and 
ovarian cancer, and for men to develop prostate cancer (69-71). 
Clock genes contribute to the occurrence and development of 
tumors by regulating and interfering with oncogenes (c-myc), 
tumor-suppressor genes (P53 and P21), genes involved in the 
regulation of the cell cycle (cyclins A, B1 and D1, and WEE1 
G2 checkpoint kinase) and vascular endothelial growth factor, 
as well as affecting the internal secretion pathway (72-81) 
(Fig. 1). These target genes regulated by the biological clock 
genes are involved in DNA damage repair, cell proliferation 
and apoptosis. Thus, biological clock disorders are likely to 
lead to uncontrolled cell growth and malignant transforma-
tion (73).

Although the exact association between clock genes 
and common abdominal malignant tumors, including 
liver cancer (82,83), colorectal cancer (84-92), gastric 
cancer (93,94) and pancreatic cancer (95), is not clear yet, it 
has been demonstrated that an abnormal expression of clock 
genes is ubiquitous in these tumors. Abnormal expression of 
the CLOCK gene may be one of the important reasons for 
occurrence and development of these tumors. The relevant 
articles are summarized in Tables I and II.

As shown in these tables, only a few articles focus on 
clock genes in abdominal tumors. The majority of them are 
single-center and small-sample studies, mainly focusing on 
colon cancer and genes such as CLOCK, BMAL1, Per1, Per2, 
Per3, Cry1, Cry2, CKIε and Tim, whereas only a few studies 
focus on NPAS2, Rev-Erb and DEC (83-91,93-95). Low expres-
sion of Per1 and Per3 in liver, colon and pancreatic cancer has 
been observed, and Per1 and Per3 are closely associated with 
prognosis (83-91,93-95) (Tables I and II).

Currently, the reason and mechanism of low expression of 
clock genes in abdominal tumors are not clear. Preliminary 
studies indicate that, in liver cancer, hypoxia, hypoxia inducible 
factor (HIF)-1α, HIF-2α and hepatitis B virus X protein (HBx) 
can disrupt the expression of circadian clock genes (83,96). 
Besides HBx, hepatitis C virus can also modulate the hepatic 
clock gene machinery (97). Therefore, it can be hypothesized 
that the tumor microenvironment and virus infections may 
contribute to circadian clock disorders in hepatocellular 
carcinoma cells (83,96).

The new interdiscipline generated by the integration 
of chronobiology and onco-molecular biology is expected 
to expand the knowledge about tumor occurrence and 
development, and may provide a new approach for tumor 
therapy (98-102). Tumor chronotherapy, which is the selec-
tion of the optimum treatment time to achieve the maximum 
curative effect and the minimum toxic and side effects based 
on the rhythm characteristics of tumor growth, has achieved 
satisfactory results in clinical practice (98-102). However, the 
association between clock genes and tumors remains to be 
fully understood. The circadian clock system of Drosophila 
is well understood, but this knowledge cannot be completely 
transferred to the human circadian clock, as this is more 
complex than that of Drosophila and large individual differ-
ences exist. Numerous factors in the natural and social 
environments that can influence the human circadian clock 
and the formation of tumors have not yet been fully eluci-
dated. However, future findings in this field will lead to an 

increased knowledge in the disciplines of tumor and circadian 
clock research.
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