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Abstract. A cervical carcinoma allograft model was designed 
to assess the correlation between early changes in the apparent 
diffusion coefficient (ADC) values on diffusion‑weighted 
magnetic resonance imaging (DW‑MRI) and the expression 
of matrix metalloproteinase‑9 (MMP‑9) in tumors. BALB/c 
mice with U14 tumor allografts on the right rear flank were 
irradiated with a single 20 Gy dose. All tumor‑bearing mice 
were subjected to DW‑MRI, followed by calculation of the 
ADC values and characterization of the T1 and T2 relax-
ation time constants. Pre‑ and post‑irradiation ADC values 
were compared with the tumor volume, and the immuno-
histochemical staining of MMP‑9 and hematoxylin‑eosin 
(HE) staining of tumor allografts. However, no correlations 
between the pre‑treatment ADC values and changes in tumor 
volumes following irradiation were observed. Notably, the 
mean ADC value was significantly higher in the irradiated 
tumors (0.756±0.102x10‑3 mm2/sec) as compared with those 
in the untreated tumors (0.501±0.052x10‑3 mm2/sec; P=0.002; 
r=0.682). Additionally, immunohistochemical staining 

demonstrated that MMP‑9 expression in the irradiated tumors 
was significantly increased. The mean ADC value was 
significantly higher in the irradiated tumors with high MMP‑9 
expression levels (0.815±0.112x10‑3 mm2/sec), as compared 
with in the untreated tumors with low MMP‑9 expression levels 
(0.631±0.068x10‑3 mm2/sec). Quantitative analysis determined 
that the ADC values were correlated with MMP‑9 expres-
sion (r=0.752; P=0.003). Combined, these results suggest that 
radiation‑induced increases in MMP‑9 expression levels may 
be responsible for early changes in the mean ADC value and 
the response to irradiation in cervical carcinoma.

Introduction

As a cancer imaging technique, diffusion‑weighted magnetic 
resonance imaging (DW‑MRI) has developed into a clini-
cally valuable tool for the detection and characterization of 
cancer, and for monitoring the response to therapy. It is poten-
tially useful for measuring cellularity and tissue response 
through assessment of apparent diffusion coefficient (ADC) 
values (1‑3). This may be employed to assess the microstruc-
tural organization of the cell density, cell membrane integrity 
and cell viability, which affect water diffusion properties in 
the extracellular space (ECS) (4). Tumor cell proliferation 
increases cellularity, whereas tumor cell apoptosis reduces 
cellularity. Tumor cellularity and the shape of the ECS affect 
water diffusion; the diffusivity of water molecules is restricted 
in microenvironments of high cellularity, as this cellularity 
reduces the ratio of the extracellular to intracellular space in a 
given area of tissue (4,5). Prior studies have demonstrated that 
the tumor ADC inversely correlates with tumor cellularity, and 
that the successful treatment of numerous tumor types may be 
detected by identifying an early increase in ADC values using 
DW‑MRI (6,7).

Diffusion parameters of the ECS are affected by loss of 
cellularity and degradation of the extracellular matrix (ECM). 
The ECM and changes in the geometry of the ECS are consid-
ered to be of critical importance in affecting water diffusion 
and the ADC values in tumor tissues (8‑10). Matrix metal-
loproteinase 9 (MMP‑9) is a soluble gelatinase B (92 kDa), 
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similar to other MMPs, and a member of a zinc‑containing 
protease superfamily that efficiently degrades the protein 
components of the ECM and basement membranes (BM), 
thereby serving a central role in tissue remodeling and degra-
dation (11‑14). There is a large volume of evidence suggesting 
that MMP‑9 up‑regulation is associated with the progression 
of cervical squamous cell carcinoma (14). A notable hallmark 
of cervical cancer progression is the degradation of the ECM, 
which allows cancer cells to invade the surrounding tissue.

Radiation therapy represents a key management strategy 
for a number of epithelial tumor types and is an effective treat-
ment for cervical cancer. However, it has been demonstrated 
that ionizing radiation treatment with sub‑lethal doses causes 
the upregulation of MMP‑9 expression and activity, and 
promotes MMP‑9‑mediated ECM degradation, contributing 
to tumor progression and invasion (15,16). The mouse U14 
cervical carcinoma cell line provides a useful model to study 
the association between MMP‑9 expression and early changes 
in ADC values derived from DW‑MRI with tumor image char-
acteristics to predict radiotherapy tumor response following 
single higher than conventional‑fraction dose irradiation.

Therefore, the present study examined the early effects 
of irradiation on ADC values and MMP‑9 expression in U14 
allograft tumor tissues following irradiation with a single dose 
of 20 Gy.

Materials and methods

Tumor cell and tumor allograft model. The mouse cervical 
carcinoma U14 strain was purchased from the Committee 
on Type Culture Collection of Chinese Academy of Sciences 
(Shanghai, China) and preserved under liquid nitrogen in the 
Sichuan Cancer Institute (Chengdu, China); these cells were 
collected and washed twice with RPMI‑1640 medium (Gibco; 
Thermo Fisher Scientific, Inc., Waltham, MA, USA) supple-
mented with 10% fetal bovine serum (Gibco; Thermo Fisher 
Scientific, Inc.), 100 IU/l penicillin and 100 mg/l streptomycin, 
centrifuged at 140 x g at 37˚C for 10 min and resuspended 
with RPMI‑1640 medium (2x107)  cells/ml. Subsequently, 
the cell suspension was incubated in a humidified atmo-
sphere (5% CO2) for 30 min at 37˚C. A total of 26 female 
BALB/C mice (6  weeks of age; 17‑21  g) were purchased 
from the Experimental Animal Center of Sichuan University 
(SXCKC1172029‑09; Chengdu, China). All mice were raised 
under specific‑pathogen‑free conditions and fed with basal diet 
and water ad libitum at 26˚C in 5% CO2 with a 12‑h light‑dark 
cycles. Finally, all mice were sacrificed by breaking neck. 
Single cell suspension (0.1 ml; 1x107/ml in RPMI‑1640 culture 
medium; Gibco; Thermo Fisher Scientific, Inc.) of U14 tumor 
strain resuscitated quickly at 37˚C from liquid nitrogen was 
inoculated subcutaneously into the right axillary of 2 BALB/c 
mice for restoring tumorigenicity. When the tumor volume 
(TV) reached 300  mm3, the tumor  tissues were removed 
from sacrificed mice and prepared into single cell suspension 
with RPMI‑1640 culture medium. Cell suspension (0.1 ml; 
1x107 cells/ml) was reinoculated into the left rear flank of the 
mice to establish an allograft model of cervical carcinoma 
U14. When the tumor formation rate reached >90%, 24 mice 
with U14 tumor were randomly divided into four groups by 
time of imaging after irradiation: The control group (without 

irradiation), 6, 24 and 72 h after the irradiation groups. All 
experimental procedures were approved by the Institutional 
Animal Care and Use Committee of Sichuan Cancer Institute 
and conducted in conformity with the Guiding Principles for 
Research Involving Animals and Human Beings (17).

Irradiation. Radiation was delivered using the Cobalt‑60 
teletherapy unit (GWGP80; Nuclear Power Institute of China, 
Leshan, China) with a dose rate of 0.87 Gy/min. Dosimetry 
was confirmed using an ionization chamber and LiF thermo-
luminescent dosimeters. For irradiation, when the TV reached 
300‑500 mm3, the tumor‑bearing mice were anesthetized with 
0.3% sodium pentobarbital (10 ml/kg) administered intraperi-
toneally, and placed under a radiation field so only the left rear 
flank bearing the tumor was irradiated with a single dose of 
20 Gy (source skin distance=80 cm, d=0.5 cm, a=6 cm).

MRI protocol. Female BALB/C mice with unilateral subcuta-
neous U14 cervical carcinoma in the left rear flank underwent a 
baseline MRI scan using a Philips 3.0T system (Achieva/Intera; 
Philips Healthcare, Amsterdam, The Netherlands) equipped 
with a small animal receiver coil (CG‑MUC18‑H300‑AP; 
product no.,  5000002301, serial no.,  001001; Shanghai 
Chenguang Medical Technologies Co., Ltd., Shanghai, China). 
The MRI protocols included the T1‑weighted and T2‑weighted 
spin‑echo sequences with two b‑factors (0 and 800 sec/mm2) in 
the axial direction. The scan parameters were as follows: For 
T2‑weighted spin echo sequence, repetition time (TR)/echo 
time (TE): 4,000/66  msec; matrix: 136x134; bandwidth: 
156 Hz; field of view: 50 mm; slice thickness: 2 mm; intersec-
tion gap: 0.2 mm. For T1‑weighted spin echo sequence, T1WI 
3D‑FFE‑mice TR/TE: 9.214/4.604  msec; matrix: 80x96; 
bandwidth: 434.5 Hz; field of view: 60 mm; slice thickness: 
1 mm; intersection gap: 0 mm.

TV assessment and ADC calculation. The tumor borders were 
segmented manually on the images obtained with the smaller 
b factor, based on the signal intensity between the region of 
interest (ROI) and background by two independent investiga-
tors. TV was measured with the formula V=πab2/6, where 
‘a’ is the greatest length and ‘b’ is the perpendicular width. 
For ADC calculation, ≤3 slices of the ADC map depicting 
the largest tumor diameter were selected, depending on the 
volume of the tumor. In each slice an ROI was delineated 
according to the tumor geometry. An ADC value from five 
sections of the ROI on the same axial section levels of the same 
lesion was calculated (Fig. 1). The ADC image was obtained 
by subtracting two sequences of DWI (b=0, b=800 sec/mm2). 
The ADC value in each ROI was calculated independently by 
two experienced investigators using the following formula: 
ADC=[ln(S1/sec2)]/(b2‑b1), where ‘S’ represents the signal 
strength at different b values (b=0, b=800  sec/mm2) in a 
specific ROI (18).

Immunohistochemistry for MMP‑9 expression. For immu-
nohistochemistry, 4‑µm thick sections were cut from the 
paraffin‑embedded U14 cervical tumor biopsy samples. 
These sections were mounted on amino‑propyl‑ethoxy‑silane 
coated glass slides. Slides were deparaffinized in xylene and 
rehydrated with ethanol, and antigen retrieval was performed 



ONCOLOGY LETTERS  14:  6769-6775,  2017 6771

using the autoclave oven technique (125˚C, 103 KPa, 8 min). 
Endogenous peroxidase was blocked by incubation with 0.3% 
hydrogen peroxidase at 37˚C for 30 min. The primary anti-
body (4‑5 µg/ml) was incubated with the samples overnight 
at 4˚C (catalog no.,  BA2202; rabbit anti‑mouse; dilution, 
1:200; Wuhan Boster Biological Technology, Ltd., Wuhan, 
China). Following three washes with PBS, the specimens 
were incubated with a goat anti‑rabbit horseradish peroxidase 
immunoglobulin G (ZSBio; OriGene Technologies, Inc., 
Beijing, China; 5 µg/ml) for 30 min at 37˚C. Staining was visu-
alized using 3'3‑diaminobenzidine tetrahydrochloride (0.05%) 
for 12 min at 37˚C and counterstaining was performed with 
HE for 3 min. PBS without the primary antibody served as the 
negative control. Two independent pathologists using a 1‑4+ 
semi‑quantitative scale scored MMP‑9 immunostaining (19).

Statistical analysis. GraphPad Prism (GraphPad Software, 
version 5.02, Inc., La Jolla, CA, USA) was used for statistical 
analysis. Data are expressed as the mean ± standard deviation. 
Inter‑observer agreement was assessed with Cohen's Kappa: 
κ≤0.40, poor agreement; κ=0.41‑0.75, good agreement; κ≥0.76, 
excellent agreement. The correlation between the change 
in mean ADC and the TV was calculated using Pearson's 
correlation coefficient, and the correlation between the change 
in mean ADC and MMP‑9 expression was calculated using 
Spearman's correlation coefficient. Two‑tailed P<0.05 values 
we considered to indicate statistically significant differences.

Results

Inter‑observer agreement. There was an excellent 
inter‑observer agreement between the two readers, with a κ 
coefficient of 0.91 for the assessment of TV, 0.87 for ADC 
values and 0.79 for H‑scoring.

DW‑MRI and ADC values. DW‑MRI was used to detect 
the response of cervical carcinoma U14 allograft tumors to 
irradiation. ADC maps and high‑resolution axial T1WI and 
T2WI from tumors prior to irradiation and at various time 
points post‑irradiation are presented in Fig. 2. A significant 
and time‑dependent increase of ADC value was observed in 
irradiated vs. non‑irradiated tumors 72 h following irradiation 
(P=0.001). Non‑irradiated tumors were typically homoge-
neously hyperintense on the T2WI and DWI images with a 
low mean ADC value (0.501±0.052x10‑3 mm2/sec; Fig. 2A‑D); 

irradiated tumors were hyperintense on T2WI and hypointense 
on T1WI, and the mean ADC values of the irradiated tumors at 
6, 24 and 72 h subsequent to irradiation were 0.518±0.081x10‑3, 
0.625±0.076x10‑3 and 0.756±0.102x10‑3 mm2/sec, respectively 
(Fig. 2E‑H for 6 h; 2I‑L for 24 h; 2M‑P for 72 h). Fig. 3 pres-
ents a summary of the correlations between ADC values and 
the post‑irradiation time and TV for all tumors. ADC values of 
solid portions within the irradiated tumors suggested a notable 
correlation with post‑irradiation time (r=0.734; P<0.0001), but 
TV did not exhibit a correlation with the post‑irradiation time 
(r=‑0.236; P=0.345).

Histological changes and MMP‑9 expression. Histological 
examination of HE staining revealed that no marked necrosis 
was present in the irradiated and control tumors, but the irradi-
ated tumors exhibited cellular edema, swelling, increases in 
size, cell layer loosening and extracellular space dilatation 
(Fig. 4Ai‑iv); immunohistochemical staining demonstrated 
that the expression levels of extracellular/cell‑surface MMP‑9 
were markedly increased in the irradiated tumors at 6 h subse-
quent to irradiation, as compared with in the control tumors 
(Fig. 4Bi‑iv).

Associations between ADC values, TV and MMP‑9 expres‑
sion. As indicated in Fig. 5, no significant correlation between 
the mean ADC value and the TV was observed (P=0.240; 
r=0.292; Fig.  5A), but there was a significant correlation 
between the mean ADC value and the MMP‑9 expression 
level (P=0.003; r=0.752; Fig. 5B). These data suggest that radi-
ation‑induced increased MMP‑9 expression may contribute to 
the elevation of mean ADC values in irradiated tumors with a 
larger ECS by degrading the ECM.

Discussion

As a cancer treatment response technique, DW‑MRI provides 
information about microscopic structures, such as cell density 
and integrity. It is sensitive to macromolecular and microstruc-
tural changes, which may occur at the cellular level relatively 
earlier when compared with anatomical changes during 
therapy (1). Studies have demonstrated that the therapeutic 
response to concurrent chemoradiation in several tumor types, 
including cervical cancer, may be detected by measuring 
early changes in ADC values using DW‑MRI (19‑24). It is 
well known that the restriction of water diffusion in biological 

Figure 1. Method of ADC measurement. ADC values were obtained using five regions of interest with uniform size on an (A) ADC map, placed on an area 
corresponding to a solid portion of the U14 cervical cancer tumor on a (B) T2‑weighted image. ADC, apparent diffusion coefficient.
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Figure 3. Mean ADC values increased in a time‑dependent manner post‑irradiation, prior to a significant decrease in tumor volume. (A) Mean ADC value in 
the irradiation groups significantly increased at 24 and 72 h following irradiation (P<0.05). (B) No significant decrees in tumor volume was observed within 
72 h following irradiation (P>0.05). (C) Correlation between mean ADC values and time post‑irradiation (r=0.734, P<0.001). (D) Correlation between tumor 
volume and time post‑irradiation (P>0.05). Correlation was analyzed using a Spearman's rank correlation test. ADC, apparent diffusion coefficient.

Figure 2. ADC and DWI maps, high‑resolution axial T1 and T2WI from tumors prior to irradiation and at various times post‑irradiation. In the non‑irradiation 
group, U14 cervical cancer was hypo‑isointense on (A) axial T1WI, hyperintense on (B) axial T2WI and (C) DWI (b=800) and diffusion restricted in the 
corresponding (D) ADC map (ADC mean=0.574x10‑3 mm2/sec). In the irradiation groups: (6 h following irradiation), (E) T1WI and (F) T2WI images, (G) DWI 
and (H) ADC maps (ADC mean=0.509x10‑3 mm2/sec); (24 h following irradiation) (I) T1WI and (J) T2WI images, and (K) DWI and (L) ADC maps (ADC 
mean=0.642x10‑3 mm2/sec); and (72 h following irradiation) (M) T1WI and (N) T2WI images, and (O) DWI and (P) ADC maps (ADC mean=0.748x10‑3 mm2/sec), 
the U14 cervical cancer tumors were hyperintense on T2WI and DWI, and hypointense on T1WI with a relatively high mean ADC value. ADC, apparent 
diffusion coefficient; DWI, diffusion‑weighted image.
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tissues is associated with tissue cellularity and cell membrane 
integrity. Factors that affect the diffusion of water molecules, 
including edema and differences in cellularity, have been 
identified to be associated with changes in ADC values (25). 
However, the underlying mechanisms remain unknown.

ADC values increase with reducing cellularity and barriers to 
water diffusion in biological tissues, and are negatively correlated 
with tumor cellularity (26‑30). The determinants of diffusion 
in the tumor ECS include ECM composition, ECS size and 
geometry (31). ECM and tumor cell interactions serve critical roles 
in tumor cellularity, which alters diffusion in tumors, thus the ADC 
values increase as cellularity decreases in DW‑MRI (6,28). In the 
present study, the results demonstrated that irradiation does reduce 
U14 tumor cellularity with a corresponding increase in the ADC 
value at 24 h following irradiation (Fig. 3A and C and Fig. 4Ai‑iv), 
suggesting that an early change in the ADC value reflects tumor 
cellularity following irradiation. ECS diffusion parameters are 
affected by a loss of cellularity and degradation of the ECM (31). 

It is known that ADC values decrease due to pericellular ECM 
degradation caused by MMPs, and that increased ADC values are 
associated with the expression and activity of MMP‑9 localized 
within the intercellular spaces (32). MMP‑9 is a matrix protein 
involved in the degradation of ECM that is active within 24 h of the 
onset of stress‑induced tissue injury, and may mediate collagen IV 
degradation in the BM and pericellular ECM, intercellular space 
dilatation and cellularity reduction (33,34). MMP‑9 is activated by 
various stimuli, including irradiation and human papillomavirus 
(HPVs) in tumor tissues (15‑16). Sub‑lethal doses of radiation 
may enhance MMP‑9 promoter activity and expression through 
the phosphoinositide 3‑kinase/protein kinase B/NF‑κB signal 
transduction pathways (13,35). An early and significant increase 
in MMP‑9 expression induced by irradiation facilitates ECM 
degradation (36). It has been suggested that gene knockdown 
of MMP‑9 or RNA interference‑mediated downregulation 
of radiation‑induced MMP‑9 may significantly reverse ADC 
reduction, and that increased expression of MMP‑9 facilitates 

Figure 4. Histological changes and MMP‑9 expression in irradiated tumors and untreated tumors. (A) Histologic examination of hematoxylin and eosin 
staining (magnification, 400x): i) Untreated tumor; ii) 6 h following irradiation; iii) 24 h following irradiation; iv) 72 h following irradiation. Irradiated tumors 
exhibited cellular edema, swelling, increases in size, cell layer loosening and intercellular space dilatation ii‑iii). (B) MMP‑9 expression determined via 
immunohistochemical staining (magnification, x400). i) Untreated tumor; ii) 6 h following irradiation, MMP‑9 expression in immunohistochemical staining 
was markedly increased in comparison with untreated tumor (IHC score: ++ vs. +); iii) 24 h following irradiation; iv) 72 h following irradiation. MMP‑9, 
matrix metalloproteinase.

Figure 5. Correlation between mean ADC values and tumor volume, mean ADC values and MMP‑9 expression. (A) No significant correlation was observed 
between mean ADC values and tumor volume (P>0.05). (B) A significant correlation between mean ADC values and MMP‑9 expression levels was observed 
(P=0.003; r=0.752). Values were calculated using a Spearman's rank correlation test. ADC, apparent diffusion coefficient; MMP‑9, matrix metalloproteinase.
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ECM degradation, leading to a decrease in cellularity and an 
increase in the water diffusion and ADC values of tumors (35). 
These data indicate that a high tumor ADC value reflects the low 
tumor cellularity involved in MMP‑9‑mediated degradation of 
the ECM. In the present study, it was also identified that DW‑MRI 
identified regions in irradiated U14 tumors with increased signal on 
ADC maps (Fig. 2A‑P), and that the increased ADC corresponded 
with increased MMP‑9 expression in U14 tumors within 72 h of 
irradiation (Fig. 5B). Increases in MMP‑9 activity induced by 
irradiation and decreases in cellularity due to the degradation of 
ECM in tumor tissues are associated not only with increases in 
the intercellular space, but also with the dilatation of the ECS, 
which in turn increases ADC values (37). The dilatation of the 
ECS is characterized by a loss of cellularity, degradation of the 
ECM, morphological changes such as cell‑drink and occupancy 
effect, and inactivation of Na+/K+/ATP enzyme (38,39). It has 
been previously demonstrated that ECM degradation is associated 
with the increased mobility of ECM macromolecules, and that 
macromolecule ADCs offer potential sensitive and early markers 
for ECM degradation and the prospect of directly monitoring 
ECM degradation processes in vivo in clinical settings at the 
molecular and microstructural levels (36). These results support 
the hypothesis that ECS is crucial for determining the ADC 
values of tumors: The extracellular ADC values increased with 
increases in the ECS due to MMP‑9‑mediated degradation of the 
ECM following radiation treatment.

To conclude, ECM degradation in tumors following 
exposure to ionizing radiation may reflect the specialized role 
of MMP‑9 in the ECS, and indicate that radiation‑induced 
increased expression of MMP‑9 is a potential mechanism 
underlying early changes in ADC values observed in cervical 
tumors. Radiation‑enhanced changes in ADC values, 
including increased expression and activation of MMP‑9 in 
tumors, may be used as a variable for early assessment of the 
radiation‑treatment response of patients with cervical cancer. 
However, as changes in ADC values are associated with 
spatio‑temporal dynamics of tumor responses to radiation, 
ADC values and MMP-9 may be candidate biomarkers of the 
early response to radiotherapy, though this requires further 
investigation with respect to clinical outcomes.
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