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Abstract. Drug resistance is a primary cause of chemo-
therapeutic failure; however, how this resistance develops is 
complex. A comprehensive understanding of chemotherapeutic 
resistance mechanisms may aid in identifying more effective 
drugs and improve the survival rates of patients with cancer. 
Insulin-like growth factor 1 receptor (IGF1R), a member of 
the insulin receptor family, has been extensively assessed for 
biological activity, and its putative contribution to tumor cell 
development and progression. Furthermore, researchers have 
attended to drugs that target IGF1R since IGF1R functions 
as a membrane receptor. However, how IGF1R participates in 
chemotherapeutic resistance remains unclear. Therefore, the 
present study described the IGF1R gene and its associated 
signaling pathways, and offered details of IGF1R-induced tumor 
chemoresistance associated with promoting cell proliferation, 
inhibition of apoptosis, regulation of ATP-binding cassette 
transporter proteins and interactions with the extracellular 
matrix. The present study offered additional explanations for 
tumor chemotherapy resistance and provided a theoretical 
basis of IGF1R and its downstream pathways for future 
possible chemotherapy treatment options.
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1. Introduction

Insulin-like growth factor 1 receptor (IGF1R) signaling is 
a complicated and regulated network essential for cells to 
proliferate and survive. The IGF-IGF1R axis consists of three 
receptor tyrosine kinases: IGF1R, insulin-like growth factor-2 
receptor (IGF2R) and insulin receptor (INSR). The ligands for 
these receptors are insulin, insulin-like growth factor-1 (IGF-1), 
insulin-like growth factor-2 (IGF-2) and serum insulin-like 
growth factor binding proteins (IGFBPs) (1). IGF-1 and IGF-2 
possess autocrine, paracrine and endocrine functions, and 
activate IGF1R signaling (2). These growth factors and their 
receptors are commonly overexpressed in malignant tumors; 
this overexpression may be used to assess cancer through 
sustained proliferative signals, anti-apoptotic events, invasion, 
metastasis and drug resistance in cancer cells (3).

IGF1R expression and activity increases in numerous 
tumor types, including ovarian cancer and rhabdomyosar-
coma, and is reported to contribute to cancer cell proliferation 
and apoptosis (4,5). Since IGF1R functions as a membrane 
receptor, drugs, including IGF1R tyrosine kinase inhibi-
tors, monoclonal antibodies against IGF1R and monoclonal 
antibodies against IGF1R ligands targeting this receptor, are 
of particular interest (6). Recently, the function of IGF1R in 
chemotherapeutic resistance has gained increasing attention, 
and relevant mechanisms of inducing resistance in cancer cells 
include overexpressing multi-drug-resistant proteins, dysregu-
lating cell survival and death and interacting with the tumor 
microenvironment (7).

2. IGF1R signaling pathway

IGF1R structure and function. IGF1R is an insulin receptor 
family member, and a disulfide‑linked heterotetrameric trans-
membrane glycoprotein (αββα) that contains an extracellular 
ligand-binding domain and an intracellular tyrosine kinase 
domain (8,9). The ligand‑binding specificity determinant is 
reflected in the amino‑terminal cysteine‑rich domain of the 
extracellular α subunit, primarily recognizing and binding to 
IGF-1 and IGF-2. The intracellular signal transduction depends 
on the tyrosine kinase activity the ligand in the transmem-
brane β subunit triggers, permitting specific insulin receptor 
substrates (IRS-1 to -4) and Src-homology collagen (Shc) 
to phosphorylate, activating downstream mitogen-activated 
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protein kinase (MAPK) and phosphatidylinositol 3-kinase 
(PI3K)/protein kinase B (AKT) signaling pathways (6). The 
specificity of IGF1R in vivo depends on tissue distribution, 
ligand‑binding specificity and receptor differences in intrinsic 
signaling (10).

IGF1R is often expressed in normal tissues, serving 
multiple physiological functions in growth, development 
and feeding (11). The importance of IGF1R in prenatal and 
postnatal growth has been demonstrated using knockout 
mice (8). In muscle and bone tissues, IGF1R signaling 
promotes PI3K/AKT-mediated differentiation and extracel-
lular signal-regulated kinase (ERK) (12). IGF1R also aids in 
the maintenance of the myocardium and brain (13).

Cardiac-specific IGF1R signaling promotes protective 
physiological hypertrophy, preserving left ventricular function 
and inhibiting pathological left ventricular remodeling (14). 
Furthermore, IGF1R contributes to glucose metabolism and 
neutrophil physiology (15), and is associated with the occur-
rence and development of cardiovascular disease, diabetes and 
inflammation (16,17).

IGF1R is commonly overexpressed in cancer (18). The 
IGF1R signal promotes non-cancerous cells to malignantly 
transform (19), and possesses anti-apoptotic and mitogenic 
activity (20-22). In addition, IGF1R contributes to invasion, 
metastasis and angiogenesis of cancer (23-25). Excessively 
activating IGF1R promotes tumors to progress by increasing 
glycolysis and biomass production (26), and decreases tumor 
sensitivity to hypoxia, low pH and low glucose environ-
ments (27). In addition, expressing IGF1R increases the rate at 
which tumor cells proliferate and decreases the rate at which 
they are destroyed (28).

IGF1R gene regulation. The 5'‑flanking region promoter of 
IGF1R is enriched in GC, and lacks the effective transcription 
initiation of the majority of eukaryotic genes usually requiring 
TATA and CCAAT boxes. This characteristic results in a 
partial difference in its gene regulation compared with other 
promoter regions (29,30).

IGF1R gene expression is regulated transcriptionally and 
post‑transcriptionally. Previous studies have suggested that 
numerous transcription factors regulate the IGF1R gene. 
Transactivation factors include zinc finger protein specificity 
protein 1 (Sp1), forkhead box protein O3 (Foxo3), E2F1 tran-
scription factor, Krüppel-like factor 6, EWS RNA binding 
protein 1-Wilms tumor 1 (WT1) fusion protein and high 
mobility group A1, all of which bind directly to the IGF1R 
promoter (31-34). In contrast, estrogen, BRCA1 DNA repair 
associated (BRCA1) and von Hippel-Lindau tumor suppressor 
inhibit IGF1R expression by binding to Sp1 (31,35). A previous 
study confirmed that WT1 specifically binds to co-WT1 
cis‑elements in the IGF1R proximal promoter region, and 
decreases IGF1R gene transcription and translation (36). 
Overexpressing MYB proto-oncogene transcription factor in 
tumor cells increases the expression of IGF-1 and IGF1R by 
increasing transcriptional activity (37).

IGF1R‑associated signaling pathways. IGF1R is associated 
with multiple signaling pathways via downstream proteins, 
including IRS and PI3K (38-40). IGF1R, which mediates 

apoptosis-inhibiting signals, and enhances cell metabolism and 
protein synthesis via downstream mechanistic target of rapamycin 
(MTOR) kinase signaling, activates the PI3K/AKT signaling 
pathway (41-43). IGF1R activates the growth factor receptor 
bound protein 2 (Grb2)/RAS/RAF/MAPK signaling pathway 
to transduce cell growth and proliferation signals (44,45). 
IGF1R activation or overexpression is associated with invasion 
and metastasis of cancer cells, processes mediated by numerous 
signal transduction proteins that affect invasiveness (24,25). 
For example, phosphorylating IRS-1 affects the interactions 
between epithelial cadherin and β-catenin, and the crosstalk 
between the IGF axis and integrins (46). A previous study 
demonstrated that protein tyrosine kinase 6 forms a complex 
with IGF1R and the adaptor protein IRS-1, which modulates 
anchorage-independent growth via the regulation of IGF1R 
expression and phosphorylation (23).

Previously, crosstalk between IGF1R and other signaling 
pathways has been assessed, with studies focusing on interac-
tions between IGF1R, steroid hormones and other receptor 
tyrosine kinases (RTKs) (47). The crosstalk between IGF1R 
and focal adhesion kinase (FAK) signaling pathways (38), 
IGF1R and the classical Wnt signaling pathways (48,49), and 
IGF1R and transforming growth factor β (TGFβ) signaling 
pathways have also been further clarified (50). In addition, 
certain IGF1R signals have been newly identified, namely 
RTK heterodimers, including the INSR hybrid receptor, and 
IGF1R/INSR that function as dependent receptors intervening 
in IGF1R signaling and its regulation (51).

The IGF1R signaling pathway is regulated at multiple 
levels; the expression of IGF-2, the presence of IGF2R and 
high‑affinity IGFBPs affects ligand‑binding activity (52). In 
addition, other extracellular factors, including dendritic cells 
and integrins, may contribute to regulating IGF1R activity (53). 
Within cells, Notch and apoptosis inducing factor-1 regulates 
IGF1R kinase activity (54). Downstream, multiple IGF1R 
effectors participate in IRS/PI3K/AKT signal transmission, 
including MTOR complex 1, phosphatase and tensin homolog 
phosphohydrolase, ribosomal protein S6 kinases, ERK and 
c-Jun N-terminal kinase (5,55,56).

3. IGF1R and chemotherapy resistance

Overexpression of IGF1R is associated with poorer chemo-
therapy outcomes for patients with gastric cancer compared 
with those with low expression of IGF1R (57). Patients with 
co-expression of IGF1R and multi-drug resistance-associated 
protein 1 (MRP1) have demonstrated a poorer response with 
adjuvant FOLFOX-4 chemotherapy (58). In patients with 
human epidermal growth factor receptor 2-negative breast 
cancer, the decreased expression of IGF1R was correlated 
with an improved response to chemotherapy (59). Blocking 
IGF1R signaling facilitates treating bladder cancer cells that 
are insensitive to chemotherapy (60). Similar phenomena 
have been reported for prostate and ovarian cancer when 
IGF1R signaling is blocked (61,62). Although the function 
of IGF1R in chemotherapy resistance has been confirmed, 
the mechanism remains to be fully elucidated. The present 
study assessed IGF1R-associated tolerance mechanisms from 
multiple aspects, including promoting proliferation, inhibiting 
apoptosis, and inducing changes to ATP-binding cassette 
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(ABC) transporter proteins and the extracellular matrix 
(ECM) (Fig. 1).

Promoting proliferation. A characteristic of tumor cells, 
persistent proliferation may be acquired in multiple ways (3). 
As chemotherapeutic resistance develops, certain signals 
elevate receptor proteins on tumor cell surfaces and permit 
cells to avoid growth signal control (57). Changing the recep-
tor's molecular structure, which alters ligand restriction and 
promotes the downstream signal to activate, may achieve the 
same effect (63).

The Grb2/RAS/RAF/MAPK cascades serve crucial func-
tions in cell proliferation and survival and are aberrantly 
activated in drug-tolerant cells. Numerous mechanisms 
increase IGF1R expression and activate IGF1R, thereby 
promoting signaling cascades and proliferation (64). WT1 is 
reportedly silenced in drug-resistant cells, which may degrade 
the inhibitory effect of WT1 on IGF1R transcription (65). 
Similar effects are reflected in the feedback loop between 
Foxo3, IGF1R and AKT (31). Micro (mi) RNA inhibits IGF1R 
expression by directly targeting the 3' untranslated regions 
but CpG methylating the miRNA promoter region results in 
the downregulation, and the loss of the inhibitory effects, of 
IGF1R expression (66,67). MIR-143, MIR-503 and MIR-1271 
regulate cisplatin resistance in human gastric cancer cell 
lines by targeting IGF1R (66-69). Normally, insulin-like 

growth factor binding protein-7 (IGFBP7) directly binds 
to IGF1R and inhibits its function post-transcriptionally; 
however, studies indicate that, in chemotherapy-resistant cells, 
IGFBP7 expression significantly decreased (70). Therefore, 
IGF1R is overactivated once IGFBP7 inhibitory activity 
has decreased (71). Furthermore, inactivating IGF1R inhibits 
tumor cell proliferation by blockading G0/G1 and IGF1R binds 
to non-IGF ligands from extracellular spaces, cell membranes 
and the cytoplasm, which regulates cell proliferation and 
survival IGF-independently during chemoresistance (72,73).

In addition to overexpression, IGF1R over-activation is 
also important with respect to chemotherapeutic tolerance. 
Phosphorylated IGF1R increased in chemotherapeutic 
drug-resistant cell lines (74-76) and multiple mechanisms 
contribute to the over-activation of IGF1R, including 
increased constitutively secreted IGF-1 (63), transgelin 
overexpression (77) and the effect of the Src oncogene on 
IGF1R (78). By these processes, IGF1R signals promote tumor 
cells to proliferate and induce resistance by over-activating 
Grb2/RAS/RAF/MAPK cascades (64).

Inhibiting apoptosis. Anti-apoptosis is common to numerous 
tumors and chemotherapy-resistant cells evolve diverse 
strategies to limit or avoid apoptosis (3). The most common 
strategy is to eliminate the tumor suppressor function of 
p53 (79). Resistant cells also downregulate pro-apoptotic 

Figure 1. IGF1R signaling pathway and its relevant drug resistance mechanisms: Promoting proliferation, inhibiting apoptosis and inducing changes to ABC 
transporter proteins and the ECM. Silencing WT1 and mutant p53 causes loss of the inhibitory effects of the IGF1R promoter. Downregulating microRNAs, 
including miR-143, miR-503, miR-1271, causes the loss of IGF1R mRNA degradation and IGF1R translation inhibitory activity. Serum insulin-like growth 
factor binding proteins decrease the inhibitory effects of IGF1R post-transcriptionally, increasing IGF1R expression and activity. This may promote down-
stream phosphatidylinositol 3-kinase/protein kinase B and Grb2/RAS/RAF/mitogen-activated protein kinase signaling cascades, thereby enhancing cell 
proliferation and anti-apoptotic activity. In addition, IGF1R signaling pathways participate in regulating ABC genes and alter cell responses to chemotherapy. 
The ECM and IGF1R stabilize and activate the activity of one another. IGF1R, insulin-like growth factor 1 receptor; ABC, ATP-binding cassette; ECM, 
extracellular matrix; WT1, Wilms tumor 1; miR, microRNA; Grb2, growth factor receptor bound protein 2.
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factors or increase the expression of anti-apoptotic factors to 
avoid apoptosis (80). IGF1R participates in apoptosis inhibi-
tion predominantly via the PI3K/AKT signaling pathway in 
drug-resistant cell lines but multiple other mechanisms are 
associated with IGF1R overexpression and inhibition of apop-
tosis in drug-resistant cells (81,82).

Previous studies have indicated that cancer chemotherapy 
is associated with inducing p53-dependent apoptosis 
responses (79). p53 is one of the most frequently mutated tumor 
suppressors and IGF1R overexpression inhibits wild-type p53 
(WT-p53) via phosphorylated (p) AKT (80). This enhances the 
ubiquitination-promoting function of murine double minute 2, 
which decreases p53 protein production (79). Reciprocally, 
WT-p53 renders tumor cells more chemosensitive by 
inhibiting Sp1-induced transactivation of the IGF1R promoter 
and increasing the expression of pro-apoptotic protein 
p21 (81). Mutant p53 stimulates IGF1R promoter function in 
chemotherapeutic resistant cell lines (82). Furthermore, IGF1R 
regulates cisplatin resistance by targeting proto-oncogene Bcl‑2, 
which is anti-apoptotic and affects drug resistance by binding 
to and inhibiting Bcl 2-associated X protein (BAX) and Bcl 2 
homologous antagonist killer protein (83). IGF1R activation 
is also associated with decreased expression of IGFBP7, 
which is associated with the expression of the anti-apoptotic 
gene Bim and chemotherapy tolerance-associated genes, 
including annexin A4 and protein kinase C 1 (84). Conversely, 
overexpressing IGFBP7 induces apoptosis and reverses tumor 
drug resistance (70).

Regulating ABC transporter proteins. The ABC is the largest 
protein transporter superfamily present in all organisms (85). 
This family of genes codes for different proteins (importers 
and exporters) and its increased expression decreases 
drug influx and increases efflux, decreasing therapeutic 
response (86). IGF1R signals participate in regulating ABC 
genes, including multidrug resistance protein 1 (MDR1), 
MRP1, multidrug resistance-associated protein 2 (MRP2), 
multidrug resistance-associated protein 3 (MRP3) and 
breast cancer resistance protein (BCRP) (59,87-89). As such, 
IGF1R increases tumor resistance by increasing the expres-
sion of MDR1, a protein implicated in chemotherapeutic 
resistance (88). Expression of MRP3 and BCRP decreases 
or disappears in the presence of an IGF1R inhibitor (87) and 
overexpressing IGF1R results in increased MRP2 promoter 
activity via increased pAKT and nuclear factor erythroid 
2-related factor 2 in resistant cells (59,88). In addition, 
IGF1R silencing increases chemotherapeutic sensitivity via 
transcription inhibition of MRP-2 (59). Previous studies have 
demonstrated that overexpressing IGF1R and MRP1 was asso-
ciated with chemotherapeutic resistance and poorer prognosis 
compared with malignancies with normal or low expression 
of IGF1R and MRP1, indicating that the co-expression of 
IGF1R/MRP1 in tumors may predict chemotherapeutic 
effects (88,89).

Interacting with ECM. The ECM is predominantly composed 
of fibrin (collagen and laminin) and proteoglycans (hyaluronic 
acid), which forms the structural framework for the majority 
of tissues (90). The ECM transfer signals to the cells via inte-
grin binding and activation, which modulate cell proliferation, 

survival and migration and influence the tumor response to 
anti-cancer therapies (91,92).

Previous studies have indicated that IGF1R stabilizes 
the molecular structure of β1 integrin by protecting it from 
proteasomal degradation and promoting tumor cells to grow 
and proliferate (93). FAK, a substrate protein of IGF1R, is 
activated by integrin, affecting epithelial transformation, inva-
sion and metastasis of tumor cells IGF1R-independently (38). 
Extracellular fibronectin increases the activity of β1 integrin 
to increase the abundance of MAPK-phosphatase-1 and the 
receptor of activated C kinase (RACK-1) (62). In addition, 
establishing crosstalk between β1 integrin and IGF1R retains 
the phosphorylation of IGF1R, which helps stimulate down-
stream signaling of IGF1R, and contributes to cell proliferation 
and transformation (94). Previous studies have revealed that, in 
the presence of IGF1R, the β1 integrin receptor increased the 
recruitment of RACK-1 and mediated tumor cell migration (62). 
These changes contribute to chemotherapeutic tolerance.

Other mechanisms. Previous studies have revealed that IGF1R 
is sumoylated and translocated to the nucleus, which permits 
the receptor to interact with chromatin, and function as a 
transcriptional regulator (95-97). Nuclear IGF1R specifically 
binds to and functions as a transcriptional activator of its 
own promoter, and interferes with signaling pathways (98). 
Specifically, nuclear IGF1R interferes with Wnt signaling, 
which upregulates ABC drug transporters and modulates drug 
responses (99). Regarding the tumor microenvironment, acti-
vating IGF1R results in stabilizing hypoxia-inducible factor 
(HIF)-1α and HIF-2α, and the upregulation of vascular endo-
thelial growth factor (100). A previous study demonstrated 
that overexpressing HIF-1α increased the expression of Bcl-2, 
decreased the expression of BAX, and induced the expression 
of MDR1 and MRP1 (101). These results offer novel insights 
into IGF1R-mediated chemotherapeutic resistance.

4. Conclusions

Chemotherapeutic resistance commonly results in cancer 
treatment failing, with previous studies confirming multiple 
resistance-associated mechanisms (102,103). Therefore, 
understanding how tumors develop resistance may help to 
identify improved drugs and increase patient survival rates.

Changes in drug transporter proteins, activating signaling 
pathways and ineffectively inducing cell death are primary 
mechanisms of chemotherapeutic resistance. IGF1R-mediated 
resistance includes promoting cells to proliferate, inhibiting 
apoptosis, inducing increased expression of ABC transporter 
proteins on cell membranes and inducing changes in the ECM. 
Transcription factors and miRNAs also intervene in regulating 
IGF1R transcriptionally and cause downstream signaling path-
ways to excessively activate by promoting increased IGF1R 
expression or loss of inhibitory effects to the IGF1R promoter. 
IGFBPs participate in regulating IGF1R post-transcriptionally, 
with the loss of IGF1R inhibition and enhanced expression 
of anti-apoptotic and chemotherapy resistance-associated 
genes. Following overexpression and over-activation, IGF1R 
predominantly triggers the Grb2/RAS/RAF/MAPK and 
PI3K/AKT cascades, which induce proliferation and inhibit 
apoptosis in chemotherapy-resistant tumor cell lines. IGF1R 
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signaling regulates the expression of ABC transporter proteins 
via multiple mechanisms and renders chemotherapy less effec-
tive. The ECM interacts synergistically with IGF1R activity 
as chemotherapy-resistant cells develop; however, how this 
occurs remains unclear.

Overall, IGF1R signaling serves a crucial function in tumor 
chemotherapeutic tolerance. Recently, drug combinations that 
target predicted or identified chemoresistance markers have 
been suggested as the future direction of cancer treatment. As 
a membrane receptor, IGF1R is of particular interest in cancer 
drug targeting; however, IGF1R-mediated resistance mecha-
nisms require further study. Furthermore, RTK heterodimer 
and IGF1R nuclear translocation may be associated with drug 
resistance, though few reports of this exist in the literature.
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