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Abstract. Cancer is one of the leading causes of mortality 
worldwide, and in particular, breast cancer in women, prostate 
cancer in men, and lung cancer in both women and men. The 
present study aimed to identify a common set of genes which 
may serve as indicators of important molecular and cellular 
processes in breast, prostate and lung cancer. Six microarray 
gene expression profile datasets [GSE45827, GSE48984, 
GSE19804, GSE10072, GSE55945 and GSE26910 (two 
datasets for each cancer)] and one RNA-Seq expression dataset 
(GSE62944 including all three cancer types), were downloaded 
from the Gene Expression Omnibus database. Differentially 
expressed genes (DEGs) were identified in each individual 
cancer type using the LIMMA statistical package in R, and 
then a comparison of the resulting gene lists was performed to 
identify common DEGs across cancer types. This analysis was 
performed for microarray and RNA-Seq datasets individually, 
revealing a set of 62 and 1,290 differentially expressed genes 
respectively, which may be associated with the three cancers. 
Out of these genes, 44 were common to both analyses, and 
hence termed key genes. Gene Ontology functional annotation, 
Kyoto Encyclopedia of Genes and Genomes pathway mapping 
and literature citations were used to confirm the role of the 
key genes in cancer. Finally, the heterogeneity of expression of 
the key genes was explored using the I2 statistic (meta package 
in R). The results demonstrated non-heterogeneous expression 
of 6 out of the 44 key genes, whereas the remaining genes 
exhibited significant heterogeneity in expression across micro-
array samples. In conclusion, the identified DEGs may play 
important roles in the pathogenesis of breast, prostate and lung 

cancer and may be used as biomarkers for the development of 
novel diagnostic and therapeutic strategies.

Introduction

The highest rates of cancer-related mortality are associated 
with breast, prostate and lung cancer, as reported by the World 
Health Organization (1), the World Cancer Report (2) and 
Cancer facts and figures (3) A plethora of cancer microarray 
and RNA sequencing (RNA-Seq) studies are publicly avail-
able in databases, including the Gene Expression Omnibus 
(GEO) (4), Array Express (5) and The Cancer Genome Atlas 
(TCGA; http://cancergenome.nih.gov/). Recently, simulta-
neous analysis and comparison of the results from microarray 
and RNA-Seq data has been explored (6-8). These studies 
have indicated that RNA-Seq has more benefits compared 
with microarray platforms, including broader dynamic range 
and increased specificity and sensitivity, however using the 
samples belonging to the same biological conditions from 
both the platforms produces highly correlated gene expres-
sion profiles. However, microarrays remain a popular choice 
amongst researchers when conducting transcriptional profiling 
experiments, because RNA-Seq technology is novel, more 
expensive, and requires extensive and complex data storage 
and analysis. When analysis is conducted on both plat-
forms, strongly concordant and highly correlated results are 
obtained (6,7). The present study focused on microarray anal-
ysis, but additionally performed analysis on RNA-Seq data, so 
as to validate the significance of the results obtained. Several 
studies in recent years have reported meta-analysis of such 
data, where the analyses are performed on integrated samples 
from multiple microarray datasets (9‑13). The majority of the 
articles focusing on meta-analysis use the following strategies: 
assembling published differential expressed gene (DEG) lists 
from experimental studies and then articulating the consis-
tently reported DEGs (14-16); or integrating multiple datasets 
from different microarray platforms and then executing statis-
tical tests to discover consistently expressed DEGs (9‑13). 
However, inconsistencies in the results are observed due to 
technical limitations, such as variance in expression measure-
ments and differences in laboratory protocols for different 
microarray platforms. One major inconsistency reported in 
meta-signature studies is the overrepresentation of genes 
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common to various platforms, and the underrepresentation of 
genes which are not common to different platforms (11). In 
addition, meta-analysis that uses previously published DEG 
lists when raw data are unavailable, has the limitation that it is 
difficult to assign a confidence for combined P‑values and fold 
change measurements for each gene (14).

With a purview to improve the understanding of cancer 
pathogenesis, and based on the methods from the published 
literature, the present study applied differential gene expres-
sion analysis individually to six microarray datasets and 
one RNA-Seq dataset, representing three different cancer 
types, breast, lung, and prostate. The aim of the present 
study was to discover a common set of genes, which may 
demonstrate a significant expression pattern across these 
three cancer types. A common subset of DEGs was then 
explored by comparing the gene lists obtained from micro-
array and RNA-Seq analysis results. The resulting gene set 
was further analyzed by Gene Ontology (GO) functional 
annotations using GENECODIS (17), DAVID (18), Cancer 
Genetics Web (19), OMIM (20) and number of literature cita-
tions using TARGETgene (21). Furtemore, a meta-analysis 
of the combined samples was performed to identify the 
heterogeneity in expression of the obtained DEGs in all the 
six microarray datasets analyzed. This helped in observing 
the change in expression of the DEGs under different cancer 
conditions. It is an important implication that some genes 
always exhibit a consistent expression change, irrespective of 
the cancer type, whereas some genes exhibit inconsistency in 
expression change. This may aid oncologists in understanding 
the behavior of genes in cancer in terms of their heterogeneous 
expression.

Materials and methods

Outline of data and preprocessing. Six cancer microarray 
datasets and one RNA-Seq dataset were downloaded from 
the GEO database (www.ncbi.nlm.nih.gov/geo) (22-28). The 
information extracted from each identified study is illustrated 
in Table I. The microarray analysis was restricted to datasets 
derived from two platforms, Affymetrix HGU‑133A (GPL96) 
and Affymetrix HGU‑133APlus2 (GPL570), which charac-
terize probe sets with unique genes for Homo-Sapiens. The 
RNA-Seq dataset, GSE62944, comprises data from 24 cancer 
types from The Cancer Genome Atlas, and it is already 
processed using Rsubread R package and featureCounts() 
function in order to summarize the gene level expression 
values as integer numbers. In the present study, integer-based 
read counts were extracted for only the three cancer types 
of interest (breast, prostate and lung) out of the data matrix 
for 24 cancer types. The total number of samples analyzed 
was 454 (311 tumor samples/143 normal samples) and 2,333 
(2,120 tumor samples/213 normal samples) for the microarray 
and RNA-Seq datasets, respectively. To ensure unregulated, 
unbiased, and consistent screening of the expression values 
from the different microarray datasets, the raw CEL files of 
the experiments were used. The Robust Multichip Average 
(RMA) technique, which performs quantile normalization, 
was the expression normalization technique used in the present 
study (29). This technique was applied to all individual raw 
microarray datasets in order to minimize inconsistencies due 

to normalization. This method of normalization was selected 
due to its good differential change detection, stable variance 
on log scale and reduced production of false positives. A 
comparison between different normalization methods has 
reported that RMA outperformed other methods in terms 
of specificity and sensitivity when dealing with fold change 
criteria in the detection of differential expression (30). The 
box plots of the RMA normalized intensity were plotted 
(data not shown), demonstrating that measurements of data 
were closely aligned towards a central mean, and were thus 
comparable.

Identification of potentially significant target genes. The 
Bioconductor Linear Model for Microarray Analysis 
(LIMMA) package was used (31) to calculate the differential 
expression of each gene in the microarray and RNA-Seq 
datasets included in the present study. LIMMA remains highly 
recommended for such analyses (32). In a previous study 
comparing eight microarray analysis methods [Welch's t-test, 
analysis of variance (ANOVA), Wilcoxon's test, significance 
analysis of microarrays (SAM), Randomized Variance Model 
(RVM), LIMMA, variance mixture (VarMixt) and structural 
model for variances (SMVar)], LIMMA performed the best in 
terms of statistical power, false-positive rate, execution time 
and ease of use (33). In LIMMA, fitting of a linear model 
to the expression data for each probe is performed and the 
coefficients obtained describe the design matrix. Instead of 
simple t-statistics, it provides results for moderated t-statistic, 
moderated F-statistic, and B-statistic (which demonstrates 
the log-odds of differential expression), by applying the 
Empirical Bayes method and shrinking the standard errors 
towards a common value. Hence, LIMMA produces stable and 
reproducible results even with a small number of arrays. It also 
has the advantages of fast computation, simultaneous error 
rate control across multiple contrasts and genes, and effective 
prioritizing of results by applying a particular cutoff for fold 
change. For analysis of RNA-seq data, LIMMA with voom 
was used (34). The fitting of the mean‑variance association 
into the differential expression analysis as a modification of 
limma's empirical Bayes procedure, and then converting it into 
a precision weight for each individual normalized observation 
is termed as limma-trend and voom. The performance of this 
method is best even when the sequencing depths are different 
for each RNA-sample.

Functional annotation of DEGs. In an effort to infer the biolog-
ical functions and signals involving the DEGs, GO enrichment 
analysis was performed. The online tool GENECODIS 
(http://genecodis.cnb.csic.es) was used for this purpose (17), 
which also provides pathway enrichment analysis based on 
the Kyoto Encyclopedia of Genes and Genomes (KEGG) 
database. The DAVID functional annotation tool was used for 
expounding the results of annotation (18).

Literature citations for the DEGs. To confirm that the list 
of DEGs obtained in the present study is associated with 
cancer, the National Center for Biotechnology Information 
(NCBI; www.ncbi.nlm.nih.gov) literature was searched to 
identify published reports relating these genes to cancer. The 
TARGETgene tool was used for this purpose (21). This tool 
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identifies probable therapeutic targets in cancer by constructing 
a whole genome network using integration of heterogeneous 
data at the genomic and proteomic level. Upon the construction 
of the gene network, TARGETgene evaluates network-based 
parameters to detect potential therapeutic targets and displays 
the number of literature citations in all and individual cancer 
types for each gene, as reported in the NCBI database.

Meta‑analysis of expression heterogeneity of DEGs. 
Meta-analysis can refer to either the analysis of collectively 
published lists of DEGs, or the integration of diverse microarray 
datasets to perform a novel combined differential expression 
analysis. The meta-analysis performed in the present study 
investigated the diversity in expression of DEGs in six micro-
array datasets, collectively, with the aim to discover whether 
they display inconsistent expression changes in multiple studies, 
or whether they display consistent changes in all the analyzed 
studies. This is termed as heterogeneous or non-heterogonous 
behavior, respectively. This statistical heterogeneity implies 
genuine significant difference in between study variations, 
rather than within study variance which may be because of 
chance alone. Q and I2 statistic tests remain the most widely used 
measures of heterogeneity for which computation modules are 
available in standard statistical software for meta-analysis, such 
as Stata and R (35). I2 statistic is preferred among all measures of 
heterogeneity as it is a sample size and scale-invariant measure 

and has finite upper bounds and precise confidence inter-
vals (36). For each gene obtained in the DEG list, analysis of 
heterogeneity was performed across cancer types using the meta 
package in R (37). A confidence interval of 95% was selected 
with the degree of freedom 5. The metacont function estimates 
the heterogeneity statistic score I2, along with the values, Q, df, 
and P-value. The seven suggested steps by Ramasamy et al (38), 
in conducting the meta-analysis of microarray datasets, were 
followed.

Results

Extracting significant gene markers relative to breast, lung 
and prostate cancer. The LIMMA R package was used to 
elucidate potential gene targets by adjusting the P‑values using 
Benjamini‑Hochberg correction. Genes were termed signifi-
cantly differentially expressed if the adjusted P‑value was <0.05 
and the fold change was >2. DEGs for each microarray dataset 
of lung, breast and prostate cancer, were obtained individually, 
with results illustrated in Table II. Since datasets belonged to 
two platforms, GPL570 and GPL96, the number of probes was 
not equal in all datasets. Probes in GPL96 are a subset of probes 
in GPL570. Therefore, while combining the DEGs within the 
same cancer type, a union (merging) of the two individual lists 
of DEGs was performed, to get a single list of DEGs. The main 
aim of the present study was to find a common subset of DEGs 

Table I. Characteristics of the individual datasets used in the present study. 

Type of Type of Dataset identification  Number of Number of samples
dataset cancer number Platform probes/genes (tumor/normal)

Microarray Breast GSE45827 GPL570 54,675 174 (163/11)
gene expression  GSE48984 GPL96 22,283 22 (13/9)
 Lung GSE19804 GPL570 54,675 120 (60/60)
  GSE10072 GPL96 22,283 107 (57/50)
 Prostate GSE55945 GPL570 54,675 19 (12/7)
  GSE26910 GPL570 54,675 12 (6/6)
RNA-Seq  Breast  

GSE62944 GPL9052  23,368

 1,230 (1,118/112)
gene expression Lung squamous    551 (501/50)
 cell carcinoma    
 Prostate    552 (501/51)
 adenocarcinoma    

Table II. Differential expression analysis results for each microarray dataset.

Cancer Breast Lung Prostate

GEO dataset GSE45827 GSE48984 GSE19804 GSE10072 GSE26910 GSE55945
Platform GPL570 GPL96 GPL570 GPL96 GPL570 GPL570
Number of probes 54,675 22,283 54,675 22,283 5,4675 5,4675
Number of samples 174 22 120 107 12 19
Number of 7,006 3,513 2,026 829 77 539
differentially Union of the two Union of the two Union of the two
expressed genes 9,248 2,215 603
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across the three cancer types. Hence, an intersection of the 
DEG lists was performed to find members of the joint subset 
of genes across the three cancer types. Up to this stage of the 
analysis, mapping of probe IDs with the corresponding gene 
symbols was not performed. Therefore, the number of DEGs 
represented the unique probe IDs. In total, 75 differentially 
expressed probe IDs were discovered in common between 
the three cancer types. Following the removal of probes with 
no available annotation and the removal of repeated gene 
symbols, a list of 62 unique gene symbols was obtained as a 
result of the microarray data analysis.

A similar analysis was performed on the RNA-Seq data 
for the three individual cancer types. An integer-based raw 
gene count data matrix of breast, lung and prostate cancer 
samples was used with LIMMA and voom to explore the 
DEGs (34). The voom method estimates the mean variance 
relationship of the log counts, generates a precision weight for 
each observation and enters these into the LIMMA empirical 
Bayes analysis pipeline. Using this method, 1,290 genes were 
obtained in common across the three cancer types.

To confirm the consistency of the results obtained, genes 
appearing in both the microarray and RNA-Seq analysis 
results were identified. Following removal of all the duplicate 
gene symbols, a list of 44 genes was generated. The overlap 

of DEGs across the three cancers obtained from microarray 
analysis, from RNA-Seq analysis and from the combined 
microarray and RNA-Seq analysis is illustrated in Fig. 1A-C 
respectively. The complete list of the genes identified by the 
combined microarray and RNA-Seq analysis, along with links 
to their description from the cancer genetics web (19) and 
OMIM database (20), is depicted in Table III.

Determination of functional annotation. The GENECODIS 
web software tool was used for functional annotation, 
which displays biological processes, molecular functions 
and cellular components that may be significantly enriched 
in a given gene list (17). The software also lists the KEGG 
pathways that may be significantly enriched in the gene list. 
The significance threshold of P<0.05 was selected. The results 
are illustrated in Figs. 2-4. The terms involving two or more 
genes were retained in the graphs. The significantly enriched 
biological processes were multicellular organismal develop-
ment, cell adhesion, axon guidance, cell differentiation, 
blood coagulation, muscle contraction, cell death, negative 
regulation of apoptotic process and anti-apoptosis (Fig. 2). 
The significantly enriched molecular functions included 
protein, actin, calmodulin and syntaxin binding (Fig. 3). The 
significantly enriched cellular components were the nucleus, 

Figure 2. Enriched biological processes in differentially expressed genes as predicted by GENECODIS software analysis.

Figure 1. Overlap of differentially expressed genes in the three cancer types obtained from (A) microarray, (B) RNA-Seq and (C) combined microarray and 
RNA-Seq dataset analysis.
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cytoplasm, plasma membrane, cytosol, caveola, stress fiber, 
focal adhesion, extracellular matrix, extracellular region and 
cystoskeleton (Fig. 4). Enriched KEGG pathways are listed 
in Table IV. The detailed GO enrichment was also obtained 
by use of the DAVID functional annotation tool (data not 
shown) (18). Several functional predictions were provided 

by DAVID, including the presence of BIRC5 in cell survival 
pathway, TIMP3 in p53 signaling pathway, CAV1 in inte-
grin signaling pathway, and CFD in alternative complement 
pathway given by BIOCARTA. COG (Clusters of Orthologous 
Group) Ontology predicted KIF4A involved in cell division 
and chromosome partitioning, and MYL9 involved in signal 

Table III. Gene symbols of the common differentially expressed genes in breast, lung and prostate cancer.

Gene symbol Link to gene summary

ACSS3 https://www.omim.org/entry/614356?search=ACSS3&highlight=acss3
ANGPT1 http://www.cancer-genetics.org/ANGPT1.htm
AOX1 https://www.omim.org/entry/602841?search=AOX1&highlight=aox1
BIRC5 http://www.cancer-genetics.org/BIRC5.htm
CAV1 http://www.cancer-genetics.org/CAV1.htm
CAV2 http://www.cancer-genetics.org/CAV2.htm
CCDC69 http://www.genecards.org/cgi‑bin/carddisp.pl?gene=CCDC69
CCDC85A http://www.genecards.org/cgi‑bin/carddisp.pl?gene=CCDC85A&keywords=CCDC85A
CELF2 https://www.omim.org/entry/602538?search=CELF2&highlight=celf2
CFD http://omim.org/entry/134350?search=CFD&highlight=cfd
CLU http://www.cancerindex.org/geneweb/CLU.htm
DPT https://www.omim.org/entry/125597?search=DPT&highlight=dpt
EFEMP1 http://www.cancer-genetics.org/EFEMP1.htm
ERG http://www.cancer-genetics.org/ERG.htm
EZH2 https://www.omim.org/entry/601573?search=EZH2&highlight=ezh2
FAM107A http://omim.org/entry/608295?search=FAM107A&highlight=fam107a
FERMT2 https://www.omim.org/entry/607746?search=FERMT2&highlight=fermt2
FHL1 http://omim.org/entry/300163?search=FHL1&highlight=fhl1
FXYD6 http://omim.org/entry/606683?search=FXYD6&highlight=fxyd6
GLDN https://www.omim.org/entry/608603?search=GLDN&highlight=gldn
GPM6A http://omim.org/entry/601275?search=GPM6A&highlight=gpm6a
GPM6B http://omim.org/entry/300051?search=GPM6B&highlight=gpm6b
HSPB8 http://omim.org/entry/608014?search=HSPB8&highlight=hspb8
ID4 http://omim.org/entry/600581?search=ID4&highlight=id4
INMT https://www.omim.org/entry/604854?search=INMT&highlight=inmt
IQGAP3 http://www.genecards.org/cgi‑bin/carddisp.pl?gene=IQGAP3&keywords=IQGAP3
ITIH5 https://www.omim.org/entry/609783?search=ITIH5&highlight=itih5
KCNAB1 https://www.omim.org/entry/601141?search=KCNAB1&highlight=kcnab1
KIF4A http://omim.org/entry/300521?search=KIF4A&highlight=kif4a
MAMDC2 https://www.omim.org/entry/612879?search=MAMDC2&highlight=mamdc2
MCAM http://www.cancer-genetics.org/MCAM.htm
MYH11 http://www.cancer-genetics.org/MYH11.htm
MYL9 http://www.cancer-genetics.org/PML.htm
MYLK https://www.omim.org/entry/600922?search=MYLK&highlight=mylk
NTRK2 http://www.cancer-genetics.org/NTRK2.htm
NUSAP1 http://omim.org/entry/612818?search=NUSAP1&highlight=nusap1
PCDH9 http://omim.org/entry/603581?search=PCDH9&highlight=pcdh9
PGM5 https://www.omim.org/entry/600981?search=PGM5&highlight=pgm5
PTRF http://omim.org/entry/603198?search=PTRF&highlight=ptrf
SDPR https://www.omim.org/entry/606728?search=SDPR&highlight=sdpr
STIL https://www.omim.org/entry/181590?search=STIL&highlight=stil
SYNPO2 http://www.genecards.org/cgi‑bin/carddisp.pl?gene=SYNPO2&keywords=SYNPO2
TCEAL2 http://www.genecards.org/cgi‑bin/carddisp.pl?gene=TCEAL2&keywords=TCEAL2
TIMP3 https://www.omim.org/entry/188826?search=TIMP3&highlight=timp3
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Table IV. Enriched KEGG pathways in differentially expressed genes as predicted by GENECODIS analysis.

KEGG pathway Class Number of genes P‑value (adjusted) Gene symbols

Regulation of actin Cellular processes;  3 0.016092 MYLK, IQGAP3, MYL9
cytoskeleton cell motility
Vascular smooth Organismal systems;  3 0.005475 MYLK, MYH11, MYL9
muscle contraction circulatory system
Focal adhesion Cellular processes 4 0.003144 CAV2, MYLK, CAV1, MYL9
Tight junction Cellular processes 2 0.039699 MYH11, MYL9
Bacterial invasion of Human diseases;  2 0.016007 CAV2, CAV1
epithelial cells infectious diseases
Tryptophan Metabolism; amino 2 0.01113 INMT, AOX1
metabolism acid metabolism
Viral myocarditis Human diseases;  2 0.015622 CAV1, MYH11
 Cardiovascular diseases

KEGG, Kyoto Encyclopedia of Genes and Genomes.

Figure 4. Enriched cellular components in differentially expressed genes as predicted by GENECODIS software analysis.

Figure 3. Enriched molecular functions in differentially expressed genes as predicted by GENECODIS software analysis. 
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transduction mechanisms/cytoskeleton/cell division and 
chromosome. Significantly enriched biological processes 
were sensory perception, angiogenesis, cell cycle checkpoint, 
nuclear division, cytokinesis, apoptosis, cell death, and cell 
adhesion. Cellular components included extracellular region, 

cytosol, cell surface, cytoskeleton, nucleolus, cell fraction. 
Enriched KEGG pathways included pathways in cancer, tran-
scriptional misregulation in cancer, focal adhesion, vascular 
smooth muscle contraction, MAPK signaling pathway, and the 
neurotrophin signaling pathway. In summary, the results from 

Table V. TARGETgene results for differentially expressed gene ranking and their number of citations in all and individual 
cancer types.

 Gene Citation numbers Citation numbers Citation numbers Citation numbers
Rank symbol for all cancers for breast cancer for prostate cancer for lung cancer

  1 MYLK 4 3 1 0
  2 NTRK2 23 0 0 5
  3 CAV1 137 46 24 22
  4 MCAM 22 3 6 1
  5 ANGPT1 35 3 0 3
  6 CAV2 24 6 4 2
  7 BIRC5 326 47 18 46
  8 EFEMP1 4 1 0 2
  9 EZH2 68 37 33 6
10 HSPB8 14 3 1 2
11 ERG 35 0 67 2
12 MYH11 16 1 1 0
13 TIMP3 34 9 3 2
14 MYL9 1 1 0 0
15 SDPR 2 0 0 0
16 PGM5 1 0 0 0
17 CLU 48 11 18 8
18 FHL1 5 1 1 0
19 FXYD6 4 0 0 0
20 KIF4A 8 0 1 0
21 KCNAB1 2 0 0 0
22 GPM6A 3 0 0 1
23 CFD 1 0 0 0
24 FAM107A 9 0 0 1
25 PTRF 3 1 1 0
26 DPT 3 0 0 0
27 ID4 21 4 0 0
28 FERMT2 4 1 0 2
29 MAMDC2 4 0 0 0
30 CCDC69 2 0 0 0
31 IQGAP3 1 0 0 0
32 PCDH9 3 1 0 0
33 SYNPO2 7 0 3 0
34 STIL 21 0 0 1
35 GLDN 2 0 0 0
36 CCDC85A 1 0 0 0
37 GPM6B 4 0 0 0
38 ITIH5 5 4 1 1
39 AOX1 3 0 0 0
40 NUSAP1 2 0 0 0
41 ACSS3 1 0 0 0
42 TCEAL2 1 0 0 0
43 INMT 3 0 0 1
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the function annotation analysis demonstrate a significant 
association of the discovered DEGs with cancer pathogenesis.

Listing the literature citations. To explore the cancer‑specific 
citations for these genes, and in particular the distribution of 
number of relevant citations in individual and/or all cancer 
types addressed in the present study, the TARGETgene tool was 
used (21). The results demonstrated a high ranking in literature 
from NCBI for the candidate key genes. These rankings are 
reported in Table V. Notably, the maximum number of citations 
in all cancers for these genes ranged from 1‑326, with no gene 
having zero number of citations, suggesting that the key genes 
are relevant to cancer. When number of citations in individual 
cancers was considered, several genes had no relevant citations. 

For example, NTRK2 has zero NCBI citation in prostate cancer, 
whereas several studies report a role for this gene in prostate 
cancer (39,40). Similarly, ID4 has been reported to have a role 
in lung cancer (41). A summary of the roles of these key genes 
in cancer is provided by cancer-genetics web database (19) and 
OMIM database (20) and listed in Table III.

Meta‑analysis of the common set of DEGs. The I² statistic 
describes the % of variation across studies that is due to hetero-
geneity with a confidence interval constructed using the iterative 
Chi-squared distribution method. The I2 statistic ensures that 
better consistency measure between the trials would be obtained 
in meta‑analysis (35). The calculation of I2 is obtained from 
I2=100x(Q−df)/Q, where Q denotes the Cochran's heterogeneity 

Table VI. Meta-analysis of differentially expressed genes in the six microarray datasets.

Gene symbol Probe ID I2 (%) Q df P-value

ANGPT1 205608_s_at 96.10 129.21 5 <0.0001
AOX1 205083_at 86.20 36.33 5 <0.0001
BIRC5 202095_s_at 97.00 167.98 5 <0.0001
CAV1 212097_at 91.80 60.9 5 <0.0001
CAV2 203323_at 90.10 50.61 5 <0.0001
CDKN1C 213348_at 92.60 67.89 5 <0.0001
CFD 205382_s_at 95.90 120.82 5 <0.0001
CLU 208791_at 0.00 2.97 5 0.7051
DPT 213068_at 76.10 20.93 5 0.0008
DPT 207977_s_at 0.00 4.25 5 0.5133
EFEMP1 201843_s_at 1.10 5.05 5 0.4094
ERG 213541_s_at 96.20 131.24 5 <0.0001
EZH2 203358_s_at 97.00 164.74 5 <0.0001
FAM107A 209074_s_at 99.00 507.18 5 <0.0001
FERMT2 209209_s_at 89.10 46 5 <0.0001
FHL1 210299_s_at 86.80 37.87 5 <0.0001
FXYD6 217897_at 27.10 6.86 5 0.2311
GPM6A 209469_at 97.90 235.98 5 <0.0001
GPM6B 209168_at 86.10 35.99 5 <0.0001
HSPB8 221667_s_at 65.50 14.47 5 0.0129
ID4 209292_at 0.00 3.43 5 0.6338
KCNAB1 210078_s_at 64.50 14.1 5 0.015
KIF4A 218355_at 95.80 119.67 5 <0.0001
LAPTM4B 208767_s_at 96.90 163.18 5 <0.0001
MCAM /// MIR6756 210869_s_at 0.00 4.61 5 0.4657
MYH11 201496_x_at 91.50 58.49 5 0.001
MYL9 201058_s_at 73.80 19.12 5 0.0018
MYLK 202555_s_at 90.00 49.86 5 <0.0001
NTRK2 221796_at 88.60 43.8 5 <0.0001
NUSAP1 218039_at 97 177.64 5 <0.0001
PCDH9 219737_s_at 89.30 46.86 5 <0.0001
PPAP2B 212226_s_at 0.00 4.65 5 0.4606
PTRF 208789_at 82.20 28.16 5 <0.0001
STIL 205339_at 95.20 103.46 5 <0.0001
TCEAL2 211276_at 76.30 21.11 5 0.0008
TIMP3 201147_s_at 86.80 37.77 5 <0.0001
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statistic and df denotes degree of freedom. The I2 value lies 
between 0 and 100%, with all negative values set to zero. The 
grading of heterogeneity based on I2 value is categorized at 25, 50 
and 75% as low, moderate and high heterogeneity respectively. 
For each DEG, heterogeneity analysis was performed using the 
meta package in R (37), by extracting RMA normalized values 
from the six microarray datasets. However, these values could 
not be retrieved for all the 44 genes, as some probes were not 
present in data derived from the GPL96 platform. Therefore, 
heterogeneity analysis was performed only for those DEGs 
for which the probe ID measurements were available in all six 
datasets. The results of this analysis are listed in Table VI. In 

this analysis, the P-value does not adequately describe the extent 
of heterogeneity in the results of the trials, whereas the I2 value 
does. Low I2 values indicate little variability between studies, 
with I2=0 meaning no heterogeneity. This non‑heterogeneous 
behavior was observed in 6 genes out of the list of DEGs, namely 
CLU, EFEMP1, ID4, MCAM/MIR6756, PPAP2B, and DPT. The 
gene DPT was mapped by two different probe IDs, and therefore 
two different I2 values were obtained: one showed considerable 
heterogeneity, while the other showed no heterogeneity. The 
forest plots for some non-heterogeneous genes are illustrated in 
Figs. 5 and 6 as an example. These plots demonstrated that the 
mean difference of individual studies is very close to, or almost 

Figure 6. Forest plots illustrating the results from heterogeneity analysis for the (A) EFEMP1 and (B) ID4 genes. EFEMP1, EGF‑containing fibulin extracellular 
matrix protein 1; ID4, inhibitor of DNA-binding 4. 

Figure 5. Forest plots illustrating the results from heterogeneity analysis for the (A) MCAM and (B) PPAP2B genes. MCAM, melanoma cell adhesion 
molecule; PPAP2B, phosphatidic acid phosphatase type 2B.
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similar to the mean of all the studies, which is depicted by the 
dashed vertical line. Similar forest plots were observed for all 
heterogeneous genes (data not shown).

Discussion

The present analysis was motivated by previous research 
studies (42-44), where noteworthy genes were identi-
fied through bioinformatics analysis. The objective of the 
present study was to recognize common genetic indica-
tors/ biomarkers in lung, breast and prostate cancer, and 
to confirm their relevance in cancer by exploring NCBI 
citations using TARGETgene and by functional annotations 
using GENECODIS and DAVID. A robust gene set involved 
in the three cancer types was obtained, as microarray and 
RNA-Seq data were analyzed in combination in the present 
study. The RNA-Seq analysis proposed more genes compared 
with the microarray analysis to be involved in the process of 
oncogenesis. Further analysis would be required to classify 
these additional genes so that normal physiology could be 
attained by targeting cancer biomarkers. Further inspection 
of the obtained gene set for their inter-experiment behavior 
was performed to identify heterogeneity in expression. This is 
termed as meta-analysis as the normalized expression values 
from all available microarray data are combined. From this 
examination, it was evident that their comportment is subject 
to change in different types of cancers. A systematic review 
of between-study variance analysis demonstrated that some 
genes had no observed heterogeneity. These genes were CLU, 
EFEMP1, ID4, MCAM, PPAP2B and DPT, with I2 values 0, 1.1, 
0, 0, 0 and 0% respectively. This indication of non‑heteroge-
neous behavior across studies has inordinate importance from 
a biological perspective. Furthermore, some genes exhibited 
moderate heterogeneity, HSPB8, KCNAB1 and FXYD6 with 
I2 values 65.50, 64.50 and 27.10%, respectively. The DPT gene 
exhibited both types of behavior, which suggests that further 
experimental validation is required. The remaining genes had 
I2 values >70%, suggesting considerable heterogeneity. Thus, 
the present analysis demonstrated the mining of noteworthy 
gene markers by analysis of both microarray and RNA-Seq 
data and by identifying a common set of genes relevant in the 
three cancer conditions. By ensuring that the Affymetrix gene 
chip platforms used for all the microarray data were similar, 
technical variation between platforms were avoided. In addi-
tion, by applying a similar method for normalizing expression 
and detecting differential genes to all datasets, the present 
investigation led to the discovery of a common subset of genes 
which displayed significantly variable expression between 
tumor and normal samples from microarray data analysis. 
Further analysis of RNA-Seq data from the same cancer types 
to obtain overlapping results, resulted in a more robust gene 
list. The e roles of these genes in carcinogenesis were further 
confirmed by the results from GENECODIS (17), DAVID (18), 
cancer genetics web (19), OMIM (20) and literature citations 
(by using TARGETgene) (21). Finally, statistical analysis of 
heterogeneity led to novel conclusions about their performance 
in the three different cancer types. Further studies would be of 
interest, including how the deregulation of apoptotic pathways 
may be one of the major roles the genes discovered in the 
present study may have.
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