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Abstract. Carcinogenesis is known to be primarily associa ted 
with gene mutations. Recently, increasing evidence has 
suggested that epigenetic events also serve crucial roles in tumor 
etiology. Environmental factors, including nutrition, toxicants 
and ethanol, are involved in carcinogenesis through inducing 
epigenetic modifications, such as DNA methylation, histone 
deacetylase and miRNA regulation. Studying epigenetic 
mechanisms has facilitated the development of early diagnostic 
strategies and potential therapeutic avenues. Modulation at the 
epigenetic level, including reversing epigenetic modifications 
using targeted drugs, has demonstrated promise in cancer 
therapy. Therefore, identifying novel epigenetic biomarkers 
and therapeutic targets has potential for the future of cancer 
therapy. The present review discusses the environmental 
factors involved in epigenetic modifications and potential drug 
candidates for cancer therapy.
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1. Introduction

Currently, cancer is a major threat human health worldwide. 
Carcinogenesis is a multi-step process resulting mainly 
from the activation of oncogenes and the deactivation of 
tumor-suppressor genes. Etiologically, emerging evidences 
have demonstrated that epigenetic mechanisms are equally vital 
to carcinogenesis (1), including the chemical modifications of 
DNA and histone proteins, post‑transcriptional regulation of 
microRNAs (miRNA)s and associated signaling pathways (2). 
Epigenetic modifications have been suggested to be a nearly 
event in carcinogenesis, and maybe useful as potential targets 
for early diagnosis, cancer treatment and prognosis evalua-
tion (3). Based on the increasing number of studies, the focus 
of investigations of carcinogenesis mechanisms have also 
shifted from the genetic to epigenetic (4). Epidemiologically, 
epigenetic mechanisms are stressed by foreign substances, 
including xenobiotics and environmental conditions (5). 
Identifying an association between environmental factors and 
tumorigenesis may enable the development of personalized 
epigenetic medicines. In the present review, the environmental 
factors involved in epigenetic actions of carcinogenesis and the 
recent advancements in epigenetic drugs for cancer treatment 
are summarized.

2. Epigenetic modifications

Epigenetic modifications are defined as heritable alterations of 
gene expression levels induced by environment-gene interac-
tions, including DNA methylation, DNA hydroxy methylation, 
histone modifications, non‑coding RNA and miRNA (1). 
The manifestations of epigenetic alterations are various 
post‑translational modifications (PTMs), including acetyla-
tion, methylation, phosphorylation and ADP‑ribosylation (6). 
PTMs drive local changes in chromatin structure and allow 
for selective access of transcriptional machinery to the DNA. 
They can also induce various types of signals, subsequently 
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activating mechanisms that induce specific cellular responses 
to the environment (7).

3. Environment factors and the how to influence epigenetic 
modifications

Epidemiologically, the majority of environmental factors, 
including geographical regions, stress, nutrition and toxi-
cants, affect malignant diseases by inducing epigenetic 
modifications (8). Additionally, the environmental factors 
include race, climate, life style, diet, nutritional factors (9), 
airborne polycyclic aromatic hydrocarbons (10), toxicants 
(e.g., cocaine) (11), alcohol (5), fungicides or pesticides (e.g., 
dicofol and vinclozolin) (12), aflatoxin (13), bacteria (e.g., 
Helicobacter Pylori), viruses (e.g., hepatitis virus) (14), heavy 
metal exposure (e.g., cadmium, arsenic) (15) and endocrine 
disruptors (e.g., bisphenol‑A) (16).

Previous studies have demonstrated that the majority of 
environmental factors have the ability to interfere with DNA 
methylation by altering the availability of the methyl donor 
or the activity of DNA methyltransferases (DNMTs) (17). 
Compounds in the environment, including the endocrine 
disruptors (e.g., diethylstilbestrol), tobacco and ethanol, may 
induce epigenetic modification (18). Dysplasia and sudden 
exposure in the critical stage (e.g., early development) to envi-
ronmental factors promotes disease occurrence in adults (19). 
Environmental factors may permanently change the epigenetic 
genome and gene expression levels, and result in alterations of 
phenotypes and susceptibility to disease (19).

Evidence from liver cancer tissue samples revealed that 
ethanol altered the methylation status of histone H3 at two 
lysine residues (e.g., lys‑4/9) and increased the phosphoryla-
tion of histone H3 at two serine residues (e.g., ser‑10/28) (5). 
Chronic ethanol uptake may result in upregulation of certain 
miRNAs (miR‑34a, miR‑107 and miR‑122), which can also 
alter the methylation pattern of DNA in liver tumors, thereby 
affecting gene expression levels (20). Taken together, histone 
modification, DNA methylation and miRNA may produce a 
synergistic effect in ethanol-associated tumors. It was reported 
that the hepatitis B virus X protein may induce aberrant 
epigenetic modifications in human hepatocellular carcinoma 
by inducing the DNA hypermethylation of tumor suppres-
sion genes (21), promotion‑associated gene‑specific DNA 
hypomethylation, histone acetylation or deacetylationand 
alterations of miRNAs (22).

Epigenetic modifications serve an important role in cancer 
development; the deregulation of this has been identified as 
a feature of cancer initiation (3). Investigating the underlying 
mechanisms may aid the development of specific therapeutic 
targets and personalized epigenetic medicines (23). Epigenetic 
drugs have emerged as potential agents for cancer treatment 
(Tables I and II).

4. Epigenetic modifications and inhibitors

Evidence has demonstrated that histone modifications together 
with DNA methylation constitute an ‘epigenetic code’, which 
regulates transcriptional status and disruptscode writing or 
interpretation (23). These aberrant alterations to the code 
may activate the expression of oncogenes, including c-Myc, 

which promotes the development of specific small molecule 
modulators of histone binding proteins (24). A few of these 
compounds have been used in clinical development for tumor 
therapy, Tables I and II summarized the current reported 
epigenetic inhibitors.

DNMTs, including DNMT1, DNMT3A and DNMT3B, 
catalyze a methyl group transformation from the methyl 
donor S‑adenosylmethionine to the C‑5 of cytosine in DNA. 
In malignant cells, hypermethylation at the CpG island 
induces suppression of numerousvital tumor suppressor 
genes, including p16 (25). Thus, small molecules targeting 
DNMTs may potentially reverse epigenetic silencing of cancer 
suppressor genes in a number of different cancer types. The 
DNMT inhibitors were used in tumor clinical treatments, 
including azacitidine, decitabine and SGI-110 (others are 
presented in Table I and Fig. 1) (26-42). These compounds 
demonstrated good anti-proliferative effects in various cancer 
cell lines, including breast, prostate, lung, pancreas, liver and 
leukemia (23). However, the practical utility in clinics has been 
limited by systemic toxicity and off-target effects, including in 
certain heme malignancies.

The other major category is the histone deacetylase 
(HDACs) inhibitor, which enables the catalysis of N‑acetyl 
residues hydrolysis in histones and activation of histone acetyl 
transferases. A previous study revealed that HDACs serve roles 
as crucial mediators in tumor survival and progression (43). A 
total of four HDAC inhibitors were approved by the Food and 
Drug Administration (FDA): Vorinostat, belinostat, panobi-
nostat and romidepsin (details are presented in Table II and 
Fig. 1) (44-58).

Following the development of epigenetic drugs, 
second-generation epigenetic inhibitors emerged, including 
histone methyltransferase inhibitors, euchromatic histone 
lysine methyltransferase 2 (G9a) inhibitors, enhancer of 
zeste 2 polycomb repressive complex 2 subunit inhibitors, 
DOT1 like histone lysine methyltransferase inhibitors, 
histone demethylases and Jumonji C inhibitors (Table III and 
Fig. 1) (59-64). These epigenetic clinical agents have intrinsi-
cally greater binding specificity to their molecular targets and 
may be developed as drugs for malignant disease.

Valproic acid (VPA; valproate), an acidic chemical 
compound, was mainly used in the treatment of epilepsy, 

Table III. Promising epigenetic inhibitors.

Drug Inhibitor Type Targets (Refs.)

BIX‑01294 HMT(G9a) H3K9me2 (59)
UNC0638 HMT(G9a) H3K9me2 (60)
GSK126 HMT(EZH2) H3K27 (61)
EPZ5676 HMT(DOT1L) H3K79 (62)
OG‑L002 HMT(LSD1) MAO‑A and B (63)
ORY‑1001 HMT(LSD1) LSD1 (64)
‑‑‑‑ HMT (Jumonji C) LSD1 (65)

HMT, histone methyltransferases; LSD, lysine‑specific demethylase; 
EZH2, enhancer of zeste 2 polycomb repressive complex 2 subunit; 
DOT1L, DOT1 like histone lysine methyltransferase.
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bipolar mania and migraine prophylaxis previously (65). In 
1996, Cinatl et al (66), reported the inhibiting effect of VPA 
on N-myconco protein expression in human neuroblastoma 
cells, suggesting that VPA may have anticancer properties. In 

the past few decades, great effort has been made to study its 
epigenetic mechanism in various types of cancer, the majority 
of which focused on transcriptionally activating chromatin 
structures (67). Recently a phase I/II clinical trial headed by 

Figure 1. The structural features of promising epigenetic inhibitors.
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Iwahashi et al (68) demonstrated that S‑1 (an oral fluoropy-
rimidine derivative consisting of the 5‑fluorouracil prodrug 
tegafur combined with VPA for patients with pancreatobiliary 
tract cancer, had a manageable safety profile and preliminary 
antitumor activity. Sugimoto et al (69), reported that combined 
VPA with PEG‑interferon (IFN)‑α increased caspase‑3/7 
activity, induced IFN‑α and -β receptor subunit (IFNAR)1 
and IFNAR2 expression and increased the expression levels 
of IFN‑α receptor and IFN regulatory factor 8 in pancreatic 
cancer, which revealed that VPA may be useful for the treat-
ment of pancreatic cancer via enhancing the function of IFN‑α.

5. Novel drug exploration using the old‑fashioned ‘Drug 
repositioning’ method

Increasing interest has been drawn to the idea of ‘drug 
repositioning’. Although it is a costly approach to novel drug 
development, the clinical value is low as the majority of the 
drugs have not passed the phase I trial. Therefore, certain 
existing drugs have been re-examined (70). A typical and 
successful example is Viagra, which had high expectations for 
use in the treatment of cardiovascular disease, but serves a role 
in the treatment of male sexual dysfunction. Another example 
is vorinostat, which was initially designed for cutaneous T-cell 
lymphoma but facilitated a breakthrough in HIV treatment by 
disturbing HIV's latency in stationary phase patients (71). Due 
to the potential effects and characteristics of targeted treatment 
for epigenetic-associated disease, epigenetic drugs are making 
progress and attracting attention for cancer therapy (72). The 
FDA approved the aforementioned epigenetic drugs, including 
the DNMT inhibitors azacitidine and decitabine, which 
were revealed to be effective in myelody splastic syndrome 
therapy (73). The HDAC inhibitors, vorinostat, romidepsin 
and belinostat, also acquired recognition in the treatment of 
cutaneous and peripheral T cell lymphoma (74). Emerging 
evidence demonstrated that azacitidine and decitabine also 
possessed anticancer effects on liver cancer, pancreatic cancer 
and breast cancer cells (75). It is reasonable to speculate that 
combining azacitidine and decitabine with other anticancer 
drugs, including platinum compounds and monoclonal 
antibodies may produce a stronger anticancer effect (76). 
Furthermore, vorinostat and romidepsin were also popular for 
gastric and lung cancer therapy (77,78). Novel drug develop-
ment also requires investigation using cutting-edge technology, 
including gene sequencing.

Sanger sequencing, first-generation sequencing that 
markedly impacted gene research has now evolved into next 
generation sequencing (NGS), which has a lower cost, higher 
speed and improved throughput. Recently, an epigenetic study 
used NGS and achieved a novel understanding of ependymoma 
in children. The previous study investigated DNA methylation 
patterns and defined a tumor CpG island methylator 
phenotype for infant nervous system malignancy, using whole 
genome sequencing and whole-exome sequencing (79). They 
revealed that the development of posterior fossa ependymomas 
group A (PFA), which had a poor prognosis, occurred 
primarily in infants and was associated with epigenetic 
modifications. The PFA exhibits an increased number of 
methylated CpG sites, an increased number of genes with 
CpG methylation and an increased number of genes that are 

transcriptionally silenced by CpG hypermethylation in tumor 
development and maintenance. The in vivo data demonstrated 
that treatment with decitabine and Gsk343 is able to attenuate 
the proliferation of PFA cells. This may further support the 
concept of ‘drug repositioning’. Widely applicable in modern 
cancer clinical research (80), NGS has begun to elucidate the 
underlying epigenetic mechanisms; however, there is a large 
amount of data. Methodological improvement is required for 
convenient clinical application.

6. Summary

Epigenetics provides a molecular and etiological mechanism 
for the incidence of malignant cancer. Early ectogenic expo-
sure can program later life physiology and adult onset disease 
due to the replication of the epigenome during somatic cell 
mitosis, during which ‘epigenetic transgenerational inheri-
tance’ initiates. Although an increasing number of approved 
antitumor drugs have emerged, the outcomes of clinical trials 
have been unsatisfactory. This may be due to the lack of speci-
ficity and the combination with environmental exposure. In 
view of the critical roles of ectogenic cues on tumorigenesis, 
comprehensive analysis and treatment is required for early 
diagnosis, standardized and personalized treatment. The pres-
ence of epigenetic factors is associated with gene abnormality 
in premalignant cancer, and its potential reversibility indicated 
that epigenetic alterations may be promising biomarkers and 
potential novel mechanism-based strategies for tumor early 
diagnosis and treatment.

Previous clinical trials revealed that first generation inhibi-
tors, including DNMTs and HDACs, have been observed to 
have limited utility due to toxicity and off-target effects. 
However, second generation compounds have been suggested 
to have more promise. These clinical agents have greater selec-
tivity for their molecular target and may be a robust driver or 
key mediator at safe doses in malignancies. Additionally, drug 
repositioning still requires further enhancement and study. 
The improvement of epigenetic therapeutic strategies needs to 
be combined with cytotoxic factors, immunotherapy, targeted 
kinase inhibitors, NSG and the possible environmental cues.
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