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Abstract. Neuroendocrine tumors (NETs) are a very hetero-
geneous group that are thought to originate from the cells of 
the endocrine and nervous systems. These tumors develop 
in a number of organs, predominantly in the gastrointestinal 
and pulmonary systems. Clinical detection and diagnosis 
are reliable at the late stages when metastatic spread has 
occurred. However, traditional conventional therapies 
such as radiation and chemotherapy are not effective. In 
the majority of cases even surgical resection at that stage 
is unlikely to produce promising reusults. NETs present a 
serious clinical challenge, as the survival rates remain low, 
and as these rare tumors are very difficult to study, novel 
approaches and therapies are required. This review will 
highlight the important points of accumulated knowledge 
covering the molecular aspects of the role of neuroendocrine 
cells, hormonal peptides, the reasons for ectopic hormone 
production in NET, neuropeptides and epigenetic regulation 
as well as the other challenging questions that require further 
understanding.
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1. Neuroendocrine tumors, neuroendocrine cells and 
neuropeptides

Neuroendocrine tumors (NET) are neoplasms originating in 
the hormone producing cells of the endocrine system, which 
is combination of hormone producing endocrine and nerve 
cells, generally from the neural crest, neuroendocrine islets and 
stem cells. NETs can manifest functional and nonfunctional 
symptoms and represent a heterogenous group of neoplasm, 
such as multiple endocrine neoplasia (MEN), type 1 and 2 
medullary thyroid carcinoma, pheochromocytomas/paragan-
gliomas (1-3), gastroentheropancreatic NETs (GEP-NETs) and 
islet cells (4-10), poorly differentiated/small cell/atypical lung 
carcinoids (11-17), merkel cell carcinoma (18-21).

NETs are sometimes called carcinoid tumors. Surgical 
resection alone is often curative in patients with early-stage 
disease. However, patients with advanced disease may suffer 
from complications of uncontrolled hormone secretion and 
usually succumb to fatal complications caused by secreted 
hormones, but mostly due to tumor progression. Patients with 
advanced NETs has median survival of 33 months (22). The 
gene expression profiles proved to be extremely helpful to 
correlate with tumor classification patterns and correspond 
to WHO nomenclature. Molecular profiling can identify 
whether it is malignant pancreatic NETs (pan NETs), PNET or 
gastrointestinal NETs (GI-NET). The progress with molecular 
profiling also revealed many important gene targets, among 
them promising platelet derived growth factor receptor 
(PDGFR) and RET protooncogene (RET) as new therapeutic 
targets (23).

While there is vast body of literature covering NETs, there 
is still confusion sometimes when it comes to grading, nomen-
clature and classification (24-31).

These tumors synthesize and secrete peptide hormones. 
Listed here are the most common peptide receptors reported 
in NETs: Somatostatin receptors, vasoactive intestinal 
peptide/pituitary adenylate cyclase activating peptide family 
receptors, cholecystokinin/gastrin receptors, bombesin/gastrin 
releasing peptide receptors, neurotensin receptors, substance 
P receptors, neuropeptide Y receptors, calcitonin/calcitonin 
gene-related peptide receptors, atrial natriuretic peptide 
receptors, glucagon-like-peptide-1 receptors, oxytocin 
receptors and endothelin receptors 5-hydroxytryptamine, 
serotonin 5-HT and neuropeptides (32), which can manifest 
very serious side effects in malignant tumors like heart failure, 
palpitations and diarrhea. Secretion of the neuropeptides, 
which can influence metastatic growth and invasiveness is a 
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very characteristic feature for NETs. It comes as no surprise 
that these secreted peptides usually correspond to their normal 
counterparts. However, in certain tumors like ovarian tumors 
there are neuroendocrine cells, while in the corresponding 
normal ovary they are not present (33). The cells of well 
differentiated NETs produce abundant neurosecretory 
granules, with diffuse expression of neuroendocrine 
markers such as chromogranin and synaptophysin. There are 
differences between well differentiated NETs, which can be 
either low or intermediate grade, and poorly differentiated 
NETs that are aggressive and considered high grade, with less 
resemblance to the normal non transformed cells (31). It is 
important to understand the difference between differentiation 
and grade. Differentiation defines how much the neoplastic 
cells resemble their non-neoplastic counterparts, but the 
aggressiveness of tumor determines its grade.

There are three hypotheses explaining the occurrence of 
NETs (34). The first hypothesis is based on the assumption 
that these neoplasms derive from mature neuroendocrine 
cells that undergo a dedifferentiation due to occurrence 
of mutations. The second hypothesis assumes they derive 
from the progenitors of the neuroendocrine cells that 
undergo mutations. The third one states they can derive 
from non neuroendocrine cells that acquire neuroendocrine 
characteristics during carcinogenesis due to the loss of 
certain genes.

2. Paraneoplastic syndromes, ectopic hormone secretion

Paraneoplastic syndromes (PNSs) are syndromes secondary 
to substances like hormones, growth factors, cytokines 
secreted from tumors not related to their specific organ or 
tissue of origin. The term ectopic hormone syndrome defines 
hormone production by tumors, which in normal conditions 
do not carry that function. Ectopic hormone production is 
only associated with endocrine type of secretion and not with 
any other type, the earlier PNS is recognised, the better, not 
only for the correct treatment option but also not to consider 
PNS as metastatic disease (35-37). There are two theories 
explaining such a phenomenon (38,39). The pluripotentiality 
concept is the core of the first theory. The genetic derepres-
sion of the genetic material capable to synthesise necessary 
proteins takes place during cancer development. The second, 
alternative theory based on assumption that these particular 
tumors arise only from specialized cells, which have the 
capacity to produce neuropeptides. Most common tumors 
are those producing corticotropin-releasing hormone (CRH) 
and adrenocorticotropic hormone (ACTH), accompanied by 
Cushings syndrome (40). The tumors which produce growth 
hormone-releasing hormone (GHRH) with acromegaly 
symptoms are very rare (41,42). Ectopic antidiuretic hormone 
(ADH) secretion was also reported (42,43). The tumor derived 
hormones are those found in the central nervous system, 
gastrointestinal tract anterior pituitary [iACTH, lipotropin, 
somatostatin, calcitonin, gastrin, human chorionic gonado-
tropin (hCG), placental lactogen derived from the fetoplacenta]. 
Their association with certain placental enzymes and fetal 
proteins (i. e., carcinoembryonic antigen and o-fetal protein 
have been used to support the concept of arrested differentia-
tion of tumor cells as the basis for hormone production (44,45).

Pan NETs, islet cell tumors, are rare and originate in the 
pancreas from endocrine tissue can secrete vinsulin, gastrin, 
glucagon, and vasoactive intestinal peptide (VIP), which can 
cause multiple clinical syndromes (46-49).

3. Neuropeptides and cancer

Hypothalamic neuropeptides manifest many endocrine, 
functions in various tissues (50). Growth hormone releasing 
hormone (GHRH) was isolated from human pancreatic tumors 
and then identified in human and animal hypothalamus. It 
was suggested by Nobel Prize laureate Dr Andrew Schally 
and coworkers that GHRH may function as a growth factor 
among a large class of mitogens involved in tumorigenesis. 
This group developed the successful antagonists of GHRH, 
which were able to inhibit proliferation of number of cancer 
cell lines (51). GH‑RH antagonists, might be beneficial for at 
least a subset of patients with non small cell lung carcinomas 
that express GH-RH and insulin growth factor receptor 
(IGF-I) receptors and are dependent on autocrine stimulation 
by GH-RH and/or IGF-I (52). Peptide hormones can influence 
the development and growth of many cancers which are not 
considered classical hormone-dependent tumors. Analogs 
of somatostatin, bombesin/gastrin-releasing peptide (GRP), 
luteinizing hormone-releasing hormone (LH-RH) and GHRH 
can interfere with receptors on tumor cells or intracellular 
pathways that are important in cell proliferation and in this 
way inhibit tumor growth (53). The expression of five subtypes 
of G-protein-coupled transmembrane somatostatin recep-
tors (SSTRs) is very characteristic feature for NETs (54). 
Octreotide and lanreotide are somatostatin analogs proved to 
be useful in alleviation of of flushing and diarrhea which are 
associated with NETs secretion (55,56). The antitumor effect 
of somatostatin analogs has been established in many clinical 
trials (57-59).

Somatostatin analogues comprise a significant part in 
the therapeutic strategy of metastatic NETs. They exert their 
inhibitory effect by activating somatostatin receptors (which 
are expressed in about 80% of well-differentiated NETs. The 
advantage of these analogs compared to natural somatostatin, 
is their significantly longer half‑life, permitting monthly subcu-
taneous administration (60). Among the 5 types of SSTRs, 
SSTR2 is the predominant receptor in NETs (61). The SSTR 2 
has the highest density and proved to be associated with overall 
survival (62-64). Pasireotide (SOM230), a novel somatostatin 
analog also was reported to have antitumor properties (65).

4. Signaling pathways and NET

There are several pathways like mTOR, PI3K-Akt, 
Ras/Raf/MEK/ERK, Notch pathway and others, which regulate 
the proliferation of neuroendocrine cancers (Table I) (66-96). 
Targeting the mTOR pathway, downstream from PI3K-Akt 
and the Ras/Raf/MEK/ERK pathways has emerged as an 
effective treatment strategy in the management of advanced 
NETs. Treatment of carcinoid cells with the mTOR inhibitor, 
rapamycin, has been shown to decrease tumor growth both 
in vitro and in vivo (97). Two rapamycin derivatives, temsiro-
limus and everolimus, have been tested in multicenter, phase II 
clinical trials on patients with NETs with some promising 
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results. The everolimus plus octreotide combined therapeutic 
treatment demonstrated antitumor effects which is capable 
to target upstream and downstream key players of mTOR 
pathway (83-86,98-103). The mTOR complex 1 (mTORC1) 
inhibitor everolimus and the multikinase (including vascular 
endothelial growth factor receptor (VEGFR) inhibitor suni-
tinib were approved by FDA for the treatment of metastatic 
pNET [Food and Drug Administration, SUTENT® (sunitinib 
malate) prescribing information: http: //www. accessdata. fda. 
gov/drugsatfda_docs/label/2011/021938s13s17s18lbl. pdf].

Combination strategy of dual RAS, PI3K/mTOR and MEK 
inhibition proves to be as an effective treatment for NETs, thus 
securing the occurrence feedback loops (104). Imatinib is an 
orally available phenylaminopyrimidine analog which specifi-
cally inhibits tyrosine kinase activity associated with c-kit, 
PDGFR-α, PDGFR-β, and BCR-ABL (105). In laboratory 
setting Imatinib inhibited cell proliferation and induced apop-
tosis in both c-kit-positive and c-kit-negative neuroendocrine 
cells, however it failed in clinical trials (106-108). Experience 
with the small molecule EGFR tyrosine kinase inhibitor (TKI) 
gefitinib is an example of thwarted rational target choice. 
EGFR is over-expressed in NETs, and EGFR inhibitors reduce 
growth in carcinoid cell lines. Gefitinib in phase II study 
demonstrated only one positive radiological response among 
forty patients with carcinoid tumors (109).

Immunoblot analysis revealed that tyrosine kinase target 
PDGFR-α and -β were expressed in PNETs regardless of 
stage. More importantly, PDGFR-β was activated by phos-
phorylation in the majority of PNETs. Others have reported 
high levels of expression of PDGFR-α, PDGFR-β, and c-Kit 
in PNETs, but no assessment of receptor activation has been 
previously performed (110). In recent years there is body of 
data supporting important role of targeting Hedgehog, TGF-β, 
Notch pathway when considering options for pan NETs treat-
ment. NOTCH1/Achaete-Scute Complex-Like 1 (ASCL1) 
conserved pathway plays an important role in embryonic 
development. Its primary role is to ensure proper stem cell 
maintenance and terminal differentiation. Notch proteins are 
comprised of four 300 kDa transmembrane receptors and five 
ligands. Notch induced apoptosis in NETs as it was not the case 
for epithelial tumors. Indeed, in several publications the tumor 
suppressor function of Notch, its proapoptotic or its minimal 
activity is indicated for NETS (111). The phosphatidylinositol 
3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) 
pathway plays very important role in the pathogenesis of 
pNETs.

NVP-BEZ235, OSI-027 and AZD2014 are novel drugs that 
target PI3K-AKT-mTOR pathway. BEZ235 is a potent oral 
multitargeted inhibitor  PI3K isoforms and the downstream, 
mTORC1 and mTORC2 proteins. This drug had much higher 
activity in NETs than everolimus or its combinations (112). 
NVP-BEZ235 docks in the active pocket of both molecules 
and reduces kinase activity of PI3K and mTOR by competing 
with ATP-binding. Dual PI3K-mTOR blocker NVP-BEZ235 
and AZD2014, which is ATP-competitive mTOR blocker 
were able to overcome this rapalogue resistance (113). 
NVP-BEZ235 binds to the active pocket of of both molecules 
and by competing with ATP binding inhibit PI3K and mTOR.

In xEric Baudin. The Ras/Raf/MEK/ERK mitogen 
pathway can act as, an oncogene, and or tumor suppressor 

in NETs (114-116). Important to mention the impact of 
antiangiogenesis inhibitors on NET treatment, for example, 
VEGFR significantly reduce pancreatic tumor growth or cause 
regression of established tumors in treated mice, compared 
with controls, and also disrupt tumor vasculature (117,118). 
Interestingly, the mutation rate of NET is significantly lower 
than for other types of cancer, suggesting that they are more 
genetically stable. Though frequency of mutations had tendency 
to increase with higher grade, the classical tumor suppressors 
(like p53, Rb) implicated for tumor development in other tumors, 
do not play significant role in NET pathogenesis (119,120).

Although mTOR‑inhibition leads to significant improve-
ment of progression-free survival in advanced pan NETs, the 
drug resistance to mTOR inhibition continue to dominate as a 
major clinical challenge like in many other types of tumors.

5. Epigenetics in neuroendocrine tumors

Experimental data suggests that epigenetic programs, such 
as chromatin and DNA modifications, pre- and posttran-
scriptional gene regulations by noncoding RNAs are actively 
involved in changes in gene expressions as a result of stem 
cell differentiation. Usually self renewal genes are silenced 
in the differentiating cells, while cell specific genes are very 
transcriptionally active.

The hypermethylation of RASSF1A promoter was demon-
strated to be increased in metastatic tumors (121). DNA 
methylation at RASSF1A was correlated to worse prognosis in 
NETs (122,123). Rather than having K-RAS or BRAF muta-
tions, well differentiated NETs have methylation in RASSF1A 
gene, observed in pancreatic, pulmonary and gastrointestinal 
tumors (122,123). MEN1 and Daxx/ATRX are part of chro-
matin modifying complexes the most frequently mutated 
genes in NETs and mutations of menin and Daxx/ATRX are 
not mutually exclusive in the same tumor. Tumor suppressors, 
menin and Daxx, reported to suppress NETs by interacting 
with each other and epigenetically inhibiting a pro-prolifera-
tive gene in endocrine tumors, Mme, via enhancing H3K9me3 
modification. MEN1 can interact with histone deacethylases 
(HDACs) and histone methyltransferases including PRMT5 
and SUV39H1, and depending on that act either as activator 
or supressor of gene transcriptional activity (124-127). Menins 
role as the regulators in Hox gene expression was well docu-
mented (128,129). On the other hand more data is needed to 
understand the effect of such regulation.

MEN1 was capable of inducing epigenetic modification 
in pancreas and insulin-like growth factor 2 mRNA binding 
protein 2 (IGF2BP2) gene was identified as a target subjected 
to MEN1 regulation. One of the existing theories stating that 
the loss of MEN1 can play a role in pNET pathogenesis (130). 
Menin recruits the H3K4me3 histone methyltransferase 
mixed lineage leukaemia (MLL1) complex, which is utmost 
important for chromatin remodeling and gene expression 
regulation (131-133).

In tumors with poor prognosis the promoter hypermethylation 
was found for such genes as DAPK1, TIMP3, PAX5, HIC1, 
CADM1, and many others (134).

It was postulated that chromatin-remodeling pathways was 
sufficient to drive early oncologic event, given the absence of 
any other type of cancer mutations and presence of mutations 
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of mutations of SWI/SNF complex members, such as ARID1/2 
and SMARCA1/2 (135). DNA damage repair, chromatin 
remodelling, telomere maintenance and mTOR signal-
ling (136,137) were reported as common mutated pathways for 
PanNET based on genome sequencing analysis. Like in many 
other tumors hyperactivation of the Wnt/β-catenin signaling 
contributes pNETs progression. The epigenetic silencing 
via promoter methylation of Wnt inhibitors like Axin 2 and 
secreted Frizzled-related proteins (SFRPs), Wnt inhibitory 
factor-1 (WIF‑1) and DICKKOPFs (DKKs) were reported, 
wheras donwregulation of others, such as WIF‑1, DKK‑1 
and DKK‑3 were caused by H3K9me1 increased levels at the 
promoter (138).

MicroRNAs signatures and histone modifications can be 
very helpful when it comes to diagnostic uncertainty, whether 
to identify the subtypes of NETs. One of the attractive features 
of epigenetic changes is their reversibility, which makes it 
very appealing as therapeutic targets. miRNAs can serve as 
biomarkers to distinguish between normal and diseased tissue, 
miRNAs 103/107/155, for example, can distinguish pan NET 
from normal pancreatic tissue. Some of miRNAs miRNA-21 
and -155 can be upregulated in high grade tumors and not 
in low grade, others can be detected in metastatic low grade 
tumors and not normal tissues (139).

Differential gene expression of miRNAs is not a stranger 
for many tumors, and NETs are not constituting exception. 
Indeed, miR-183, -488, and 19a+b were upregulated while 
miR-133a, -145, 146, -222 and -10b were downregulated in 
metastatic tissue with respect to primary tumors in study with 
ileal carcinoid tumors (140). Intestinal NETs had different 
expression profiles of miRNA during different stages of the 
disease (141). Literature data suggests that miR-129-5p may 
have an anti-proliferative and anti-metastatic effect in midgut 
carcinoid tumors (142).

6. Conclusions

NETs are arising from neuroendocrine cells. This process 
should not be confused with phenomenon of occurrence of 
neuroendocrine cells in non- neuroendocrine neoplasm as 
a reflection of heterogenous neuroendocrine differentiation 
in neoplasms. Neuroendocrine cells occur also in tumors 
which developed in tissues where neuroendocrine cells are 
not found (143,144). The picture cannot be complete without 
understanding the involvement of key signal transduction 
pathways in pathogenesis and therapeutic response of these 
tumors. One of the predominant pathways is mTOR pathway 
that was highlighted in this review. The presence of the 
feedback loops though has to be seriously considered when 
it comes to combination treatment of somatostatin analogues 
and mTOR inhibitors (145,146). There still obvious challenges 
when it comes to drug resistance in clinical trials setting. 
Somatostatin analogues did not overcome everolimus-induced 
Akt upregulation. As it is known mTORC inhibitors like 
everolimus can trigger feedback loops. When used alone, 
they were able to induce apoptosis, but that effect was lost in 
combined treatments. Thus, based on the evidence there is no 
indication of beneficial effect in NETs for cotreatment with 
everolimus (146). The resistance of treatments also can be 
explained by presence of the cancer stem cells, which is very 

controvercial issue for NETs and there is not much evidence 
for the presence of CSC in these tumors, however some of dual 
targeted therapies reported to prevent drug resistance (147-151). 
There is evident lack of reliable biomarkers for correct treat-
ment selection, although there are some for specific NETs, like 
CDX‑2, for example, which is highly specific for metastatic 
and ileal NETS (14,152). Ki‑67 was identified as prognostic 
biomarker for pancreatic tumors (153-155). There are many 
open questions and challenges concerning pathogenesis and 
molecular events leading to NETs and PNS. One of the chal-
lenging and unresolved questions is whether ectopic hormone 
syndrome occurs as a consequence of hormonal secretion 
gene activation because of malignant trasformation or can 
be attributed to the intrinsic ability of the primitive cell of 
origin for this function that was arrested in differentiation 
process (37-157). The aspect requiring thorough investigation 
is the modulation of tumor cell behavior by neurohormonal 
peptides, secreted by neuroendocrine cell population. It still 
remains to be elucidated how much genetic, epigenetic and 
chromosomal alterations, can affect the expression or function 
of the neuropeptides receptors. Unveiling receptor dynamics, 
density, metabolism or trafficking may help to better under-
stand and predict the effects of analogs in diagnostics and 
therapy (32). Estimation of neurokinin A levels is assumed 
to be very useful for more aggressive NETs in their ealy 
stages. Poor short term survival was reported with neurokinin 
A concentrations (>50 pg/ml) (158). Uniform expression of 
Angiopoietin-2 (Ang-2) messenger RNA (mRNA) described 
in endothelial cells of both nontransformed pancreatic tissue 
and pan NET tissue (159).

The management of neuroendocrine neoplasia is chal-
lenging difficult problem, the molecular pathways involved in 
the pathology of NETs waiting to be explored further and to 
develop new synergistic treatments impacting prognosis and 
patients well being (160-162).
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