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Abstract. The objective of the present study was to investigate 
whether deep learning could be applied successfully to the 
classification of images from colposcopy. For this purpose, a 
total of 158 patients who underwent conization were enrolled, 
and medical records and data from the gynecological oncology 
database were retrospectively reviewed. Deep learning was 
performed with the Keras neural network and TensorFlow 
libraries. Using preoperative images from colposcopy as the 
input data and deep learning technology, the patients were 
classified into three groups [severe dysplasia, carcinoma 
in situ (CIS) and invasive cancer (IC)]. A total of 485 images 
were obtained for the analysis, of which 142 images were of 
severe dysplasia (2.9 images/patient), 257 were of CIS (3.3 
images/patient), and 86 were of IC (4.1 images/patient). Of 
these, 233 images were captured with a green filter, and the 
remaining 252 were captured without a green filter. Following 
the application of L2 regularization, L1 regularization, dropout 
and data augmentation, the accuracy of the validation dataset 
was ~50%. Although the present study is preliminary, the 
results indicated that deep learning may be applied to classify 
colposcopy images.

Introduction

In the era of big data, various types of data can be obtained 
and shared by all users through the internet or social network 
systems. One method to efficiently manage enormous amounts 
of data is to apply deep learning (1). One characteristic of 
deep learning is that this approach does not require features 
or representations to be selected during data input. Recently, a 
number of studies have focused on image classification by deep 
learning, and these technologies are now becoming readily 

available for use by corporations and individuals (2‑6). For 
example, TensorFlow is a Google software library for machine 
learning that was released under an open‑source license in 
2015 (7). Using this technology, the present study aimed to 
potentially integrate deep learning into gynecological clinical 
practice.

Cervical cancer is a leading cause of death in women world-
wide (8). Although mortality rates were drastically reduced 
following the introduction of the Pap smear test, determining 
the types of patients who should be further screened and 
treated as high‑risk remains an important issue, particularly 
for avoiding overmedication (9‑11). In daily practice, patient 
management is determined by the combined use of cytology, 
histology, HPV typing and colposcopy results. The present 
study investigated whether deep learning with a focus on 
colposcopy images as input could predict the postoperative 
diagnosis.

Colposcopy is a well‑established tool for observing the 
cervix at up to x10 magnification (12). Cervical intraepithe-
lial lesions are enhanced and easily recognized when treated 
with acetic acid solutions. For instance, areas that turn white 
following acetic acid treatment (acetowhitening) and/or areas 
that present abnormal vascular patterns are considered for 
biopsy. These effects become more visible after a green filter 
is applied (13). Diagnoses are then evaluated by gynecologists 
based on the degree of staining and the underlying vascular 
patterns. Studies have attempted to classify images from 
colposcopy using neural networks (14‑16). For instance, one 
group investigated whether neural networks could recog-
nize the dot pattern, which represents a colposcopy finding, 
after learning the pattern from samples annotated by the 
researchers (16). The present study is distinct from the afore-
mentioned studies because features or representations of the 
images, for example, the presence of this dot pattern, were not 
selected during data input.

For deep learning, the Keras neural network and TensorFlow 
libraries were used (7,17). In the present study, the classifica-
tion accuracy on the validation dataset reached ~50%. While 
this result in itself is not satisfactory, it suggests that deep 
learning has the potential to classify images from colposcopy. 
In addition, the present study investigated methods to improve 
the learning rate and avoid overfitting due to the limitation 
of insufficient numbers of obtained images. In the process 
presented, L2 regularization, L1 regularization and dropout 
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were applied, and the amount of input data was increased via 
data augmentation.

In the present study, the intention was not to stress the accu-
racy rate itself but rather to demonstrate that gynecologists, 
who are not specialists in artificial intelligence or machine 
learning, may be able to utilize deep learning in clinical 
practice. Furthermore, the present results suggest that relevant 
information from clinical practice should be appropriately 
stored for future use.

Materials and methods

Patients. The present study was approved by the Institutional 
Ethics Committee of Saitama Cancer Center (approval no. 630). 
Written informed consent was obtained from all the patients. 
Medical records and data from the gynecological oncology 
database were retrospectively reviewed. Patients who under-
went conization at Saitama Cancer Centre (Ina, Japan) from 
January 2014 to December 2015 were enrolled. Conization 
management at the facility is determined according to the 
guidelines of the Japan Society of Obstetrics and Gynecology. 
Although each diagnosis was performed in principle according 
to the postoperative pathology (conization), the preoperative 
pathology (biopsy) was prioritized when the results were 
severe and used as the output (‘target’ in deep learning) for 
images from colposcopy.

A total of 158 patients were enrolled; their median age 
was 39 years (range, 21‑63 years; Fig. 1A). The diagnoses 
and corresponding patient numbers were as follows: severe 
dysplasia, 49; carcinoma in situ (CIS), 78; invasive cancer, (IC) 
21; and others (such as adenocarcinoma in situ and invasive 
adenocarcinoma), 10. In the current study, patient classifica-
tion was limited to three groups (severe dysplasia, CIS and IC) 
because of the limited number of available images.

Images. Preoperative images from colposcopy were used as 
the input data for deep learning. Because this investigation 
was a retrospective study, there were no criteria for deter-
mining the number and type of colposcopy images to retain. 
Images following acetic acid treatment with or without a green 
filter that represented areas of biopsy and were used in the 
diagnoses were stored. The total number of images was 485, 
with 142 images for severe dysplasia (2.9 images/patient), 257 
for CIS (3.3 images/patient), and 86 for IC (4.1 images/patient). 
Of these, 233 images were captured with a green filter, and the 
remaining 252 were captured without a green filter.

Images from colposcopy captured at our facility were 
stored in PNG format at a resolution of 640x480 pixels in 
RGB 3‑channel color. These raw images often represented 
areas inappropriate and unwanted for deep learning, such as 
the Cusco speculum and vaginal wall; therefore, preprocessing 
was performed to focus on the cervix by trimming the images 
to 300x300 pixels (Fig. 1B). Trimming was performed with 
Photoshop CC (Adobe Systems, Inc., San Jose, CA, USA). 
Images without a green filter that captured >two thirds of the 
cervix or <two thirds of the cervix (magnified images of the 
lesion) were assigned to groups 1 and 2, respectively. Images 
with a green filter that captured >two thirds of the cervix or 
<two thirds of the cervix were assigned to groups 3 and 4, 
respectively (Fig. 1C). During deep learning, these images 

were re‑trimmed to 150x150 pixels and then were used as input 
(Fig. 2A). The same procedures were performed with images 
containing 32x32 pixels or 300x300 pixels; however, images 
with 150x150 pixels were considered suitable for learning in 
terms of the learning efficacy and time allocated to learning 
(data not shown), at least in this small‑scale study.

Deep learning. We used the Keras (https://keras.io) neural 
network library and the TensorFlow (https://www.tensorflow.org) 

Figure 1. Patient characteristics and collected images. (A) Distribution of 
patient age. The median age of the patients was 39 years (range, 21‑63 years). 
(B)  Preprocessing of images. Images containing 640x480 pixels were 
trimmed to 300x300 pixels using Photoshop CC. (C) Patterns of collected 
images. Representative images for each group are shown. Group 1, images 
without a green filter that captured >two thirds of the cervix; Group 2, images 
without a green filter that captured <two thirds of the cervix; Group 3, images 
with a green filter that captured >two thirds of the cervix; and Group 4, 
images with a green filter that captured <two thirds of the cervix. (D) Image 
group distribution for each diagnosis. Images of IC tended to present lesions 
at greater magnification and were more likely to be captured with a green 
filter compared with the images of severe dysplasia and CIS. CIS, carcinoma 
in situ; IC, invasive cancer.
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software library. The code was frequently referred to in the Keras 
blog (https://blog.keras.io/building‑powerful‑image‑classificat
ion‑models‑using‑very‑little‑data.html) and the basic code was 
adjusted for the learning procedure of the present study. The 
validation dataset contained 25 randomly selected images for 
each diagnosis (75 images in total), and it was not used for 
training in the study unless otherwise mentioned.

Development environment. The development environment 
used in the present study was as follows: a Mac running OS X 
10.11.3 (Apple, Inc., Cupertino, CA, USA); Python language 
v. 2.7.12; Keras 1.1.0; TensorFlow 0.8.0; and matplotlib 1.5.3.

Statistical analysis. JMP Pro 11 (SAS Institute, Inc., Cary, 
NC, USA) was used for the statistical analysis. One‑way 
analysis of variance was used for comparing the means. The 
Tukey‑Kramer test was used for post‑hoc analysis. P<0.05 was 
considered to indicate a statistically significant difference.

Results

Images. Preoperative images from colposcopy were retrospectively 
collected as described in the Methods section. Statistical analysis 
suggested that a higher number of images were stored for more 
severe lesions (P=0.0085). The % of groups 1‑4 were summarized 
for each diagnosis (Fig. 1D). Unlike the images of severe dysplasia 
and CIS, the IC images tended to include magnified lesions and 
were usually captured with a green filter (Fig. 1D). 

The total number of images is more important for avoiding 
overfitting than dividing the input images according to the 
presence or absence of a green filter. A validation set accuracy 
of <33% meant that learning did not occur because the same 
number of images for each diagnosis was assigned to the vali-
dation dataset. The convolution layers and dense layers were 
tuned as described in the Methods section (Fig. 2A). In the 
present study, dense layers appeared to affect the learning rates, 
and a training accuracy that exceeded 90% in 100 epochs was 
obtained by tuning the dense layers. However, the validation 
accuracy plateaued at ~40‑50%, which suggested that overfit-
ting had occurred. Therefore, methods of avoiding overfitting to 
prevent discrepancies between the training curve and validation 
curve were explored. First, the set of collected images included 
images both with and without a green filter, and these images 
were individually used for learning because of possible learning 
inefficiencies caused by mixed data (Fig. 2B). However, the 
validation dataset was re‑selected (10 images for each diagnosis, 
30 in total), and the results demonstrated that the validation accu-
racy was reduced regardless of the presence or absence of a green 
filter. This result was likely related to a reduction in the total 
number of images. Thus, the total number of images appeared 
to be more important for increasing the validation accuracy than 
the division of input data according to the presence or absence of 
green a filter, at least in the present small‑scale study.

L2 regularization can improve overfitting. To avoid overfit-
ting, L2 regularization, L1 regularization and dropout were 

Figure 2. Application of deep learning. (A) Neural network architecture. Tuning the dense layers appeared to improve the learning rates. (B) Influence of the 
number and types of images on learning rates. The validation accuracy was reduced irrespective of the presence (lower right) or absence (lower left) of a 
green filter. The total number of images was likely more important for increasing the validation accuracy, at least in this small‑scale study (upper). Blue line, 
training‑accuracy curve; Green line, validation‑accuracy curve.
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applied (Fig. 3). L2 regularization and L1 regularization 
were applied in the first input layer, and dropout was applied 
to all the layers after max‑pooling (the dropout rate was set 
to 0.5). L2 regularization appeared to be effective at avoiding 
overfitting when properly tuned (Fig. 3). L1 regularization 
caused learning failure in the investigated value set, and 
the application of dropout reduced the learning efficacy, 
although this result may have been related to the relatively 
short epochs.

Data augmentation slightly improves the validation accu-
racy and overfitting. When performing deep learning, the 
total number of images is known to be an important factor 
for improving the learning accuracy and avoiding overfit-
ting, which is generally consistent with the aforementioned 
results (5). Thus, the hypothesis that data augmentation could 
improve the accuracy rates was investigated. When viewing 
colposcopy images, tilted images were occasionally encoun-
tered because the angles of the cervix relative to the camera 
posture varied; however, differences in the angle should not 
be important for recognizing lesions. To test this hypothesis, 
20 images were obtained from a single image by randomly 
rotating it, applying different zoom magnifications and hori-
zontally flipping the image and the resulting images were 
then used as input. Thus, one image was converted into ~20 
images by data augmentation. Examples of the augmentation 
results are illustrated in Fig. 4A. Data augmentation appeared 
to worsen the overfitting limitation; however, the application 
of L2 regularization and dropout slightly improved overfitting 
(Fig. 4B). The validation accuracy ultimately reached a stable 
level of ~50%.

Discussion

The present study investigated whether deep learning could be 
applied to the classification of images from colposcopy. Various 
types of data are increasingly available through the Internet, and 
inexpensive high‑end smartphones are more readily available 
for the general public, facilitating the uploading and sharing 
of information, such as pictures. The same is true for data 
processing. High‑performance personal computers are afford-
able for individuals, and statistical analyses or machine learning 
can be performed without supercomputers if the information 
volume is limited. Furthermore, deep learning technologies 
are becoming more accessible for corporations and individuals. 
For example, the Google software library for machine learning, 
TensorFlow, was released under an open‑source license in 
2015 (7). Based on these trends, the present study aimed to apply 
deep learning to gynecological clinical practice.

Preoperative images from colposcopy were retrospec-
tively collected. A total of 485 images were obtained, with 
142 images for severe dysplasia (2.9 images/patient), 257 for 
CIS (3.3 images/patient), and 86 for IC (4.1 images/patient). 
These results indicate that more images were stored when 
the lesions were more severe (P=0.0085), because gynecolo-
gists tend to capture a higher number of images in lesions in 
order to record important findings. Accordingly, the IC 
images tended to include lesions under greater magnification. 
Furthermore, these images were more frequently captured 
with a green filter compared with the severe dysplasia and CIS 
images (Fig. 1D).

One of the greatest challenges associated with machine 
learning, including deep learning, is the prevention of 

Figure 3. Exploring methods to avoid overfitting. L2 regularization, L1 regularization and dropout were applied. L2 regularization was thought to be somewhat 
effective in avoiding overfitting when set at a value of 0.001 or 0.01, but not at a value of 0.02. L1 regularization set at a value of 0.01 caused learning failure, and 
the application of dropout caused a lower learning efficacy; however, this result may have been caused by the relatively small epochs, or it may have represented 
a characteristic of applying dropout. Blue line, training‑accuracy curve; Green line, validation‑accuracy curve.
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overfitting (5). Overfitting is a condition in which the model 
cannot be applied to unknown data because it has been overly 
adjusted to the training data. In the present study, the large 
discrepancy between the training curve and validation curve 
suggests that overfitting occurred (Figs. 2‑4), most likely due 
to the small number of included images. Ordinarily, 500‑1,000 
images are prepared for each class during image classification 
with deep learning (2). The present study explored methods 
to improve the learning rate and avoid overfitting under the 
limitation of an insufficient number of included images. In 
addition, L2 regularization, L1 regularization and dropout 
were applied, and the amount of input data was increased by 
data augmentation.

In clinical practice, it would be of interest for clinicians 
to distinguish CIN1, CIN2 and CIN3, or to distinguish CIN1 
(or low‑grade squamous intraepithelial lesions) from CIN2 (or 
high‑grade squamous intraepithelial lesions). Furthermore, 
classification might not be clinically necessary for severe 
dysplasia and carcinoma in situ (CIS), because there is little 

difference in diagnosis and treatment between these two 
conditions. However, due to technical reasons, the present 
preliminary study used images from CIN3 and invasive 
cancer patients. In terms of deep learning, the output (i.e., the 
ground‑truth classification result of an image) is very impor-
tant. For instance, what is considered CIN1 may not always be 
‘genuine’ CIN1 because only a biopsy is performed in most 
cases. Ideally, conization should be performed to provide the 
true answer. In addition, providing ground‑truth classifica-
tions such as ‘white lesion’ or ‘glandular opening’ would not 
construct a reliable model, because those answers are subject 
to human perception: There is no strict definition for these 
terms. As such, for this initial study, images from CIN3 and 
invasive cancer patients were used, because pathological diag-
noses of the conization samples were readily obtained. For 
clinicians, an improved solution would be to use the ‘patient's 
prognosis’ as an output. A clinical application designed to 
screen a target group not in need of invasive testing, such as 
biopsy and conization could be desirable as well. Therefore, 
although the clinical significance of the classification into 
three groups (severe dysplasia, CIS and IC) is currently 
limited, the present study demonstrated that deep learning, by 
inputting only images, could be used to classify colposcopy 
images.

The final validation accuracy was ~50%, which is better 
than a random result (33%). To the best of our knowledge, no 
report using ‘deep learning’ for classification of images from 
colposcopy exists to date. Although previous studies have used 
automation diagnosis, deep learning was not employed and the 
patient cohort was different than the current study (CIN3 and 
invasive cancer) (14‑16). As such, the present study cannot 
be directly compared to the previous literature, in order to 
evaluate whether the 50% accuracy result was good or poor. 
However, although this result may not be satisfactory in terms 
of deep‑learning tasks, it may be sufficient in the clinic consid-
ering the difficulty of distinguishing among severe dysplasia, 
CIS and IC even among experts.

The present study aimed, not to stress the accuracy rate 
itself, but rather to demonstrate that gynecologists, who are not 
specialists in artificial intelligence or machine learning, can 
utilize deep learning in clinical practice. The barriers to using 
artificial intelligence and deep learning will likely be decreased 
in the near future. Thus, as much relevant clinical information 
as possible should be stored appropriately for future use. For 
instance, the images used in this study contained as few as 
150x150 pixels and 3 RGB channels. Images of this size could 
be obtained by most users, even those using smart phones. Our 
facility is a cancer center, and the patient population could have 
been biased in terms of disease conditions because those who 
require operations or intensive observation tend to be referred 
to our hospital. Consequently, the collected images could also 
be biased. Furthermore, as mentioned above, there were many 
more images taken of lesions considered to be more severe. 
Therefore, the same proportion of images is likely stored 
at many other facilities, regardless of the diagnosis and the 
apparent severity of the lesion.

The current study investigated a method for applying deep 
learning to colposcopy image classification. The accuracy on 
the final validation dataset reached ~50%. Although this result 
is preliminary, it suggests that clinicians and researchers, who 

Figure 4. Data augmentation. (A) Example of data‑augmented images. A 
total of 20 images were obtained from a single image by randomly rotating, 
zooming in/out and horizontally flipping the image. Therefore, one image 
was increased to ~20 images by data augmentation. (B) Combination of data 
augmentation, L2 regularization and dropout. Data augmentation worsened 
the overfitting; however, the application of L2 regularization and dropout 
slightly improved the overfitting. The final validation accuracy reached 
a stable value of ~50%. Blue line, training‑accuracy curve; Green line, 
validation‑accuracy curve.
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are not specialists in artificial intelligence or machine learning, 
can utilize deep learning. Furthermore, these findings suggest 
that as much relevant clinical practice information as possible, 
including colposcopy data and images, should be stored for 
future use.
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