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Abstract. Acute promyelocytic leukemia (APL) is a rare 
leukemia characterized by the balanced reciprocal trans-
location between the promyelocytic leukemia gene on 
chromosome 15 and the retinoic acid receptor α (RARα) 
gene on chromosome 17, and accounts for 10-15% of newly 
diagnosed acute myeloid leukemia each year. The combined 
use of all-trans retinoic acid and arsenic trioxide (ATO) as 
primary therapy has markedly improved the survival rate of 
patients with APL. Mortality in the first 30 days following 
therapy remains a major contribution to treatment failure. 
In the present study, published data was reviewed with a 
focus on the factors associated with early mortality. When 
treated with ATO as a primary treatment, the fms-like 
tyrosine kinase-internal tandem deletion has no impact on 
early mortality. Low lymphoid enhancer binding factor-1 
expression may be a reliable marker for early mortality and 
the target of therapy if it could be proven by further studies. 
Cluster of differentiation (CD)56+ and CD34+/CD2+ may 
be candidates to select high-risk patients. The risk of early 
mortality in APL still cannot be predicted via the cell 
surface makers, despite multiple studies on their prognostic 
significance. Typically, a complex translocation did not 
alter the survival rate in patients with APL; however, if an 
abnormal karyotype [e.g., Ide(17), ZBTB16/ RARα and 

STAT5B/RARα] appeared singularly or as part of a complex 
mutation, there is a high possibility of early mortality if clini-
cians are unable to identify or monitor it.
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1. Introduction

Acute promyelocytic leukemia (APL) is a rare leukemia 
characterized by the balanced reciprocal translocation 
between the promyelocytic leukemia (PML) gene on chro-
mosome 15 and the retinoic acid receptor α (RARα) gene 
on chromosome 17, and accounts for between 10 and 15% 
of newly diagnosed acute myeloid leukemia (AML) cases 
each year (1). Potentially life-threatening coagulopathy, and 
distinct morphologic and cytogenetic aberrations define 
APL as a unique subtype of AML (2). Early studies have 
demonstrated a median survival time of 1 week, ranging 
from 1 day to 1 month (3‑6) in patients who were untreated 
or only received corticosteroids. The combined admin-
istration of all-trans retinoic acid receptor α (ATRA) and 
arsenic trioxide (ATO) as primary therapy has notably 
improved the survival rate and decreased toxicity in 
patients. Early death (ED; mortality in the first 30 days 
following therapy) remains a major contribution to treatment 
failure (7). A previous study analyzed the data from surveil-
lance, epidemiology and an end result program of 1,400 
APL patients, revealing an ED rate (EDR) of 17.3% (8). 
Due to delayed diagnosis, delayed administration of ATRA 
and/or inadequate supportive care, the EDR of APL did not 
change substantially (9); if high-risk patients could be iden-
tified earlier and provided with better supportive care, such 
as the hemostatic targets protocol (e.g., platelets >30x109/l, 
normal prothrombin time, normal activated partial throm-
boplastin time, fibrinogen >1.5 g/l) (10), the EDR is expected 
to decrease.
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In the present study, published data is reviewed with a 
focus on the factors that may contribute to the ED of patients 
with APL, in order to improve the identification of high‑risk 
patients.

2. Fms‑like tyrosine kinase 3 (FLT3) gene

The FLT3 gene, a class III tyrosine kinase receptor, is located 
on chromosome 13q12 in humans (11). Somatic mutations 
in AML are common, including missense mutations in the 
activation loop domain (ALM) of the tyrosine kinase domain 
(FLT3/ALM) and internal tandem duplications of the juxta-
membrane domain coding sequence [FLT3‑internal tandem 
duplication (ITD)] (12-14). It is the most frequent genetic event 
in APL that may coincide with t(15;17) translocation. Several 
studies have demonstrated that 20-40% of APL patients 
possess the FLT3‑ITD mutation and another 10‑20% carry an 
FLT3/ALM mutation (15,16). Thus, Souza et al (17) suggested 
that FLT3‑ITD positive APL patients may be classified as a 
new sub-type.

Previous studies have identified that FLT3‑ITD is asso-
ciated with a high white blood cell count (WBC) (17-28), 
the microgranular variant (M3V) type (17‑20,23,25‑27), 
shor t  type PML/RARα [break cluster  region 3 
(BCR3)] (17,19,20,23,24,26,27), sex (28), low‑fibrinogen 
concentration (22), hemoglobin levels (17,26) and high lactate 
dehydrogenase (LDH) level (22). However, when discussed in 
the context of ED, the prognostic significance of this associa-
tion remains unclear.

Wing et al (18) reported 82 patients who received a 
primary treatment with ATRA. FLT3 aberrations were 
detected in 35 cases (43%) at diagnosis, and were identified to 
be significantly associated with microgranular morphology 
and higher white blood cell count (WBC), but not the short 
type. A total of 7/19 patients succumbing to ED were carrying 
the ITD mutations, and an association was identified between 
the FLT3‑ITD mutations and ED (P=0.06), male, high WBC, 
and microgranular morphology (17). Gale et al (20) revealed 
results similar to the aforementioned Wing study, reporting 
an FLT3 mutation rate of 43% in 203 patients, with a number 
of them (183/203), who were diagnosed following the avail-
ability of ATRA for the treatment of APL, receiving ATRA 
as primary therapy. The authors identified a significantly 
high EDR in the FLT3‑mutated group and the presence of 
FLT3‑ITD reduced the additional cytogenetic abnormalities 
accompanying t(15;17) translocation. Furthermore, it was 
identified that the use of an FLT3 inhibitor CEP‑701 had a 
greater effect on cell survival/proliferation in FLT3‑ITD 
cells. However, it reduced the differentiation function of 
ATRA, which may have lead to relapse (20). Kainz et al (29) 
identified that FLT3‑ITD was associated with early mortality 
in 21 APL patients, while 2/5 ED patients did not accept 
ATRA. Barragán et al (30) analyzed the 739 patients 
assigned to the Pethema and Hovon groups between 1996 
and 2005, which included the PETHEMA LPA96 and 
Pethema/Hovon LPA99 trials, identified a significantly 
higher EDR in the FLT3‑ITD group (P=0.03), which was 
associated with expression of CD2, CD34, human leukocyte 
antigen-DR, and CD11b surface antigens. This result was 
similar to Souza et al (17).

Chillon et al (21) observed that patients with an initial 
normalized copy number of PML‑RARΑ transcripts less 
than the 25th percentile experienced increased incidence of 
ITDs (P=0.001) and an adverse outcome of 5 year overall 
survival (OS) and relapse-free survival (RFS) but not EDR. 
Schnittger et al (25) identified that FLT3‑ITD did not have 
a significant prognostic impact. Notably, when using a 
threshold mutation/wild‑type ratio of 0.5, the ED rate was 
significantly higher for those with an FLT3‑ITD/wt ratio >0.5 
(P=0.039). The lack of association between FLT3‑ITD and 
ED were also observed by Kiyoi et al (22), Callens et al (19), 
Noguera et al (23), Breccia et al (31), Mathews et al (24) 
and Lucena-Araujo et al (26), however, Breccia et al (31) 
observed a significant association between FLT3 and OS. 
Due to the controversy of the EDR and FLT3‑ITD mutation, 
Beitinjaneh et al (32) conducted a systematic review to investi-
gate the prognostic significance of FLT3 mutations for APL. A 
total of 11 observational studies were included and 10 of them 
received ATRA as primary therapy (the other received ATO). 
The authors identified a negative effect with ITD on OS and 
disease-free survival (DFS) for APL; however, there was no 
impact on complete remission (CR) rates with only 6 CR rates 
available in this study (32). Thus, the effect of FLT3 in APL 
remains difficult to determine.

In studies that used ATO as one of the introductory 
chemotherapeutic drugs for APL, the clinical outcomes 
presented were more favorable. For example, the study by 
Mathews et al (24) reported an ITD mutation rate of 33% in 
98 APL patients and identified no impact on outcome. A study 
by the Shanghai Group (33) also suggested that the status of 
FLT3 did not associate with low EDR in 85 patients with APL 
receiving ATRA/ATO, and suggested that ATO may inhibit 
the negative effect of ITD. In a different study, 4/124 patients 
succumbed during primary therapy and no adverse outcomes 
influenced by FLT3 mutation status were identified (10). It has 
been demonstrated that inferior OS and DFS were significantly 
associated with FLT3‑ITD (24). Therefore, any adverse effect 
of FLT3 mutations appears to be neutralized by the addition of 
ATO during primary therapy and consolidation. Furthermore, 
the authors suggest that FLT3 inhibitor therapy will serve no 
function in the future management of APL despite the occur-
rence of FLT3 mutations in APL. Poiré et al (27) analyzed 
245 newly diagnosed adult patients with APL treated on 
intergroup trial C9710 and identified that FLT3 status had no 
association with EDR. The same result was also examined by 
Stock et al (16) in their study of 78 adults with newly diag-
nosed APL entered onto CALGB 9710, a North American 
Intergroup phase III trial. However, the authors suggested that 
targeted therapy with FLT3 inhibitors may improve relapse 
free survival for patients with FLT3 + APL.

The ITD mutation may have a relatively reduced function 
in the progression of APL and early mortality in patents that 
did not receive ATO as the initial chemotherapy. However, 
when ATO was used as a primary therapy, the inferior outcome 
was observed to be reversed. Continued study may resolve the 
mechanism of this phenomenon. Due to limitations in patient 
numbers and selection, more retrospective or prospective 
studies should focus on FLT3‑ITD and early mortality in 
patients that received ATO as a first induction chemotherapy 
regimen.
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3. Microgranular variant (M3V)

M3V is defined as leukemia promyelocytes with few 
Auer rods (34) and are devoid of or have only sparse 
granules (35). The incidence of this sub‑type was 15‑25% 
in APL. Several studies reported that M3v is associated 
with an increased white blood cell count (25,36,37), 
FLT3‑ITD‑mutations (17‑20,23‑28,37,38), the expression of 
CD2 (35‑37,39‑46) and CD34 (40,41), the relative incidence 
of the bcr‑3 sub‑type (37,39,47) and an increased platelet 
count (48). However, data regarding the prognostic significance 
of M3v of APL is rare, particularly in patients receiving ATRA 
and ATRA/ATO regimens.

Bassan et al (49) observed that M3v was associated with a 
higher incidence of ED in the conventional chemotherapy regi-
mens, similar to the results of Cunningham et al (50). However, 
not all studies observed the same results. Davey et al (48) 
identified no impact of M3v on the early mortality of patients 
with APL in the chemotherapy regimens. The lack of 
significant impact of M3v on prognosis was also observed by 
Schnittger et al, however, their data did not identify the induc-
tion therapy of patients (25).

Utilizing ATRA as first therapy of APL, Tallman et al (7) 
identif ied no effect on ED in APL. Additionally, 
Kuchenbauer et al (51) suggested that the impact of poor 
prognosis of M3v in APL is associated with the frequency of 
FLT3‑ITD mutation. Co‑expression of FLT3‑ITD yields an 
increased frequency of M3v with hypogranular blasts in lobu-
lated nuclei (52). Thus Gale et al (20) suggest that the ITD may 
contribute to the generation of morphologic features of M3v. 
However, other studies (53‑55) have published gene expression 
of a cohort of patients with APL and identified a gene group 
to distinguish M3 from M3v. The authors suggest that genes 
more suited to differentiate M3 from M3v are not markedly 
associated with FLT3‑ITD (53,54) and morphology and FLT3 
status partly affect gene expression independently (54). Other 
clinical data suggested that M3v is an independent factor in 
predicting a poor prognosis, and therefore not influenced by 
FLT3‑ITD (18,19,23). A large study of 155 patients with APL 
focused on the outcome of patients with M3v (37), and identi-
fied no difference in morphology when treated with ATRA 
regimens when adjusting for WBC or relapse risk score 
(P=0.02, without adjustment). The authors also suggest that 
the poor outcome of M3v in previous studies may be due to 
the expression of CD2. Thus whether M3v is an independent 
predict mark of ED of APL remains unresolved.

4. Immunophenotyping

CD56, which is known as a neural cell adhesion molecule and 
associated with unfavorable clinical outcome in AML with 
t(8;21) (56), is expressed in 11-15% of patients with APL (57-59). 
It has been associated with CD2+ (57), CD34+ (57,59), 
CD7+ (57), HLA-DR+ (57), CD15+ (57), CD117+ (57), 
BCR3 isoform (57,60,61), fibrinogen range (60), and a trend 
toward M3v, CD11b+ and CD9+ has been demonstrated (57). 
Murray et al (60) first described a decreased CR rate associated 
with expression of CD56 and noticed the association between 
CD56 and natural killer and T cell markers. The association 
between CD56+ and immaturity-associated markers (CD117) 

and natural killer and T-cell antigens, including CD2 and CD7 
has been identified and it is hypothesized that these sub‑groups 
of APL may have arisen in progenitors that have not undergone 
lineage restriction (57). The immature, undifferentiated 
and pluripotent leukemic stem cells are less sensitive to the 
primary therapy, which may explain why the CD56+ group 
experienced a decreased CR rate and an increased EDR (57). 
Ito et al (59) did not identify any impact of CD56+ on EDR in 
their study of 28 patients with APL. Similar results were also 
obtained by Ferrara et al (58), however, the authors observed 
that CD56 is an independent prognostic impact on survival that 
includes WBC count which indicated that the poor outcome of 
CD56+ APL is not associated with high WBC count. However, 
when drugs including ATO and gemtuzumab ozogamicin 
were administered as primary treatment, the predicted value 
of CD56 is waiting to be verified in the future studies (62).

The T-cell associated antigen CD2 was associated with 
PML/RARα bcr3 (44,46,63), M3v (39,42,46,64) and increased 
leukocyte counts (46,63). In one study, CD2 predicted an 
improved CR rate and event-free survival (EFS) in APL (46). 
Xu et al (65) used a threshold value of 20% of positive cells to 
distinguish CD2+ to CD2‑APL and identified that CD2+ APL 
had an increased EDR and is an independent risk factor of ED. 
The existing data of CD2 in APL is rare, therefore it cannot 
be confirmed whether this immunophenotyping will affect the 
prognosis.

The frequency of CD34 expression has been identified to 
range from 20 to 31% (28,35,45,46). The expression of CD34 in 
APL has been associated with leukocytosis (45,46,64,66,67), 
bcr3 isoform (45,46,64,63), M3V (45,46,64,63), increased 
frequency in females (45) and CD2 expression (45,46,64,63). It 
is often expressed at a significantly lower density on the surface 
of APL compared to AML (41,64). Breccia et al (63) and other 
studies (45,46) did not identify any association between early 
mortality and isolated CD34 expression, however, shorter OS 
was observed. A study of 40 de novo APL patients with a 
CD34+ rate of 32.5% confirmed a significantly increased EDR 
of CD34+ APL (66).

Grimwade et al (67) suggested that the CD2+ APL cell 
may derive from a different stem cell co-expressing CD2 and 
myeloid antigens. Thus, Breccia et al (63) continue to focus on 
the patients with CD34/CD2 double positive APL. The authors 
suggest that these patients may be identified as a subgroup with 
characteristic features associated with M3v, Bcr 3, FLT3‑ITD, 
high incidence of differentiation syndrome and disseminated 
intravascular coagulation (DIC). This result was not consistent 
with the data of Albano et al (45) who identified no differences 
between the groups of complete remission, overall survival and 
disease-free survival, however, the authors did not evaluate the 
impact of CD34/CD2 on EDR. The poor clinical character-
istics of this sub-type may predict a higher EDR and future 
studies may prove it.

A study (68) of 231 APL patients receiving various 
primary treatment suggested that carriers of a G>A 
polymorphism at position 1377 in the core promoter of the 
CD95 cell death receptor gene may predict a poor prognosis, 
particularly for ED (P=0.01) with patients more likely to 
suffer infection-associated mortality. This genetic variation 
may be a reliable marker of ED in future studies. CD15 has 
been reported (60) to exhibit an unexpectedly high frequency 
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of relapses and a low OS. However the authors exclude the 
ED patients in this study, thus no data is available to reveal an 
association between ED and CD15.

5. Complex karyotype

The balanced reciprocal translocation t(15;17) (q22;q11-21) 
leading to PML gene and RARΑ gene fusion is the genetic 
characteristic of APL. The classical t(15;17) (q22;q12) is 
observed in between 70 and 90% of APL cases (69), and a 
number of patients exhibit complex translocations, involving 
chromosomes 15, 17 and other chromosomes (70,71). The most 
common abnormality is trisomy 8 (72,73). A number of the 
complex mutations were sensitive for the prediction of ED in 
APL. In a study by De Botton et al (73) and the Southwest 
Oncology Group (74), additional cytogenetic changes in 
patients with t(15;17) had no effect on the CR rate, EFS, relapse 
and overall survival at 2 years, which is in accordance with 
the findings of Grimwade et al (72). Mi et al (75) identified 
that a complex karyotype may contribute to an improved 
prognosis. Other reports have suggested the presence of 
complex karyotype changes adversely affects prognosis (76). 
A study of C9710 analyzed 245 newly diagnosed adult patients 
with APL (27). The authors identified a significantly lower 
CR rate in the complex karyotype [two or more additional 
chromosomal abnormalities (ACAs)] subgroup compared 
with one ACA or normal karyotype (P=0.001) independent of 
ATO treatment. This may be due to the reduced sensitivity to 
ATRA/ATO and the delay in administering ATO, which has 
been demonstrated by an Italian/German/Austrian cooperative 
group study that suggested earlier administration of ATO may 
overcome the negative effect of complex karyotypes (77). 
The natural resistance to primary therapy is also a factor 
contributing to ED in patients with APL.

Tetraploidy is rare and accounts for 0.75% in APL (78). 
Published data revealed a variety of clinical features of this 
mutation. CD2 was observed to be more frequent in this 
group (7 of 15) compared with the literature reported 23% 
of normal APL (39,42,44,45,64). It is more common in males 
with a median age of 49 (78). Since the majority of these 
cases did not acquire other complex mutations, the outcomes 
remain favorable despite the higher expression of CD2. 
The ATRA based primary therapy may be suitable for this 
complex mutation.

Co-expression of t(8;21) and t(15;17) is rare in APL, with 
only 6 patients reported at present (79-84). Neto et al (79) 
reported a case of APL‑M3V which was sensitive to ATRA 
treatment, and detected a novel t(8;21) chromosomal aber-
ration between 3 and 18 months after initial treatment. The 
authors noted the intermittent detection of t(8;21) during 
periods without ATRA suggested there was an antitumor 
effect of ATRA on M2 leukemic cells. Charrin et al (80) 
and Bonomi et al (81) reported two cases and identified that 
the t(15;17) may be acquired subsequent to t(8;21). A total of 
5 patients received the ATRA-based treatment and achieved 
CR. No ED occurred during primary therapy, despite a high 
rate of relapse. A favorable response to chemotherapeutic 
induction indicated that the ATRA and idarubicin and Ara-C 
induction treatment was suitable for this complex karyo-
type (84). Another study also suggested that at the time of 

diagnosis the rate of M2 leukemic cells could be tested using 
polymerase chain reaction detection and the alteration of bone 
marrow cell kinetics may trigger t(8;21) via complex mecha-
nisms following chemotherapy (79).

Ider(17), which has been reported in only 72 APL cases 
globally, is a relatively rare variant cytogenetic abnormality 
among patients with APL (83,85‑97). This isochromosomal 
abnormality may occur following initial reciprocal transloca-
tion of t(15;17), and is formed from the short arm and duplication 
of the long arm of ider(17)t(15;17) (85). Clinical outcome data 
were available for 36 patients with a CR rate of 77.8% and the 
response to ATRA and EDR were observed to be similar to 
that in normal APL. A total of 19 patients succumbed to the 
disease; however, the prognostic significance of this abnormal 
karyotype remains unclear due to the limited number of cases. 
The proportion of cells with the ider(17)(q10)t(15;17) is higher, 
in 9/12 cases. Since tumor protein p53 (TP53) is located on 
17p, the ider(17)(q10)t(15;17) may provide a growth advan-
tage to the relevant clone (85). The long type PMA/RARα is 
prevalent in this type (57%). Bcr1 splicing PML exon 5-6 was 
associated with decreased sensitivity to ATRA (98), which 
may explain the ATRA resistance of ider(17) patients. Since 
the loss of TP53 and absence of PML exon 5 may occur in this 
rare subtype and present data have identified a trend of poor 
outcome, ider(17) is a candidate for further study.

The nuclear receptor binding SET domain protein 3, lysine 
acetyltransferase 6A and fibroblast growth factor receptor 1 
which regulate cell transcription (99) and are associated with 
the stem cell myeloproliferative disorder are candidate genes 
involved with the loss of 8p (100). Otero et al (101) reported a 
patient with APL with dicentric t(8;13)(q10;q10) who succumbed 
due to a central nervous system hemorrhage on day 3 with 
ATRA based primary therapy. The authors hypothesized that 
the additional chromosomal changes were directly associated 
with the patient's prognosis, and that the novel chromosomal 
abnormalities may predict a poor outcome of APL.

Between 1 and 2% of APL cases are due to abnormal trans-
locations including zinc finger and BTB domain containing 
16 (ZBTB16)/RARα, nucleophosmin (NPM)/RARα, nuclear 
matrix associated/RARα, signal transducer and activator 
of transcription 5B (STAT5B)/RARα, protein kinase 
CAMP-dependent type 1 regulatory subunit α/RARα, BCL6 
corepressor/RARα and factor interacting with PAPOLA 
and SPSF1/RARα, and all these translocations involve 
RARA (70). A review by Adams and Nassiri (102) discussed 
the various translocations of APL and identified certain 
features. t(5;17) NPM/RARα has been diagnosed in patients 
younger than 10 years which is uncommon to normal 
APL (103). It responds well to ATRA but has higher risk of 
relapse. Diagnosis of ZBTB16/RARα t(11;17) APL can be 
difficult. This translocation is more commonly associated 
with CD56 expression (104). Patients had an increased number 
of hypogranular pelgeroid neutrophils and a more regular 
nucleus compared with the bilobed nucleus typically found 
in APL (97). The majority of the translocations in APL can 
be successfully treated with ATRA/ATO, while patients with 
ZBTB16/RARα and STAT5B/RARα are resistant to ATRA 
and experienced a poor prognosis (105). There is currently 
limited data regarding the prognosis of patients with abnormal 
translocations. ZBTB16/RARα and STAT5B/RARα are 



ONCOLOGY LETTERS  15:  4061-4069,  2018 4065

associated with ED, while other variant translocations may 
result in a similar outcome to cases with t(15;17) APL.

6. Lymphoid enhancer binding factor‑1 (LEF1)

As an important member of the LEF/T‑cell factor (TCF) family, 
LEF1 regulates cellular proliferation and cell cycle regula-
tion (106). It is traditionally regarded as a central mediator of 
the wingless-type (Wnt) signaling pathway (106,107) and may 
serve a function in development and cancerogenesis, control 
self-renewal, cell proliferation and differentiation (108). 
Previous data reveal that it may serve a vital function in 
early hematopoiesis and leukemic transformation in murine 
models (109). However, certain functions independent of 
wnt signaling have also been reported (107,110). A study of 
78 adult patients with APL (111) suggests a novel mecha-
nism whereby LEF1 serves a specific function in the Notch 
signaling pathway and draws the conclusion that patients with 
APL overexpressing LEF1 are more likely to experience a 
favorable outcome.

In the nucleus, PML/RARα fusion gene is able to induce 
plakoglobin (γ-catenin) expression in primary patient samples 
as well as in cell lines, leading to transcriptional activation 
of LEF1 (112). LEF1 itself is a coactivator of Notch intracel-
lular domain (107). Jagged1 (JAG1) is a downstream target 
gene of LEF1 and is also the ligand of Notch (113). LEF1 is 
able to crosstalk with the Notch signaling pathway by regu-
lating the expression of JAG1 on the cytomembrane (112). 
Furthermore, JAG1 is more frequently expressed in APL and, 
when receiving ATRA therapy, JAG1 is downregulated in the 
NB4 cell line (114,115). Taken together, these studies indicate 
that JAG1 may be a therapeutic target of ATRA, with high 
expression of LEF1 promoting the curative effect of ATRA. 
The hypothesized mechanism is presented in Fig. 1.

In trials, 103 newly diagnosed APL patients were observed 
and treated with the AIDA‑0493 (116) and AIDA‑2000 (117) 
protocols between January 1996 and December 2012. The 
median follow-up time was 5.7 years. Patients were divided in 
two groups according to the expression level of LEF1: A low 
LEF1 group with LEF1 values below the median value (<2.1 
fold-change) and a high LEF1 group with LEF1 values above 
the median value (>2.1 fold-change). Fisher's exact test for 
categorical data and the nonparametric Mann-Whitney U test 
for continuous variables were used to identify the difference 
between two groups. Survival curves and influence factors 
of survival endpoints were measured by the Kaplan-Meier 
method and multivariate Cox proportional hazards models 
accordingly. They demonstrated that the LEF-high group 
exhibited lower WBC counts (P<0.0001), trended towards a 
younger age (P=0.08), and presented more frequent FLT3‑ITD 
mutations (P=0.02). ED only occurred in the LEF‑low group 
(n=9; P=0.002). This suggests that the expression of LEF may 
be studied as a novel marker of risk in APL if similar results 
can be confirmed by further studies.

7. Conclusion

In conclusion, published data has been reviewed with a focus 
on the factors associated with ED. When treated with ATO as 
primary treatment, the FLT3‑ITD has no impact on ED. Low 
LEF expression may be a reliable marker of ED and a thera-
peutic target if it can be proven by further studies. CD56+ and 
CD34+/CD2+ may be candidates to select high‑risk patients. 
High‑risk patients still cannot be identified via the cell surface 
makers, despite a number of studies analyzing their prognostic 
significance. Complex translocations did not reduce the EDR 
in APL; however, if an abnormal karyotype [e.g., Ide(17), 
ZBTB16/RARα and STAT5B/ RARα] appeared singularly or 

Figure 1. The hypothetic mechanism of LEF1 in the Notch signaling pathway. In the nucleus, PML/RARα fusion gene may induce plakoglobin (γ-catenin) 
expression, leading to transcriptional activation of LEF1. LEF1 itself is a coactivator of NICD and may crosstalk with the Notch signaling pathway by 
regulating the expression of JAG1 on the cytomembrane. Furthermore, JAG1 is overexpressed in APL, and upon receiving ATRA therapy, it is downregulated 
in the NB4 cell line which indicates that JAG1 may be a therapeutic target of ATRA. PML, promyelocytic leukemia; RARα retinoic acid receptor α; LEF1, 
lymphoid enhancer binding factor-1; NICD, Notch intracellular domain; APL, acute promyelocytic leukemia; ATRA, all-trans retinoic acid; JAG1, Jagged 1.
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as part of a complex mutation, there is a high possibility of 
early mortality if clinicians are unable to identify or monitor it.
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