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Abstract. The incidence rate of gliomas is the highest 
among primary brain tumors. Although the understanding 
of the molecular pathology of glioma has improved during 
the previous two decades, effective therapies are not yet 
available to treat these tumors. Previous studies have indi-
cated that long non-coding RNAs (lncRNAs) have a close 
association with glioma, suggesting that lncRNAs may be 
potential targets for the development of novel treatments for 
glioma. The present review summarized the latest studies 
on the dysregulation of lncRNAs in glioma, and discussed 
their potential use in the diagnosis, prognosis and thera-
pies of glioma. The emergence of lncRNAs has revealed 
an additional facet to glioma oncogenesis. An improved 
understanding of their functions is important to advance 
lncRNA-based diagnosis, prognosis and therapeutic inter-
ventions of glioma.
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1. Introduction

Previous	studies	have	identified	that	the	human	genome	contains	
~21,000 genes, and only <2% of them are protein-coding 
genes (1,2). In the previous decades, studies of protein-coding 
genes have led to improved understanding of their participation 
in tumorigenesis and tumor characteristics, consequentially 
establishing a number of protein prognostic markers and thera-
peutic targets in numerous types of cancer (3-6). Furthermore, 
larger numbers of non-coding RNAs (ncRNAs), including 
microRNAs (miRNAs), PIWI-interacting RNAs (piRNAs), 
small interfering RNAs (siRNAs), small nuclear RNAs 
(snRNAs), small nucleolar RNAs (snoRNAs) and lncRNAs 
are	expressed	at	lower	levels	to	fulfill	regulatory	functions	to	
control complex physiopathological processes in humans (7,8). 
Therefore, it is important to characterize the functions of the 
large majority of ncRNAs.

NcRNAs	may	be	classified	by	their	biological	functions:	
housekeeping ncRNAs and regulatory ncRNAs. Housekeeping 
ncRNAs are usually expressed constitutively, including ribo-
somal RNA (rRNAs), snRNAs, snoRNAs and transfer RNAs 
(tRNAs). Regulatory ncRNAs, according to their length, 
comprise short regulatory ncRNAs, including miRNAs, 
siRNAs and piRNAs and long regulatory ncRNAs (8-10).

LncRNAs are a class of ncRNAs with >200 nucleotides 
in length. It is now recognized that lncRNAs function as 
key regulatory players in a number of biological processes, 
including embryonic development, cellular differentia-
tion and cancer (11). lncRNAs regulate their target genes at 
transcriptional or post-transcriptional levels. Previously, the 
dysregulation of lncRNAs has been closely associated with 
carcinogenesis and cancer progression. Compared with the 
protein-coding genes, lncRNAs exhibit more tissue- and 
time‑specific	expression	patterns,	and	their	expressions	are	
more closely associated with their biological function and 
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tumor status, indicating enormous potential roles of lncRNAs 
as diagnostic and prognostic biomarkers, and as therapeutic 
targets in cancer (3,12-14). For example, the variant genotypes 
of rs7763881 in the hepatocellular carcinoma up-regulated long 
non-coding RNA gene may be responsible for the decreased 
susceptibility to hepatitis B virus-associated carcinogenesis 
in liver, suggesting that genetic variations in lncRNAs are 
associated with cancer susceptibility (15). In addition, aberrant 
expression of lncRNAs has been employed in cancer diag-
nosis and monitoring (16). H19 is upregulated in the plasma 
of patients with gastric cancer, and its expression enabled 
the differentiation of early stage gastric cancer from healthy 
controls (17). Subsequent studies have indicated that the level 
of	H19	may	be	used	to	monitor	and	reflect	the	tumor	dynamics	
in patients with gastric cancer (18). Furthermore, lncRNA 
expression	profiles	may	also	be	used	to	identify	clinically	rele-
vant cancer subtypes that predict tumor biological behavior, 
therapeutic responsiveness and clinical prognosis (19-23).

Gliomas represent 31% of all central nervous system 
(CNS) tumors diagnosed in the United States, and 81% of all 
malignant CNS tumor types with high morbidity and mortality 
(2006-2010) (24). Despite the treatment options of surgical resec-
tion followed by radiotherapy and chemotherapy, the overall 
survival times of patients with glioma, particularly patients with 
malignant glioma, were low. The understanding of the genetic 
and molecular makeup of gliomas has been advanced during the 
previous the decades. However, there remains a lack of effective 
therapies for these tumors. Therefore, an improved under-
standing of glioma pathogenesis is urgently required. Previous 
studies suggest that lncRNAs have a close association with 
glioma, but their roles and the underlying mechanisms remain 
elusive. In the present review, the recent progress on lncRNAs in 
the development of glioma was summarized, and their possible 
functions and pathogenesis mechanisms in regulating biological 
behaviors of glioma were discussed.

2. Classification and characteristics of lncRNAs

LncRNAs are a large and heterogeneous group of RNAs, 
reflecting indirectly their enormous variety and structural 
complexity. Based on its genomic location to protein-coding 
genes, an lncRNA may be placed broadly into several catego-
ries: i) bidirectional; ii) enhancer; iii) intergenic; iv) intronic; 
v) sense and vi) anti-sense lncRNAs. The expression of bidi-
rectional lncRNAs is initiated within the vicinity (>1 kb) of a 
neighboring coding transcript of the opposite strand. Enhancer 
lncRNAs are located in the enhancer regions of the promoter of 
a coding transcript. Intergenic lncRNAs are transcribed from 
regions between two coding transcripts. Intronic lncRNAs are 
derived entirely from within the introns of a coding transcript. 
Sense lncRNAs overlap with a part of or the entire sense strand 
of a transcript. Anti-sense lncRNAs are transcribed from the 
anti-sense direction to the transcripts of a gene (Fig. 1) (25,26).

The ways in which lncRNAs regulate gene expression can 
also be grouped into three categories, which include transcrip-
tional and post-transcription regulation, and other mechanisms. 
Transcriptional regulation is where lncRNAs regulate gene 
expression through transcriptional interference and chromatin 
remodeling (27). Post-transcription regulation involves the 
regulation of RNA splicing by modulating the functions of 

splicing factors or by directly binding to pre-mRNA sequences. 
LncRNAs may also block translation through interaction with 
translation factors or ribosomes (28-30). Other mechanisms 
of gene expression by lncRNAs include protein localization, 
telomere replication and RNA interference (31,32).

LncRNAs	may	also	be	classified	into	four	archetypes	based	
on the molecular mechanisms of their functions: i) signal: 
lncRNAs may serve as molecular signals for gene regulation; 
ii)	decoy:	 lncRNAs	act	as	 ʻmolecular	sinksʼ	 that	bind	and	
sequestrate protein targets but do not exert any additional 
functions; iii) guide: lncRNAs interact with proteins and guide 
the	localization	of	ribonucleoprotein	complexes	to	specific	
targets; iv) scaffold: lncRNAs function as central platforms for 
multiple molecules to form scaffolding complexes to regulate 
their functions (33).

3. Dysregulation of lncRNAs in gliomas

Previous studies have suggested that several lncRNAs are 
involved in the development of gliomas and associated with 
various biological behaviors of tumors, including prolifera-
tion, migration, invasion and apoptosis. The lncRNAs that are 
associated with gliomas are summarized in Table I. In the 
following section, the potential roles of several lncRNAs in the 
development of glioma, and their potential for clinical applica-
tions for glioma treatment, are discussed.

Oncogenic lncRNAs
H19. lncRNA H19, a paternally imprinted gene residing close 
to the telomeric region of chromosome 11p15.5, was first 
identified	as	a	tumor	suppressor	(34,35).	However,	subsequent	
studies indicated that the function of H19 was tissue and devel-
opmental	stage	specific.	H19	is	oncogenic	in	thyroid	cancer,	
hepatocellular and bladder carcinoma (36-38).

In gliomas, H19 contributes to tumorigenesis and tumor 
progression via several mechanisms. Jiang et al (39) identi-
fied	that	the	increased	expression	of	H19	lncRNA	promoted	
the invasion and angiogenesis of glioblastoma cells in culture 
and increased the rate of growth of xenograft tumors in 
mice. Jia et al (40) revealed that H19, as a molecular sponge, 
promoted glioma-induced angiogenesis by downregulating 
miRNA-29a. Chen et al (41) demonstrated that H19 was 
upregulated in recurrent gliomas compared with primary 
gliomas, suggesting that it was associated the development of 
glioma. Shi et al	(42)	identified	that	H19	expression	associ-
ated with tumor grade, that H19 promoted glioma progression 
via the H19-derived miR-675/CDH13 pathway, and that the 
suppression of H19 expression inhibited the invasion of glioma 
cells. Furthermore, H19 was expressed at high levels in the 
embryo and was hypothesized to serve an important role in 
the maintenance of the stemness in hematopoietic/embryonic 
stem cells (42-45). A previous study has demonstrated that 
H19 is upregulated in CD133+ glioblastoma cells compared 
with CD133- tumor cells. The overexpression of H19 in CD133 
tumor cells promoted tumor growth, indicating the impor-
tance of H19 in promoting stemness of glioblastoma cells (46). 
Li et al (47) reported that the knockdown of H19 was able to 
significantly	reduce	the	expression	of	stem	cell	markers.	A	
high expression of H19 was considered to transform normal 
astrocytes into glioma stem cells, suggesting that H19 may 
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have role in contributing to the malignancy and stemness of 
glioblastoma cells. In addition, aberrant expression of H19 was 
observed in tumors from patients with temozolomide (TMZ) 
resistance, and TMZ-resistant cell lines (48). The silencing of 
H19 may regulate drug resistance genes, including multidrug 
resistance protein 1, multidrug resistant associated protein 1 
and ATP-binding cassette subfamily G member 2; and may 
promote apoptosis in sensitized tumor cells in drug-resistant 
glioma (48). Furthermore, Jiang et al (39) also demonstrated 
that the stable overexpression of H19 in U87MG and U373MG 
cell lines promoted tumor formation and induced tumor cell 
proliferation and angiogenesis in an in vivo murine xenograft 
model.

Metastasis‑associated lung adenocarcinoma transcript 1 
(MALAT1). MALAT1, an lncRNA with a length of 8.7 kb, is 
located on chromosome 11q13.1 (49). MALAT1 was originally 
identified	as	an	lncRNA	that	is	overexpressed	in	metastatic	
non-small cell lung cancer, and it is considered to be a poten-
tial therapeutic target for non-small cell lung cancer (50). The 
expression of MALAT1 is dynamically regulated to promote 
the development of various types of cancer, including ovarian, 
pancreatic, lung and cervical cancer (51-54). To date, MALAT1 
has been reported to serve a pro-oncogenic role in the 
progression of gliomas. Ma et al (55) revealed that MALAT1 
expression was associated with the malignant status of glioma 
and that high levels of MALAT1 expression were associated 
with poor prognosis in patients with glioma. Xiang et al (56) 
identified	that	the	level	of	MALAT1	was	increased	in	tumor	
tissues compared with normal brain tissues in glioma, and the 
knockdown of MALAT1 resulted in the downregulation of 
cyclin D1 and MYC, the inhibition of tumor growth and induc-
tion of cell apoptosis in gliomas. Vassallo et al	(57)	identified	
that MALAT1 was downregulated by WNT inhibitory factor 1 
via the Wnt family member 5A/tumor protein 38-mitogen-acti-
vated protein kinase (MAPK)/Ca2+ non-canonical WNT 
signaling axis, which led to an inhibition of migration and inva-
sion of glioma cells. Ma et al (58) demonstrated that MALAT1 
was upregulated in tumor endothelial cells compared with 
normal endothelial cells in glioma. Functional experiments 
indicated that MALAT1 acted as a competing endogenous 
RNA (ceRNA), which may interact with miR-140 to increase 
the permeability of the blood-tumor barrier. By contrast, 
Han et al (59) reported that MALAT1 served as a tumor 
suppressor gene in glioma. Han et al (59) demonstrated that 
the	overexpression	of	MALAT1	caused	a	significant	reduction	

in cell proliferation and invasion by inactivating the extracel-
lular signal-related kinase/MAPK signaling pathway in vitro, 
and in tumorigenicity in subcutaneous and intracranial human 
glioma xenograft models. Nucleotide sequences of MALAT1 
are highly conserved throughout evolution, suggesting that it 
has an important cellular function (49). However, MALAT1 
may not a good therapeutic candidate due to its high basal 
level of expression in normal brains. Therefore, additional 
studies are required to investigate the role of MALAT1 and its 
target genes in glioma.

HOX transcript antisense RNA (HOTAIR). HOTAIR, an 
lncRNA of >2,100-nucleotides in length, is transcribed from 
the antisense of the HOXC gene locus in chromosome 12 (60). 
It has been demonstrated that the overexpression of HOTAIR 
is associated with proliferation, invasion and chemoresistance 
of tumor cells. Therefore, HOTAIR is considered to be a 
poor prognostic factor in various types of cancer, including 
hepatocellular carcinoma, gastric and lung cancer (61,62). 
HOTAIR has been investigated as an important marker for 
molecular subtypes in glioma, which may serve as a potential 
therapeutic target for classical and mesenchymal gliomas (63). 
Zhou et al (64) reported that the expression of HOTAIR was 
associated with overall survival in patients with glioblastoma. 
Additionally, cell cycle arrest and attenuation of invasion in 
glioblastoma cells may be induced by HOTAIR depletion 
and subsequent inhibition of Nemo-like kinase/β-catenin 
axis. Similarly, Fang et al (65) suggested that the inhibition 
of HOTAIR by superparamagnetic iron oxide nanoparticles 
mediated siRNA transfection-induced programmed cell death 
4 expression, which suppressed the proliferation, invasion 
and tumorigenicity of glioma stem cells. Recently, accumu-
lating evidence has suggested that the reciprocal association 
between miRNA and lncRNA is actively involved in cancer 
pathogenesis (66). Ke et al (67) demonstrated that HOTAIR 
was	significantly	upregulated	in	glioma	tissues	and	cell	lines	
compared with normal controls. Furthermore, it was suggested 
that the knockdown of HOTAIR may lead to the inhibition 
of FGF1 by upregulating miR-326, which suppressed tumor 
growth in vitro and in vivo. Yang et al	(68)	also	confirmed	
that the survival time of nude mice was extended in a short 
hairpin-HOTAIR group compared with that of control 
groups. A recent study indicated that HOTAIR, acting as 
an endogenous ‘sponge’, may bind with miR-141 to regulate 
the	epigenetic	modification	of	 the	miRNA‑induced	repres-
sion of spindle and kinetochore associated complex subunit 
2 to promote the proliferation and invasion of glioma 
cells (69). Additionally, Wang et al (70) also demonstrated 
that miR-148b-3p may inhibit glioma cell growth by directly 
downregulating HOTAIR. These data suggest that the inhibi-
tion of HOTAIR activity may potentially be used as a novel 
therapy for the treatment of glioma.

Colorectal neoplasia differentially expressed (CRNDE). 
CRNDE, which is transcribed from the strand opposite to the 
adjacent iroquois homeobox 5 gene in chromosome 16, was 
initially regarded as a pro-oncogenic lncRNA that is upregu-
lated in colorectal cancer (71). CRNDE serves a vital role in 
the development of numerous organs including breast, skin, 
and bronchial epithelium. Notably, an increased expression 

Figure	1.	Long	non‑coding	RNAs	may	be	classified	as	bidirectional,	enhancer,	
intergenic, intronic, sense or antisense based on their genomic location to 
neighboring protein-coding genes.
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of	CRNDE	has	been	identified	in	a	variety	of	solid	tumors,	
including brain tumors (72). Previous studies indicated that the 
expression of CRNDE was markedly increased in primary and 
recurrent gliomas (73). Zhang et al	(74)	identified	that	CRNDE	
was	significantly	overexpressed	in	glioma	tissues,	and	that	the	
expression level of CRNDE was positively associated with 
the pathological grades of glioma. Similarly, Zheng et al (75) 
demonstrated that CRNDE promoted migration, invasion and 
proliferation, and inhibited apoptosis in glioma cells through 
regulating the expression levels of the miR-384/Piwi-like 
RNA-mediated gene silencing 4/signal transducer and 
activator of transcription 3 axis. Consistent with these data, 
Wang et al (76) demonstrated that CRNDE was upregulated 
lncRNA in glioma compared with normal tissues in their study, 
and that the overexpression of CRNDE promoted prolifera-
tion and invasion in glioma through the mechanistic target of 
rapamycin pathway in vitro and in vivo. These results suggest 
that understanding the underlying mechanisms whereby 
CRNDE functions in glioma may reveal a novel therapeutic 
strategy for the treatment of glioma in future.

Tumor‑suppressive lncRNAs
Cancer susceptibility candidate 2 (CASC2). CASC2 has been 
identified	as	a	tumor	suppressor	in	numerous	types	of	solid	
tumors (77). The role of CASC2 in glioma pathogenesis has 
been examined by several studies. Wang et al (77) indicated 
that a low level of CASC2 expression was detected in gliomas. 
The	findings	of	Wang	et al (78) suggested that CASC2 served 
as a tumor suppressor role via regulation of miR-21 in an 
Ago2-dependent manner in gliomas. Furthermore, a study by 
Liao et al (79) demonstrated that the low expression of CASC2 

was associated with malignant characteristics and poor clinical 
prognosis in glioma. The overexpression of CACS2 inhibits 
the	proliferation	of	glioma	cells	and	amplifies	TMZ‑induced	
repression of cell proliferation through the direct inhibition 
of miR-181a. However, whether CACS2 has the same effect 
in vivo has not been reported in glioma. Therefore, the role 
of CACS2 in a mouse model of glioma requires additional 
investigation.

Maternally expressed gene 3 (MEG3). MEG3 is a maternal 
imprinting gene at the delta like non-canonical notch ligand 
1-MEG3 locus on chromosome 14q32.3 in humans (80). A 
number of previous studies demonstrated that MEG3 was 
expressed in a number of normal tissues, with particularly 
marked expression in the brain, but absent or low expression 
in multiple types of tumors, including cervical carcinoma, 
breast adenocarcinoma, meningioma and glioma (81,82). 
Wang et al (83) demonstrated that the expression of MEG3 was 
decreased in tumor tissues compared with adjacent non-tumor 
tissues in gliomas. Furthermore, ectopic expression of MEG3 
inhibited the growth of glioma cells by activation of the p53 
signaling pathway. Liu et al (84) also suggested that MEG3 
served an important role in genotoxic stress-induced glioma 
cell death. Similarly, Li et al (84) indicated that a low level 
of MEG3 expression was observed in glioma tissues. This 
low expression of MEG3 was due to DNA methyltransferase 
1 (DNMT1), which is mediated by hypermethylation of the 
MEG3 promoter. Furthermore, the inhibition of DNMT1 
repressed the growth and resulted in apoptosis of glioma cells 
in a p53-dependent manner. Additionally, Zhang et al (85) also 
demonstrated that MEG3 markedly reduced tumor volume and 

Figure 2. Long non-coding RNAs mediate various biological processes to regulate the progression of glioma. Certain representative lncRNAs function as 
oncogenes	or	tumor	suppressors	in	specific	biological	process	of	glioma.	TSLC1‑AS1,	tumor	suppressor	in	lung	cancer	1‑antisense	1;	HOTAIR,	HOX	transcript	
antisense	RNA;	XIST,	X	inactive	specific	transcript;	CRNDE,	colorectal	neoplasia	differentially	expressed;	MDC1‑AS,	Mediator	of	DNA	damage	check-
point 1-antisense; MEG3, Maternally expressed gene 3; HULC, Hepatocellular carcinoma up-regulated long non-coding RNA; ADAMTS9-AS2, ADAM 
metallopeptidase with thrombospondin type 1 motif 9-antisense 2; NEAT1, nuclear enriched abundant transcript 1.
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the expression of Ki-67 and proliferating cell nuclear antigen 
in vivo.

4. Clinical applications in gliomas

With an improved understanding of their functions, lncRNAs 
are becoming an important focus of study as a novel type 
of cancer biomarker for diagnosis, treatment and prognostic 
prediction. At present, certain lncRNAs have been exam-
ined for their potential clinical applications. It has been 
demonstrated that specific lncRNA profiles are associated 
with tumor subtypes, mutational status and the survival time 
of patients with glioma, based on the analysis of RNA-seq 
datasets from The Cancer Genome Atlas (86). Gliomas with 
oxalosuccinate decarboxylase (IDH1) mutations exhibited a 
unique lncRNA gene expression signature that was different 
from that of tumors exhibiting the wild-type IDH1 gene (87). 
As prognostic markers, the four lncRNAs (AGAP2-AS1, 
TPT1-AS1, LINC01198 and MIR155HG) were suggested to 
have prognostic value for patients with anaplastic gliomas (88). 
Furthermore, lncRNAs have demonstrated potential in appli-
cations for non-invasive detection of cancer. Zhou et al (18) 
identified	that	the	level	of	H19	in	the	plasma	of	patients	with	
gastric cancer was significantly increased compared with 
healthy controls. In addition, the plasma level of H19 was 
decreased markedly in postoperative patients compared with 
that in preoperative patients. The plasma level of H19 may be 
used as a non-invasive method to evaluate glioma progression 
in the future.

lncRNAs,	due	to	their	highly	tissue‑specific	expression	in	
cancer phenotypes, are potential targets for cancer therapy. 
Preclinical studies have demonstrated the therapeutic 
efficacy	of	antisense	oligonucleotides	targeting	cancer‑asso-
ciated lncRNAs, including MALAT-1 and H19 (89,90). At 
present,	certain	lncRNAs	have	been	identified	to	be	asso-
ciated with glioma therapy. Amit et al (91) revealed that 
a construct expressing the diphtheria toxin A-fragment, 
under the control of H19 and insulin-like growth factor 2 
P4	promoters,	demonstrated	anti‑tumoral	efficacy	against	
glioblastoma in vitro and in vivo. The BET bromodomain 
inhibitor, I-BET151 inhibited the growth of glioblastoma cells 
in vitro and in vivo by directly reducing HOTAIR expres-
sion (92). Similarly, Ke et al (67) also reported that HOTAIR 
knockdown inhibited tumor growth. In addition, aberrant 
expression of growth arrest specific transcript 5 (GAS5) 
lncRNA has also been associated with chemoresistance in 
glioma. García-Claver et al (93) revealed that the GAS5 
lncRNA was markedly upregulated following treatment with 
erlotinib (ERL) in ERL-sensitive and -resistant glioma. The 
knockdown of GAS5 sensitized U87MG cells to ERL treat-
ment. Similarly, in tumor tissues and cell lines from patients 
with	TMZ	resistance,	H19	was	significantly	upregulated	(48).	
The silencing of H19 may decrease the half-maximal 
inhibitory concentration values for TMZ, and increase the 
apoptotic rate of glioma cells (48). In summary, these results 
provide experimental basis for the use of lncRNAs as novel 
therapeutic targets in gliomas. lncRNA-based therapeutics 
may represent a novel direction for the treatment of glioma, 
although	studies	concerning	their	safety,	efficacy	and	more	
efficient	delivery	systems	are	required.

5. Conclusion and future perspectives

LncRNAs may be regulators in the determination of the 
development of particular organs, rather than simply func-
tioning as housekeeping genes. In contrast to other tissues, 
the brain expresses high levels of numerous lncRNAs, which 
are involved in neuro-development (94). Their deregulation 
may cause neurological disorders and brain tumors (95). As 
aforementioned, lncRNAs function as oncogenes or tumor 
suppressors by interacting with DNA, mRNA, ncRNA and 
proteins, and regulate the proliferation, migration, invasion, 
apoptosis, angiogenesis and stemness of glioma cells (Fig. 2). 
Recent studies of lncRNAs have highlighted their vital roles in 
the pathogenesis and progression of glioma. Furthermore, the 
sensitivity and reliability of RNA-based molecular technolo-
gies and tools to detect and target lncRNAs in glioma have 
improved (96). However, it should be noted that the current 
knowledge base regarding the biological roles of lncRNAs 
in	glioma	is	primarily	concerned	with	the	identification	and	
quantification	of	the	expression	levels	of	different	lncRNAs	
and associated molecules in tumor and normal tissues. To date, 
the in vivo	functions	of	a	large	proportion	of	the	identified	
lncRNAs remain unknown. Therefore, a short-term goal would 
be to investigate the molecular, cellular and physiological func-
tions of lncRNAs and their roles in pathogenesis of glioma, 
which will provide a foundation for developing novel medical 
therapies that target lncRNAs. High throughput technologies 
and massively parallel sequencing tools, in combination with 
bioinformatics methods, would assist in identifying lncRNA 
candidate targets whose dysregulation serves a pivotal role 
in the pathogenesis and progression of glioma. Genetically 
engineered mouse models would also be an indispensable tool 
to elucidate the functions and mechanisms of lncRNA genes 
in glioma in vivo.	In	summary,	the	identification	of	lncRNAs	
has revealed an additional facet of glioma tumorigenesis. 
Understanding the precise molecular mechanisms whereby 
lncRNAs function is important to advance lncRNA-based 
diagnosis, prognosis and therapeutic interventions against 
glioma.
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