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Abstract. Transarterial chemoembolization (TACE) is an 
established therapeutic approach for the treatment of hepa-
tocellular carcinoma (HCC). Although patients who undergo 
TACE may have prolonged survival, there are indications that 
the malignancy of residual HCC tissue can increase subsequent 
to the procedure. Although hypoxia, which occurs during 
TACE due to ischemia, is known to contribute to angiogen-
esis, little is known with regard to the undesirable effects of 
chemotherapeutic agents on residual HCC cells. Doxorubicin 
is one of the most commonly used drugs in TACE. The aim 
of the present study was to analyze alterations in Hep3B and 
HepG2 human HCC cell lines surviving doxorubicin treatment 
in vitro. Initially, the toxic concentration range was determined, 
and doxorubicin was subsequently applied in concentrations 
that killed >80% of the HCC cells. During the first days 
subsequent to treatment, surviving cells had higher expres-
sion levels of the epithelial‑mesenchymal transition marker 
SNAIL, and exhibited increased migratory activity compared 
with control cells. At 3  weeks after the first doxorubicin 
treatment, surviving HCC cells tolerated significantly higher 
doxorubicin concentrations compared with control cells. As a 
potential explanation for this doxorubicin resistance, signifi-
cantly increased mRNA expression levels of ATP‑binding 
cassette ABCB1 (multidrug resistance protein 1) and ABCC1 
(multidrug resistance‑associated protein 1) were observed by 
reverse transcription‑quantitative polymerase chain reaction. 
In summary, these findings indicate that, following TACE 
treatment, hypoxia as well as doxorubicin may induce a more 

malignant phenotype in surviving HCC cells and decrease 
susceptibility to further chemotherapeutic treatment.

Introduction

Hepatocellular carcinoma (HCC) is the fifth most common 
type of cancer and the third leading cause of cancer‑associated 
mortality worldwide  (1), and the incidence continues to 
increase in numerous countries (2). In the majority of cases, 
patients have a background of chronic liver disease leading to 
liver cirrhosis, which is the main risk factor for the develop-
ment of HCC (3,4). Currently, surgical resection and liver 
transplantation are the only curative treatment options (5).

Transarterial chemoembolization (TACE) is a minimally 
invasive treatment that is frequently used to reduce tumor 
burden in inoperable situations or as bridging therapy prior 
to transplantation. Although TACE may permit local tumor 
control and increase survival time in patients with interme-
diate HCC (Barcelona Clinic Liver Cancer stage B) (6), there 
is evidence that TACE enhances angiogenesis in HCC (6,7). 
While hypoxia, which occurs during TACE due to ischemia, 
is known to contribute to angiogenesis, little is known about 
the undesirable effects of chemotherapeutic agents on residual 
HCC cells subsequent to TACE (8).

The anthracycline doxorubicin is one of the most 
commonly used drugs in TACE (9). Its main mechanisms of 
action are intercalation into DNA, inhibition of topoisomerase 
II and generation of reactive oxygen species (ROS), inducing 
apoptotic pathways (10,11). While a large proportion of doxo-
rubicin is eliminated from the body unchanged, the main 
pathway of doxorubicin metabolism is two‑electron reduc-
tion by cytosolic reductases, of which carbonyl reductase 1 
is the most important in the liver (10). However, doxorubicin 
resistance in HCC cells is predominantly associated with the 
expression of adenosine triphosphate‑binding cassette (ABC) 
transporters such as ABCB1 (multi‑drug resistance gene; 
MDR1) or ABCC1 (multidrug resistance‑associated protein 1; 
MRP1) (10,12‑19).

Previous studies concerning the drug resistance of HCC 
cells have used doxorubicin‑resistant cell lines that were 
generated through constant exposure to rising levels of 
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doxorubicin (13,20‑22). By contrast, the aim of the present 
study was to analyze the effects of single‑step doxorubicin 
treatment on surviving HCC cells in vitro, mimicking the situ-
ation of HCC cells surviving TACE treatment.

Materials and methods

Cells and cell culture. HCC HepG2 (cat. no.  HB‑8065) 
and Hep3B (cat. no.  HB‑8064; American Type Culture 
Collection, Manassas, VA, USA) cell lines were cultured as 
described previously (23). Briefly, cells were maintained in 
high‑glucose Dulbecco's modified Eagle's medium (DMEM) 
(Sigma‑Aldrich, Taufkirchen, Germany) supplemented with 
penicillin (400 U/ml), streptomycin (50 µg/ml), L‑glutamine 
(300 µg/ml) and 10% fetal calf serum (FCS; Sigma‑Aldrich; 
Merck Millipore, Deisenhofen, Germany) and were passaged 
at a 1:5 ratio every 3 days. To select cells that survive treatment 
with a defined doxorubicin dose (1 µM), HepG2 and Hep3B 
cells were incubated with doxorubicin for 48 h. Subsequently, 
medium was removed, the cell culture dishes were carefully 
washed with PBS to remove dead cells, and surviving HCC cells 
(HCCsurv) were further cultured in normal, doxorubicin‑free 
medium. Control cells (HCCctr) were continuously cultured in 
normal medium without doxorubicin. Subsequently, HCCsurv 
and HCCctr cells were cultured in parallel and were split when 
they became confluent. In the two HCCsurv cell lines this 
occurred after 1 week. Subsequent to splitting, HCCsurv cells 
were further cultured and regularly passaged in parallel with 
HCCctr cells for another 2 weeks.

Microscope images were captured using an Olympus™ 
CKX41 microscope (Olympus Corporation, Tokyo Japan) with 
the ALTRA 20 Soft Imaging System™ and CellA software 
version 2.6 (Olympus Soft Imaging Solutions GmbH, Münster, 
Germany). Images were processed using IrfanView™ software 
version 4.36 (Irfan Skiljan, Jajce, Bosnia).

Analysis of cell viability and proliferation. Cells were seeded 
in 6‑well plates (200,000/well) or 96‑well plates (30,000/well), 
respectively. After 24 h, analysis of lactate dehydrogenase 
(LDH) secretion into the supernatant (Cytotoxicity Detection 
Kit PLUS; Roche Diagnostics GmbH, Mannheim, Germany) 
and a colorimetric XTT assay (Roche Diagnostics GmbH) 
were used to analyze the viability of HCC cells subsequent 
to treatment with doxorubicin as described (24). Cell prolif-
eration was assessed using the xCELLigence impedance 
measurement system (Roche Diagnostics GmbH) according to 
the manufacturer's protocol.

Analysis of cell migration. The migratory activity of HCC cells 
was quantified using Cultrex 96‑Well Cell Migration assay 
(Trevigen, Gaithersburg, MD, USA) as described (25). Briefly, 
HCC cells were seeded into the upper compartment of the 
provided 96‑well micropore plate (10,000 cells/well) in DMEM. 
The lower compartment was filled with DMEM to study spon-
taneous cell migration. Subsequent to incubation at 37˚C for 
5 h, cell migration was quantified by fluorometry with an EMax 
Microplate Reader (MWG Biotech, Ebersberg, Germany).

Analysis of mRNA expression. Total cellular RNA was isolated 
from doxorubicin‑treated and control HepG2 and Hep3B cells 

using the RNeasy Kit (Qiagen GmbH, Hilden, Germany) 
according to the manufacturer's instructions. Reverse 
transcription was performed as described previously  (24). 
Quantitative polymerase chain reaction was performed using a 
LightCycler Real‑Time PCR System (Roche Diagnostics) (24). 
In each well, 2 µl of cDNA template was added to 8 µl master 
mix containing primers and SYBR Green (Bioline GmbH, 
Luckenwalde, Germany). Melting, annealing and amplifica-
tion were performed at 95˚C (5 sec), 58˚C (10 sec) and 72˚C 
(8  sec), respectively and repeated for 45  cycles. ABCB1, 
ABCC1 and SNAIL mRNA expression were analyzed using 
QuantiTect Primer assays according to the manufacturer's 
protocol (Qiagen GmbH, Hilden, Germany). Amplification 
of cDNA derived from 18S rRNA was used for normaliza-
tion  (24), with the following primer sequences: Forward, 
5'‑AAA​CGG​CTA​CCA​CAT​CCA​AG‑3', and reverse, 5'‑CCT​
CCA​ATG​GAT​CCT​CGT​TA‑3'. Results were evaluated using 
the 2‑ΔΔCq method (26). Analyses were performed in triplicates 
and experiments were repeated three times.

Statistical analysis. Values are presented as the mean ± stan-
dard error of the mean. Comparison between groups was 
made using the unpaired Student's t‑test or two‑way analysis 
of variance. P<0.05 was considered to indicate a statistically 
significant difference. All calculations were performed using 
the statistical computer package GraphPad Prism version 
6.01 for Windows (GraphPad Software, Inc., La Jolla, CA, 
USA).

Results

Selection of HCC cells surviving doxorubicin treatment. The 
present study analyzed the effective dose range of doxorubicin 
on the HepG2 and Hep3B human HCC cell lines. Analysis of 
LDH release into the supernatant (Fig. 1A) and XTT activity 
(Fig. 1B) showed that doxorubicin dose‑dependently reduced 
the viability of HCC cells during the 48 h incubation time. 
Starting at a dose of 1 µM in HepG2 cells and 0.5 µM in 
Hep3B cells, doxorubicin caused a significant increase of 
LDH levels in the supernatant (2.9‑fold, P=0.0001 in HepG2; 
1.8‑fold, P=0.004 in Hep3B). XTT activity was signifi-
cantly reduced by incubation with 0.125 µM doxorubicin in 
HepG2 cells (60%; P=0.0075) and Hep3B cells (83%‑fold; 
P=0.0003). The determined toxic dose ranges were compa-
rable to previous in vitro studies using the same HCC cell 
lines (27‑32). Phase‑contrast microscopy confirmed that, after 
48 h incubation with a concentration of 1 µM doxorubicin, 
10‑20% of HCC cells survived (Fig. 1C). For the next in vitro 
model that was designed to mimic the circumstances of TACE, 
doxorubicin was used at a concentration of 1 µM, which was 
in the range of doxorubicin concentrations found in human 
HCC explants following the administration of TACE (33,34). 
HCC cells surviving incubation with this doxorubicin dose 
for 48 h (HCCsurv) and control cells (HCCctr) were generated 
as aforementioned.

Analysis of surviving HCC cells in the early phase following 
doxorubicin treatment. Monitoring of cell growth and 
morphology with phase‑contrast microscopy revealed 
that HCCsurv cells developed a spindle‑like, outstretched, 
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mesenchymal shape within the first 6 days after treatment with 
doxorubicin (Fig. 2A). By contrast, HepG2ctr and Hep3Bctr did 
not change their characteristic, cubic and compact cell form 
during the whole observation period. Additionally, expres-
sion of the epithelial‑mesenchymal transition (EMT) marker 
SNAIL was 1.9‑fold (P=0.03) increased in HepG2surv compared 
to HepG2ctr cells (Fig. 2B). Also in Hep3Bsurv SNAIL expres-
sion was 5.2‑fold (P=0.0002) higher compared with Hep3Bctr 
cells (Fig. 2B). Functional analysis revealed similar rates of 
proliferation of HCCsurv and HCCctr cells (data not shown). 
However, HCCsurv cells exhibited significantly increased 
migration in Boyden chamber assays compared to HCCctr 
cells (Fig. 2C). Migration ability in HepG2surv was 2.4‑fold 
increased (P=0.001) compared with HepG2ctr. Hep3Bsurv 
exhibited a 3.3‑fold increase (P=0.009) in migratory potential 
compared with Hep3Bctr.

Analysis of surviving HCC cells 3 weeks after doxorubicin 
treatment. After ~1 week, HCCsurv cells became confluent and 
required splitting. Subsequently, HCCsurv cells were further 

cultured in parallel with HCCctr cells for another 2 weeks. 
During that time, the HCCsurv cells reverted to their original 
shape. The spindle‑like, outstretched cell form disappeared 
and the HepG2surv and Hep3Bsurv no longer differed from 
their respective control cells (Fig. 3A). SNAIL expression 
and migratory potential were similar in HCCsurv and HCCctr 
cells (data not shown). However, 3 weeks following doxoru-
bicin treatment, HCCsurv cells exhibited significantly higher 
expression levels of MDR1 (ABCB1) and MRP1 (ABCC1) 
compared to HCCctr cells (Fig. 3B). ABCB1 expression was 
1.7‑fold increased in HepG2surv (P=0.029) and 3.4‑fold in 
Hep3Bsurv (P=0.002) compared with their respective control 
cells. ABCC1 expression was increased 2.1‑fold in HepG2surv 
(P=0.016) and 1.4‑fold in Hep3Bsurv (P=0.09) cells compared 
with their respective control cells. Consistently, HCCsurv cells 
tolerated significantly increased doxorubicin concentrations 
compared with HCCctr cells (Fig. 3C). Although XTT‑activity 
was reduced to 33% in HepG2ctr treated with 0.5 µM doxoru-
bicin, HepG2surv exhibited an XTT‑activity of 74% (P=0.0001) 
upon incubation with the same doxorubicin dose. Similarly, 

Figure 1. Selection of HCC cells surviving DX treatment. HepG2 and Hep3B human HCC cell lines were treated with the indicated concentrations of DX 
for 48 h. (A) Analysis of LDH leakage of (a) HepG2 and (b) Hep3B cells into the supernatant. DX caused a dose‑dependent increase in LDH levels in the 
supernatants of the two cell lines. (B) Quantification of XTT activity as a measure of cell viability of (a) HepG2 and (b) Hep3B cells. DX treatment induced a 
dose‑dependent decrease in XTT activity in the two cell lines. (C) Phase‑contrast microscopy of ctrl cells and cells treated with 1 µM DX: (a) HepG2 and (b) 
Hep3B cells (magnification, 40x). In the two cell lines DX treatment caused a marked reduction of cell density, indicative of induced toxicity. *P<0.05 vs. ctrl 
group. HCC, hepatocellular carcinoma; DX, doxorubicin; LDH, lactate dehydrogenase; ctrl, untreated control.
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impairment of XTT‑activity in response to 0.5 µM doxo-
rubicin in Hep3Bsurv cells (64%) was significantly lowered 
(P=0.0006) compared with the reduction of XTT‑activity 
(34%) in Hep3Bctr cells.

Discussion

The aim of the present study was to analyze human HCC cells 
surviving doxorubicin treatment in vitro, in an experimental 

setting resembling the circumstances of HCC cells surviving 
doxorubicin application during TACE. For this, two different 
human HCC cell lines were incubated with doxorubicin at a 
concentration that killed >80% of the tumor cells within 48 h. 
The applied concentration of doxorubicin was in the range 
of tissue drug concentrations found in experimental TACE 
models in vivo, as well as in HCC explants of patients after 
the administration of TACE (33,34). After 2 days, cell culture 
of surviving HCC cells was continued without doxorubicin 
exposure to mimic the situation of a single doxorubicin dose 
application during TACE.

Applying these experimental conditions, the present 
study observed an increased expression of the EMT marker 
SNAIL and morphological changes to a mesenchymal 
cell shape in HCC cells surviving doxorubicin exposure. 
Additionally, doxorubicin‑surviving HCC cells exhibited 
increased migratory activity. Expression of SNAIL has been 
found to positively correlate with poor clinical outcomes in 
different types of cancer, including HCC (35). Furthermore, 
several studies indicate that EMT is a crucial event in HCC 
progression, being associated with tumor cell invasion and 
metastasis (36). Accordingly, a previous study reported that 
the incidences of poorly differentiated histology and intra-
hepatic metastases are significantly increased in post‑TACE 
HCC tissues compared with in HCC tissues of patients who 
have not undergone TACE treatment  (37). Furthermore, 
Zen et al (38) found a combined hepato‑cholangiocellular 
phenotype was more frequently detected in HCC tissues after 
TACE compared to untreated HCC. In the context of these 
previous studies and the present in vitro data, one may hypoth-
esize that doxorubicin application during TACE promotes a 
more malignant phenotype in surviving HCC cells. Currently, 
the present study can only speculate why the alterations in 
cell morphology, SNAIL expression and migratory activity 
in doxorubicin‑surviving HCC cells regressed with prolonged 
cell culture. It may indeed have been an intermediate effect, 
or trypsinization and splitting of the cells may have triggered 
this reversion.

However, for up to 3 weeks after a single doxorubicin appli-
cation, surviving HCC cells were significantly less susceptible 
to retreatment with doxorubicin. As a potential explanation 
for this increased chemotherapy resistance, significantly 
increased expression levels of MDR1 (ABCB1) and MRP1 
(ABCC1) were found; these genes are known to contribute to 
multidrug resistance in HCC (12‑15,17,18,20). MRP1, which is 
overexpressed in HCC (39), performs an important role in the 
intrinsic multidrug resistance of HCC and is also associated 
with an aggressive tumor phenotype and has been suggested 
to indicate a progenitor cell origin (18).

Hypoxia, which also occurs after TACE through ischemia, 
is known to induce EMT and to enhance migration and therapy 
resistance in HCC cells (40,41). The findings of the present 
study suggest that the chemotherapeutic agent doxorubicin 
may also cause unfavorable alterations in surviving HCC cells. 
These findings are of importance for the understanding of HCC 
recurrence observed subsequent to TACE. Future studies are 
required to analyze whether maintaining doxorubicin levels 
for a prolonged period, such as with doxorubicin‑eluting beads, 
or switching to other anticancer agents may omit certain 
pathological alterations found in the present in vitro model. 

Figure 2. Analysis of surviving HepG2 and Hep3B HCC cells in the early 
phase subsequent to doxorubicin treatment. (A) Phase‑contrast microscopy 
of (a) untreated control cells (HepG2ctrl and Hep3Bctrl) and (b) cells surviving 
1 week after doxorubicin treatment (HepG2surv and Hep3Bsurv; magnification, 
100x). The two HCCsurv cell lines exhibited spindle‑like, outstretched cell 
forms, whereas HepG2surv cells retained cubic, compact forms. (B) Analysis 
of SNAIL mRNA levels by reverse transcription‑quantitative polymerase 
chain reaction in (a) HepG2 and (b) Hep3B cells. HCCsurv cells exhibited 
significantly higher SNAIL expression than HCCctr cells. (C) Analysis of 
migratory potential by Boyden Chamber assays in (a) HepG2 and (b) Hep3B 
cells. HepG2surv cells exhibited significantly higher migratory activity than 
HepG2ctr cells. *P<0.05 vs. ctrl group. surv, surviving cells; ctrl, untreated 
control.
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Furthermore, it must be investigated whether such altered ther-
apeutic strategies may improve the outcome of HCC patients 
following TACE treatment, and this in vitro model may be used 
for preclinical analyses addressing these questions.
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