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Abstract. Non-small cell lung cancer (NSCLC) is the most 
commonly diagnosed subtype of lung cancer, and the leading 
cause of cancer-associated mortalities worldwide. However, 
NSCLC is typically diagnosed at a late stage of disease due 
to a lack of effective diagnostic methods. In the present study, 
the GSE19804 dataset was obtained from the Gene Expression 
Omnibus, and a number of differentially expressed genes were 
identified between NSCLC and adjacent normal tissues. Based 
on functional and pathway enrichment analyses, five hub genes 
(cell-division cycle 20, centromere protein F, kinesin family 
member 2C, BUB1 mitotic checkpoint serine/threonine kinase 
and ZW10 interacting kinetochore protein) were selected. 
After verifying that the mRNA level of these hub genes was 
also upregulated in NSCLC tissues by using the GSE10072 
dataset and in cell lines by reverse transcription-quantitative 
polymerase chain reaction. The diagnostic and prognostic 
potentials of these five gene candidates were evaluated using 
receiver operating characteristic curves and survival analyses. 
Taken together, the present study identified five candidates that 
are overexpressed in NSCLC tissues and could also serve as 
potential diagnostic and prognostic biomarkers for patients 
with NSCLC.

Introduction

Lung cancer is the leading cause of cancer-associated mortali-
ties worldwide, with ~1.6 million new cases each year (1). 
Non-small cell lung cancer (NSCLC) accounts for ~85% of all 
lung cancer cases, which consists of three major histological 
subtypes, including adenocarcinoma, squamous cell carcinoma 

and large cell carcinoma (2). Due to a lack of methods for 
detection of NSCLC that are suitable for the general popu-
lation, NSCLC is typically diagnosed at late stages of the 
disease where metastasis is present (3). Therefore, it is of great 
importance to elucidate the molecular mechanisms underlying 
the pathogenesis of NSCLC and identify effective biomarkers 
for early diagnosis and prognosis.

Microarray technology is a high-throughput platform used 
to analysis gene expression and has been broadly used to obtain 
gene alteration during tumorigenesis and identify prognostic 
biomarkers in patients with cancer (4-6). However, genes iden-
tified by one cohort may be difficult to be confirmed in other 
cohorts (7). Therefore, in order to address this problem, it is 
necessary to validate genes in several individual studies.

In the present study, the aim was to identify the potential 
genes that serve as diagnostic and prognostic biomarkers for 
patients with NSCLC through retrieving the microarray data 
from public databases and comprehensive bioinformatics 
analysis. Gene expression profiles between tumor and adjacent 
normal tissues were illustrated, and differentially expressed 
genes (DEGs) based on the GSE19804 dataset were identified. 
By combining functional pathway and protein‑protein interac-
tion (PPI) analyses, five hub genes were selected, including cell 
division cycle 20 (CDC20), centromere protein F (CENPF), 
kinesin family member 2C (KIF2C), BUB1 mitotic checkpoint 
serine/threonine kinase (BUB1) and ZW10 interacting kineto-
chore protein (ZWINT). Furthermore, the levels of mRNA 
expression of these genes were validated using an additional 
dataset (GSE10072) and NSCLC cell lines. Receiver oper-
ating characteristic (ROC) curves and survival analyses were 
employed to evaluate the diagnostic and prognostic potentials 
of five hub genes.

Materials and methods

Microarray data. The gene expression profiles of GSE19804 
and GSE10072 were obtained from the Gene Expression 
Omnibus (GEO, http://www.ncbi.nlm.nih.gov/geo). These two 
gene expression datasets were analyzed using the Affymetrix 
platform (Affymetrix Human Genome U133 Plus 2.0 Array; 
Thermo Fisher Scientific, Inc., Waltham, MA, USA). The 
GSE19804 gene expression profile submitted by Lu et al (8) 
included 60 pairs of clinical NSCLC samples, which consisted 
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of 56 adenocarcinoma, 3 bronchioloalveolar carcinoma, and 
1 squamous carcinoma, and corresponding adjacent normal 
tissue samples. The GSE10072 gene expression profile 
consisted of 58 adenocarcinoma samples (16 non-smokers, 
18 former smokers and 24 current smokers) and 49 non-tumor 
samples (15 non-smokers, 18 former smokers and 16 current 
smokers) (9).

Processing of data. Raw microarray data files of the two 
datasets were downloaded from the GEO database. GEO2R 
(http://www.ncbi.nlm.nih.gov/geo/geo2r/), an online tool that 
compares two or more groups of samples in the same experi-
mental setting, was used to analyze the raw data (10). False 
Discovery Rate (FDR) adjusted P‑value of 0.05 and |logFC|>1 
were set as the cut-off criteria.

Functional and pathway enrichment analyses of DEGs. Gene 
ontology (GO) analysis was processed by the Database for 
Annotation, Visualization and Integrated Discovery (DAVID) 
(http://david.abcc.ncifcrf.gov/) to elucidate the biological 
function of genes in NSCLC. Kyoto Encyclopedia of Genes 
and Genomes (KEGG) pathway enrichment analysis was 
performed to identify DEGs using the DAVID database. 
P<0.05 was set as the threshold.

Construction of PPI network and module analysis. The func-
tional interaction of proteins can shed light on the molecular 
mechanism underlying NSCLC. The online database STRING 
(version 10.0, http://string.embl.de/) can be used in the evalu-
ation of PPIs (11). The STRING database includes 9,643,763 
proteins from 2,031 organisms. In order to evaluate the PPIs 
among the DEGs, DEGs were mapped to the STRING data-
base. A confidence score >0.7 was selected as significant. In 
addition, the degree of the nodes in PPI network was calcu-
lated, and the nodes with a higher degree were selected as 
hub proteins. Furthermore, Cytoscape software (version 3.4.0, 
http://cytoscape.org/) was employed to construct PPI networks. 
The plug-in Molecular Complex Detection (MCODE) was 
performed to screen modules of the PPI network with the 
threshold set as follows: MCODE scores >10. The GO and 
KEGG analysis of genes in the module was performed using 
the DAVID online tool as aforementioned.

Cell culture. The cell lines, human bronchial epithelial (HBE1), 
A549 and H322, were gifted from Professor Zeyao Tang 
(Dalian Medical University, Dalian, China) (12). The cells 
were maintained in high‑glucose Dulbecco's modified Eagles 
medium (Gibco; Thermo Fisher Scientific, Inc.) supplemented 
with 10% fetal bovine serum (GE Healthcare Life Sciences, 
Logan, UT, USA), 100 U/ml penicillin and 100 µg/ml strepto-
mycin (Gibco; Thermo Fisher Scientific, Inc.). The cells were 
incubated at 37˚C in a humidified chamber with 5% CO2.

Reverse transcription‑quantitative polymerase chain reac‑
tion (RT‑qPCR). Total RNA from cells lines, including HBE1, 
A549, and H322, were extracted by using the TRIzol® regent 
(Invitrogen; Thermo Fisher Scientific, Inc.). The cDNA of 
mRNA was synthesized using the PrimeScript™ RT reagent 
kit (Takara Bio Inc., Otsu, Japan). RT‑qPCR was carried 
out using the 7500 Real-time PCR system (Thermo Fisher 

Scientific, Inc.) at 95˚C for initial denaturation for 10 min, 
followed by 40 cycles at 95˚C for 15 sec, and 60˚C for 1 min 
with the SYBR® Green mix (Takara Bio Inc., Japan). Data 
were analyzed by using the comparative Cq (ΔΔCq) to deter-
mine the relative gene expression, and GAPDH was used as 
an endogenous control (13). The primers were synthesized 
by Shanghai GenePharma Co., Ltd., (Shanghai, China). The 
following primer pairs was used to measure the amount of 
GAPDH: Forward, 5'-GGA GCG AGA TCC CTC CAA AAT-3' 
and reverse, 5'-GGC TGT TGT CAT ACT TCT CAT GG-3'.

ROC analysis. ROC curve analysis was performed using 
the MedCalc software packages (version 16.8.4; MedCalc 
Software bvba, Ostend, Belgium). The area under the curve 
(AUC) values with 95% confidence interval (CI) were calcu-
lated to evaluate the overall performance of the diagnostic 
tests.

Survival analysis of hub genes. Kaplan-Meier plotter (www.
kmplot.com), an online survival analysis tool, was used to 
evaluate the prognostic value of biomarkers of breast, ovarian, 
lung and gastric cancer (14). Patients with NSCLC were 
divided into high and low expression groups using the median 
level, which was included in the low expression group, as the 
cutoff value. To analyze the association between gene expres-
sion and clinical outcomes, Kaplan-Meier plots was employed 
to compare the overall survival ratio between the two groups, 
and the log rank P-value and hazard ratio (HR) with 95% 
confidence intervals (CI) were calculated and displayed.

Statistical analysis. The data are expressed as the mean ± stan-
dard deviation of three replicates. Statistical differences were 
assessed using one-way analysis of variance test and Tukey's 
multiple comparisons test. SPSS software (version 17.0; SPSS, 
Inc., Chicago, IL, USA) was used to analyze the data. P<0.05 
was considered to indicate a statistically significant difference.

Results

Identification of DEGs. By using the threshold (adjusted 
P‑vale of 0.05 and fold change >2), a total of 1,412 DEGs were 
identified in the GSE19804 dataset. Among these genes, 453 
genes were upregulated, and 959 genes were downregulated. 
A heat-map illustrating the expression of the top 50 up and 
downregulated DEGs is shown in Fig. 1.

Analysis of GO terms and KEGG pathway enrichment. 
To further elucidate the functions of the identified DEGs in 
NSCLC, GO and KEGG pathway enrichment analyses were 
employed. As shown in Table I, GO analysis of upregulated 
DEGs in NSCLC indicated that these genes were associated 
with ʻmitotic cell cycle ,̓ ʻmitotic nuclear divisionʼ and the 
ʻcell cycle process .̓ KEGG pathway enrichment analysis of 
DEGs revealed that upregulated DEGs were largely enriched 
in cell cycle and extracellular matrix (ECM)-receptor inter-
action pathways, while downregulated DEGs were enriched 
in ʻmalariaʼ and ʻtumor necrosis factor (TNF) signaling 
pathwaysʼ (Table I). These results suggest that upregulated 
DEGs in NSCLC may be largely involved in the progression 
of the cell cycle.
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Construction of PPI network and selection of modules. Based 
on the analysis of DEGs in the STRING database, a PPI 
network of DEGs containing 1,291 nodes and 2,854 edges was 
constructed. By using the plug‑in MCODE in Cytoscape, the 
top 3 modules in the PPI network was obtained (Fig. 2A-C), 
and KEGG analysis of genes in the corresponding modules 
was also performed (Fig. 2D-F). Consistent with the KEGG 
analysis of DEGs, function enrichment analysis of genes in 
the top 3 modules indicated that these hub genes were also 
enriched in ʻcell cycle progressionʼ (Fig. 2E). Therefore, the 
present study focused on the 5 hub genes associated with cell 
cycle progression including CDC20, CENPF, KIF2C, BUB1 
and ZWINT.

Validation of 5 selected hub genes. Although 5 hub genes were 
selected by KEGG analysis the genes in these 3 modules, these 
5 selected genes may be limited to the diagnosis or prognosis 
for non-smoking female patients with NSCLC. In order to 
elucidate whether these genes can be non-selectively applied 
to patients with NSCLC, as previously reported (4,15), an 
additional dataset and RT-qPCR were employed to validate the 
mRNA level of these genes in NSCLC samples and cell lines. 
Since the GSE19804 dataset included 56 non-smoking female 
adenocarcinoma samples (8), the present study searched for 
a dataset that included adenocarcinoma and simultaneously 
excluded the effects of sex and smoking. Based on the afore-
mentioned criterion, the GSE10072 database was identified 
as suitable. Using the GSE10072 dataset, it was detected that 

the mRNA level of these 5 genes were also overexpressed in 
NSCLC samples (Fig. 3A-E). In addition, the RT-qPCR results 
also validated that the mRNA level of these genes were over-
expressed in NSCLC cell lines including A549 and H322 (16), 
when compared with the control cell line HBE1 (Fig. 3F). H322 
may be identical to another uncommonly used NSCLC cell 
line H322M (https://web.expasy.org/cellosaurus/CVCL_1556). 
Taken together, these results suggest that these 5 hub genes 
may be novel gene signatures for patients with NSCLC.

ROC analysis of selected hub genes. To evaluate the diagnostic 
value of these 5 hub genes, ROC analysis was conducted based 
on these 2 datasets. The present study demonstrated that the 
sensitivity and specificity of these 5 genes was relatively high. 
As shown in Fig. 4A, the AUC values for CDC20, CENPF, 
KIF2C, BUB1 and ZWINT were 0.927, 0.906, 0.887, 0.876, and 
0.937, respectively in the GSE19804 dataset, while the values 
were 0.958, 0.944, 0.923, 0.897, and 0.942, respectively in the 
GSE10072 dataset (Fig. 4B). These results indicate that these 
5 hub genes may be sensitive and specific in distinguishing 
NSCLC tissues from normal tissues.

Kaplan‑Meier plotter analysis of selected hub genes. The 
prognostic value of these 5 genes in PPI network was evalu-
ated using the Kaplan-Meier plotter as previous described (14). 
Based on the low and high expression of each hub gene, the 
overall survival of patients with NSCLC was obtained for 
each gene. As shown in Fig. 5, the high mRNA expression of 

Figure 1. Heat map of the top 100 differentially expressed genes, including 50 up‑ and downregulated genes. Red, upregulation; blue, downregulation. NSCLC, 
non-small cell lung cancer. 
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Figure 2. Top 3 modules obtained from the protein‑protein interaction network of differentially expressed genes. (A) Module 1 and (B) its enriched KEGG 
pathways. (C) Module 2 and (D) its enriched KEGG pathways. (E) Module 3 and (F) its enriched KEGG pathways. KEGG, Kyoto Encyclopedia of Genes and 
Genomes. 

Table I. Functional and pathway enrichment analysis of upregulated and downregulated genes in non-small cell lung cancer.

Category Term/gene function Gene count P-value 

Upregulated
  GO
    0000278 Mitotic cell cycle 62 1.1x1014

    0007067 Mitotic nuclear division 39 1.2x1012

    0022402 Cell cycle process 75 1.9x1012

    005130 Cell division 45 2.2x1012

    0044772 Mitotic cell cycle phase transition 42 3.2x1012

    0000793 Condensed chromosome 22 7.9x108

    0005578  Proteinaceous extracellular matrix 27 2.1x106

    0005819  Spindle 24 2.3x106

    0000776 Kinetochore 15 5.4x106

  KEGG
    hsa04110 Cell cycle 19 1.0x109

    hsa04512 ECM-receptor interaction 14 1.7x107

    hsa04115 P53 signaling pathway 12 6.0x107

    hsa04974 Protein digestion and absorption 11 5.6x105

    hsa04510 Focal adhesion 15 5.5x104

  Downregulated
    hsa05144 Malaria 15 2.2x107

    hsa04668 TNF signaling pathway 19 1.6x105

    hsa04530 Tight junction 21 5.4x105

    hsa04514 Chemokine signaling pathway 23 5.4x104

    hsa04360 Axon guidance 17 1.6x103 

GO, gene ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; ECM, extracellular matrix; TNF, tumor necrosis factor.
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CDC20 (HR, 1.82; CI, 1.6‑2.07) was associated with a poorer 
overall survival for patients with NSCLC. Similar associations 
were detected for: CENPF (HR, 1.57, CI, 1.38-1.78), KIF2C 
(HR, 1.78; CI, 1.57‑2.03), BUB1 (HR, 1.83; CI, 1.61‑2.09) and 
ZWINT (HR, 1.5; CI, 1.32‑1.71). These results indicate that 
these 5 hub genes may serve as potential prognostic biomarkers 
for patients with NSCLC.

Discussion

In the present study, the mRNA level of five genes identified 
from the GSE19804 dataset, CDC20, CENPF, KIF2C, BUB1 
and ZWINT, were demonstrated to be upregulated in NSCLC 
samples. This was validated using the GSE10072 dataset 
and RT‑qPCR. By employing ROC curve and Kaplan‑Meier 
plotter analyses, it was further demonstrated that these five 
candidates were sensitive and specific in distinguishing 
NSCLC tissues from normal tissues, and these candidate 
genes were associated with a poor overall survival in patients 
with NSCLC.

Although advances in surgery and chemotherapy have 
improved the prognosis of patients with NSCLC, NSCLC 
remains the leading cause of cancer-associated mortalities 
worldwide (1). However, due to a lack of specific biomarkers 
and typical symptoms, patients with NSCLC are commonly 
diagnosed at late stages of the disease (3). Therefore, it is 
important to elucidate the molecular mechanisms of NSCLC 
and identify more specific biomarkers for patients with 
NSCLC.

A combination of high-throughput sequencing and bioin-
formatics analysis has been previously employed to search 
for sensitive biomarkers for patients with NSCLC (4,8). In 
the present study, in order to identify potential biomarkers of 
NSCLC, the gene expression profiles in the dataset GSE19804 
were obtained and DEGs in NSCLC tissues were subsequently 
identified (Fig. 1). Using a combination of PPI analysis and 
subsequent selection of modules, five hub genes (CDC20, 
CENPF, KIF2C, BUB1 and ZWINT) that were overexpressed 
in NSCLC tissues were selected as potential candidates (Fig. 2). 
However, the repeatability of a study with a single dataset is 

Figure 3. Validation of 5 selected differentially expressed genes. The mRNA level of 5 hub genes, including (A) CDC20, (B) CENPF, (C) KIF2C, (D) BUB1 
and (E) ZWINT in two datasets (GSE19804 and GSE10072). (F) The levels of CDC20, CENPF, KIF2C, BUB1 and ZWINT mRNA were validated by reverse 
transcription-quantitative polymerase chain reaction. Total RNA was isolated from cultured non-small cell lung cancer cell lines (A549, H322 and control 
cell line HBE1). The values are expressed as the mean ± standard deviation of three replicates. ***P<0.01. CDC20, cell division cycle 20; CENPF, centromere 
protein F; KIF2C, kinesin family member 2C; BUB1, BUB1 mitotic checkpoint serine/threonine kinase; ZWINT, ZW10 interacting kinetochore protein.

Figure 4. Diagnostic value of CDC20, CENPF, KIF2C, BUB1 and ZWINT in NSCLC. (A) Receiver operating characteristic analysis of 5 hub genes based 
on the GSE19804 dataset. (B) Receiver operating characteristic analysis of 5 hub genes in the GSE10072 dataset. AUC, area under the curve; CDC20, cell 
division cycle 20; CENPF, centromere protein F; KIF2C, kinesin family member 2C; BUB1, BUB1 mitotic checkpoint serine/threonine kinase; ZWINT, ZW10 
interacting kinetochore protein.
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usually insufficient. Therefore, an additional two methods were 
used to validate the overexpression of selected genes in NSCLC 
tissues and cell lines. The upregulation of the candidate genes 
were validated by using the GSE10072 dataset and by RT-qPCR 
(Fig. 3). The 5 candidates were further evaluated using the ROC 
and Kaplan-Meier plotter analyses to assess their diagnostic and 
prognostic values. Notably, the results obtained were consistent 
with those of previous studies (4,6). These identified candidates 
were also verified to be potential diagnostic and prognostic 
biomarkers for patients with NSCLC.

The cell cycle is an evolutionarily conserved process 
that is regulated by several molecules, including cyclins and 
cyclin-dependent kinases. Cell cycle is critical for the growth 
and development of mammalian cells (17). Mutations in these 
proteins and subsequent cell cycle aberrations are common 
hallmarks of human cancer (18). Although these aberrant cell 
cycle‑associated molecules are not specific to a particular cancer 
type, they can still serve as potential candidates for the diag-
nosis or prognosis of patients with cancer (4,15). For instance, 
the level of cyclinB2, a member of the cyclin family, has been 
regarded as an unfavorable predictor for the clinical progres-
sion and prognosis for patients with NSCLC (19). The present 
study also identified 5 cell cycle‑associated candidates (20‑24), 
which are sensitive and specific in distinguishing NSCLC from 
normal tissues, and these candidate genes were associated 
with poor prognosis of NSCLC. Among these candidates, the 

overexpression of CDC20 has been used to predict the poor 
prognosis of patients with NSCLC (25). Furthermore, a number 
of chemotherapeutics have been designed to target these cell 
cycle-associated molecules and therefore eradicate cancer 
cells (26). The present study postulates that these 5 identified 
candidates may possess the potential to serve as novel thera-
peutic targets for patients with NSCLC.

In summary, the present study has demonstrated that the 
candidates CDC20, CENPF, KIF2C, BUB1, and ZWINT are 
overexpressed in NSCLC tissues, which may be unfavorable 
prognostic biomarkers for patients with NSCLC. By clas-
sifying patients into high- and low-risk groups, patients may 
benefit from more accurate decision-making in treatment 
selection and ultimately have an improved clinical outcome. 
However, due to the different histopathological typing and 
grouping methods used in the two datasets, further validation 
of these five candidates for their diagnostic and prognostic 
values in the clinical samples are required.
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