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Abstract. Various subgroups of CD8+ T lymphocytes do not 
only demonstrate cytotoxic effects, but also serve important 
regulatory roles in the body's immune response. In particular, 
CD8+ regulatory T cells (CD8+ Tregs), which possess impor-
tant immunosuppressive functions, are able to effectively 
block the overreacting immune response and maintain the 
body's immune homeostasis. In recent years, studies have 
identified a small set of special CD8+ Tregs that can recognize 
major histocompatibility complex class Ib molecules, more 
specifically Qa‑1 in mice and HLA‑E in humans, and target 
the self‑reactive CD4+ T ce​lls. These findings have generated 
broad implications in the scientific community and attracted 
general interest to CD8+ Tregs. The present study reviews the 
recent research progress on CD8+ Tregs, including their origin, 
functional classification, molecular markers and underlying 
mechanisms of action.
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1. Introduction

Immunization is critical for the maintenance of biological 
homeostasis. It refers to the physiological function by which 
a body's immune system fights against the invasion of foreign 
substances and distinguishes internal components from 
external ones. The immune system is responsible for the body's 
immune response and immune function. While it produces 
robust immune responses to attack various antigens, it also 
negatively regulates or inhibits abnormal immune responses, 
maintaining a relatively stable immune reactivity (1‑3). The 
immune system consists of three major components, namely 
the immune organs, immune cells and immunologically 
active substances. In particular, immune cells are produced, 
mature and are concentrated in the immune organs. These 
cells can be divided into phagocytic cells and lymphocytes, 
which are composed of T and B cells that mature in the 
thymus and bone marrow, respectively. Immunologically 
active substances mainly refer to antibodies, lymphokines 
and lysozyme (4‑6).

Physiologically, the tolerance of internal components and 
the response to ‘non‑self’ antigens are under the strict control 
of the body's immune regulation mechanism. Immune regula-
tion is crucial for the maintenance of the physical environment 
stability in the human body (7,8). Therefore, dysfunction of 
immune regulation will result in serious pathological conse-
quences. For instance, if the immune system develops a strong 
immune attack on the body's own components, autoimmune 
diseases occur (9,10). The body may also be harmed if the 
immune system cannot respond adequately to an infection 
caused by external pathogenic microorganisms. In this case, 
a weak response can result in severe infection, whereas an 
excessively strong response can result in allergy  (11‑18). 
Therefore, immune regulation determines the occurrence and 
the strength of an immune response. This elegant and compli-
cated regulation functions in multiple steps in an immune 
response process.

In 1970, Gershon and Kondo (19) identified CD8+ regu-
latory T cells (CD8+ Tregs). Later studies revealed the dual 
effects of these cells in immune responses. They have been 
reported to inhibit the immune response to pathogens and the 
host's inflammation following pathogen infection. However, by 
weakening the body's immune surveillance on malignant cells, 
the host can be relieved from autoimmune diseases (20‑22). 
Although CD8+ Tregs were recognized >40 years ago, little 
is known regarding their function in negative regulation (23). 
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Furthermore, recent studies on CD8+ Tregs revealed their 
crucial role in immunology (24‑26), while CD8αα+ T cell 
receptor (TCR)αβ+ Tregs, a novel subtype of CD8+ Tregs, 
was demonstrated to recognize the major histocompatibility 
complex class Ib (MHC‑Ib) molecules Qa‑1 in mice. Tregs 
only target activated T lymphocytes, and are considered to 
complement the inhibition function of CD4+ forkhead box P3 
(FoxP3)+ Tregs (27,28). Therefore, further studies on CD8αα+ 
Tregs may provide novel therapeutic strategies for human 
inflammatory diseases, tumor immunity, transplant tolerance 
and autoimmune diseases.

2. Origin of CD8+ Tregs

In the process of thymic negative selection, only T cell clones 
with high affinity to autologous antigens are removed (29,30). 
Therefore, certain T cells with low affinity to autologous 
antigens are leaked to the peripheral immune system. Under 
certain conditions, they may be activated and result in autoim-
mune diseases. Therefore, this process is monitored by a series 
of peripheral immune tolerance mechanisms, including Tregs 
with immunosuppressive effects, namely CD4+ and CD8+ 
Tregs (31‑33).

3. Classification and functions of CD8+ Tregs

To date, there is no reliable surface marker that is able 
to distinguish CD8+ Tregs from ordinary CD8+ T cells. 
In different experimental systems, CD8+ Treg surface 
molecules have been demonstrated to differ. For instance, 
in an experimental autoimmune encephalomyelitis (EAE) 
model, CD8+CD28‑ Tregs demonstrated an inhibitory effect 
on the secretion of interferon (IFN)‑γ by myelin oligoden-
drocyte glycoprotein‑specific CD4+ T cells through cell 
contact inhibition  (34,35). Similarly, CD8+CD45R+ and 
CD8+CD122+ T cells also possess regulatory suppressor func-
tions, including suppression of immune activity following 
autologous mixed lymphocyte reaction activation (36‑38). In 
comparison, CD8+ Tregs induced by plasma‑like dendritic 
cells (DCs) in the ascites of cancer patients are featured the 
interleukin (IL)‑10+ C‑C motif chemokine receptor 7 (CCR7)+ 
CD45RO+CD8+ phenotype. In particular, by secreting IL‑10, 
CCR7+CD45RO+CD8+ Tregs inhibit the function of effec-
tive T cells that specifically attack tumor antigens (39‑41). 
In addition, immature DCs induce the generation of CD8+ 
Tregs, while FoxP3+ antigen‑specific CD8+CD28‑ T cells 
can also be produced in vitro through rendering vascular 
endothelial cells tolerogenic  (42‑45). Notably, inhibitory 
CCR7+CD45RO+CD8+ T cells can originate from human 
tumor tissues, indicating their potential association with 
tumor‑induced immune tolerance (46,47).

CD8+ Tregs in humans are predominantly CD8+CD28‑ 

Tregs; however, two CD8+ Tregs subgroups can be produced 
by induction in vitro, namely CD8+CD28+ and CD8+CD28‑ 
Tregs (48,49). Currently, the majority of studies conducted 
have investigated CD8+CD28‑ Tregs, and three categories of 
these cells have been identified. Among them, type I cells have 
a direct contact with DCs to influence the expression of the 
costimulatory molecules CD80 and CD86, demonstrating a 
negative regulatory role. However, the inhibitory function of 

type II cells is exerted through cytokine secretion, such as 
IFN‑γ and IL‑6, while direct contact with antigen‑presenting 
cells (APCs) has not been observed. Finally, type III cells 
function by secreting IL‑10 (50‑52).

4. Common marker molecules

Common molecules that serve as markers for Tregs include 
FoxP3, CD25, CD127, CD39 and CD73. Among them, FoxP3 
is a member of the fork‑like transcription factor family and 
was first reported in 2001 by Brunkow et al (53). Studies have 
identified that FoxP3 expression and function are closely 
correlated with Tregs. FoxP3 is mainly expressed in lymphoid 
organs and tissues, including in the thymus, spleen and lymph 
nodes (54‑56). In mice, FoxP3 has been reported to be prefer-
entially expressed in CD4+CD25+ T cells, while its expression 
in CD8+ T cells was limited. By contrast, in humans, FoxP3 
can be expressed in both CD4+CD25+ T cells and CD8+ T 
cells (57,58). However, its expression in CD4+ T cells is signifi-
cantly higher in comparison with that in CD8+ T cells. Thus 
far, FoxP3 has been recognized as the most sensitive marker 
of Tregs (54‑56).

Traditionally, the identification of Tregs mainly relied 
on CD25 labeling. However, it was later reported that 
identifying Tregs merely based on CD25 positivity was not 
accurate (59,60).

CD127, an IL‑7 receptor, is downregulated in a subset of 
CD4+ T cells in the peripheral blood. These cells are FoxP3 
positive, and CD25 weak positive or negative (61). The combi-
nation of CD4, CD25 and CD127 selection generates high 
purity Tregs, which exhibit a strong signal in functional inhibi-
tion tests. The population of Tregs that can be distinguished 
by CD4 and CD127 expression (including CD25+CD4+ and 
CD25‑CD4+ cells) is three times as large as the T cell sub‑popu-
lation that can be selected by CD4+CD25hi (62). As CD127 has 
been successfully applied to quantify the Tregs of patients, it 
has been proposed as a marker of human Tregs (63,64).

Studies have also reported that Foxp3+ Tregs express the 
cell surface CD39 and CD73 molecules simultaneously (65,66). 
When cell damage or apoptosis occurs, intracellular ATP 
is released, causing increased concentration of extracellular 
ATP. As the signaling molecules for cell damage, they acti-
vate a variety of immune responses. Furthermore, CD39 and 
CD73 are extracellular enzymes that are expressed by various 
immune cells, including DCs, B cells and T cells. Notably, they 
dephosphorylate ATP or AMP, as well as decompose AMP, 
thus achieving an immunosuppression function and inhibition 
of T cell inflammatory factors (67‑69).

5. Mechanism of action of inhibitory CD8+ Tregs

Different types of CD8+ Treg subsets can function by secreting 
various inhibitory cytokines and chemokines, including IL‑10, 
transforming growth factor (TGF)‑β, IL‑16, IFN‑γ and chemo-
kine (C‑C motif) ligand 4 (33,70‑77). CD8+CD28‑ Tregs render 
the APCs tolerogenic by upregulating the expression levels of 
immunoglobulin‑like transcript (ILT)3 and ILT4, which then 
function as cell surface inhibitory receptors. These tolerogenic 
APCs demonstrate an anti‑inflammatory function. The down-
regulation of costimulatory molecules CD80 and CD86 on 
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APCs by CD8+CD28‑ Tregs also inhibits the immune response 
of CD4+ T cells. In addition, CD80 and CD86 are important 
for the inhibitory function of CD8+CD122+ T cells (78‑80). 
Certain subsets of CD8+ Tregs exert an inhibitory function 
by cell contact‑dependent mechanisms, in which TGF‑β 
and cytotoxic T‑lymphocyte associated protein 4 (CTLA‑4) 
expressed on the cell surface serve key roles (81,82). CD8+ Tregs 
exert a cytotoxic effect against antigen‑activated CD4+ T cells, 
and this function depends on the expression of the MHC‑Ib 
molecule Qa‑1 in mice (HLA‑E in humans) (28,83,84). The 
aforementioned mechanisms are presented in Fig. 1A‑D.

6. Recent research progress on CD8+ Tregs

Recent advances. The recent research progress on CD8+ Tregs 
mainly includes the aspects presented in Fig. 1E. Briefly, CD8+ 
Tregs have been reported to inhibit autoimmune diseases, to 
potentially originate from the thymus, to negatively regulate 
activated T cells, to supervise the immune tolerance and to 
be associated with the management of autoimmune diseases.

Exploration of Qa‑1‑restricted CD8+ Tregs in autoimmune 
diseases. The mouse protein Qa‑1 (homologous to HLA‑E 
in humans) is essential for immune protection and immune 
regulation. In particular, Qa‑1‑restricted CD8+ Tregs recog-
nize the MHC‑Ib molecule Qa‑1, and therefore inhibit the 
development and recurrence of autoimmune diseases (27,85). 
Notably, the immune response phenotype of Qa‑1‑deficient 
mice demonstrated two opposite effects: Enhanced 
CD4‑dependent immune responses revealed the influence of 
Qa‑1 target loss on CD8+ Treg activity, whereas a weakened 
CD4‑dependent immune response demonstrated an unim-
peded NKG2A‑Qa‑1/Qdm inhibition (86,87).

In order to illustrate the two Qa‑1‑dependent regula-
tory pathways, researchers performed experiments with 
Qa‑1‑deficient mice expressing different surface determi-
nants (88,89). Notably, Qa‑1 D227K is a mutant of Qa‑1 that 
interferes with the binding of Qa‑1 and CD8 co‑receptors to 
prevent the expression of CD8+ cell effective molecules. As 
expected, Qa‑1 D227K‑deficient mice generated no active CD8+ 
Tregs, accompanied by worsened EAE symptoms. In addi-
tion, Qa‑1/Qdm was demonstrated to bind to CD94/NKG2A 
on CD8+ Tregs, and may thus suppress the inhibitory activity 
of CD8+ Tregs through signaling factors (90,91). Therefore, 
the key for preventing CD8+ T cell autoimmune responses 
may be the regulation of Qa‑1‑restricted auto‑activated cells 
through interaction between Qa‑1‑Qdm and CD94/NKG2A. 
It was also reported that the interaction of Qa‑1‑NKG2A with 
antibodies in EAE mice attenuated the pathogenic condition 
to complete remission (89,92). These findings demonstrated 
that Qa‑1 serves a key role in the development and mediation 
of CD8+ Treg activity. Furthermore, a molecular level inhibi-
tory mechanism emerged based on these results, suggesting 
that MHC‑TCR interactions relied on the co‑receptors of the 
CD8 molecule. Identification of Qa‑1‑restricted CD8+ Tregs 
enriched the occurrence and development mechanism of auto-
immune disease, providing a theoretical basis for its treatment.

Potential role of CC chemokines expressed by specific 
CD8αα+ Tregs and the thymus during ovulation. It is 

widely considered that ovulation may be an inflammatory 
process  (93,94); however, little is known regarding how 
immune cells participate in this process. Novel CD8αα+ Tregs 
have been identified in the theca of the antral follicles (95). In 
addition, it has been observed that the ovaries of anovulatory 
C31F1 mice under treatment with estradiol and of nude 
mice (thymus‑free) with low fertility were lacking CD8αα+ 
Tregs  (26). Thymus‑expressed chemokine (TECK) has 
previously been detected in the ovaries and was reported to 
attract CD8αα+ Tregs to the ovaries. However, in anovulatory 
C31F1 mice, ovarian TECK expression was normal, suggesting 
that the absence of CD8αα+ Treg migration to the ovaries 
was responsible for the infertility of the mice. Finally, the 
origin of ovarian CD8αα+ Treg was investigated, and it was 
observed that the migrated ovarian CD8αα+ Tregs were able 
to return to the recipient's thymus (95,26). Therefore, it is 
reasonable to speculate that ovarian CD8αα+ Tregs involved 
in ovulation‑associated inflammation may originate from the 
thymus. Pathological alterations of the thymus may cause 
ovarian‑associated inflammation, thus revealing a potential 
mechanism of ovaritis and providing a novel strategy for 
ovarian‑associated inflammation.

Immune regulation of novel Qa‑1‑restricted CD8αα+TCRαβ+ 
Tregs. CD8+ Tregs exhibit a gene expression spectrum similar 
to innate lymophoid cells, which is shared by mouse intraepi-
thelial lymphocytes and thymus CD8αα+ TCRαβ+ Tregs. 
However, the expression of several key regulatory molecules 
has been reported to be different among these cells (96,97). 
Specifically, CD8αα+TCRαβ+ Tregs express a higher level 
of certain natural killer cell‑associated receptors and tumor 
necrosis factor superfamily molecules. Their difference from 
the traditional MHC‑Ia‑like‑restricted T cells lies in several 
lines of evidence. Firstly, they have been observed to activate 
Vβ8.2 CD4+ T cells and control the experimental autoimmune 
cerebrospinal meningitis  (98,99). In addition, they express 
only CD8αα+ dimers, which recognize the conserved region 
peptides of the TCR Vβ8.2 chain in Qa‑1a. Furthermore, they 
secrete only type I cell factor cytokines, but not IL‑2 (84,100). 
In conclusion, CD8αα+TCRαβ+ Tregs prevented autoimmunity 
caused by adoptive cell transfer or in vivo activation of CD4+ 
T cells. Notably, this negative feedback regulation is directed 
against activated T cells, which provides a novel strategy for 
the treatment of autoimmune diseases and transplant rejection.

CD8+ Tregs inhibit follicular helper T cells, and thereby serve 
a vital role in self‑tolerance. The ability of excess tissue and 
organs to incite a strong immune response depends on the 
clearance of autoreactive T or B lymphocytes. However, imma-
ture and mature autoreactive T and B cells are not thoroughly 
cleared, and may require an effort from cell reprograming to 
suppress the immune response. Notably, a sublineage of CD8+ 
Tregs is necessary for the maintenance of self‑tolerance and 
the prevention of autoimmune diseases in mice (101‑103). The 
interruption of gene functions associated with the interac-
tion between these CD8+ T cells and Qa‑1+ follicular helper 
T  cells can to lead to the development of systemic lupus 
erythematosus, indicating that these sublineage T cells serve 
an important role in the regulation of immune response, as 
well as in the surveillance of immune tolerance (104‑106).
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Association between CD8+ Tregs and autoimmune diseases. 
A decreased number or impaired function of CD8+ Tregs 
has been observed in patients with autoimmune diseases, 
including multiple sclerosis, localized ileitis and myas-
thenia gravis recurrence. The immunosuppressive effect 

of CD8+CD28‑ Tregs has also been confirmed by in vitro 
experiments  (107‑110). In addition, Rådinger  et  al has 
reported that CD8+ Tregs can also regulate the occur-
rence and development of allergic reactions by decreasing 
the number of chemokines and the recruitment of 

Figure 1. (A) CD8+ Tregs secret various inhibitory cytokines and chemokines, including IL‑10, TGF‑β, IL‑16, IFN‑γ and CCL4. (B) CD8+ Tregs render the 
antigen‑presenting cells tolerogenic and anti‑inflammatory by the induction ILT3 and ILT4, or through the downregulation of CD80 and CD86 on APCs. 
(C) CD8+ Tregs serve an inhibitory function, in which TGF‑β and CTLA‑4 expressed on the cell surface are the key factors. (D) The cytotoxicity of CD8+ 
Tregs depends on the expression of the major histocompatibility complex class Ib molecule Qa‑1 in mice and HLA‑E in humans. (E) Recent advances in 
CD8+ Treg research. Treg, T regulatory cell; IL, interleukin, TGF, transforming growth factor; IFN, interferon; CCL4, chemokine (C‑C motif) ligand 4; ILT, 
immunoglobulin‑like transcript; APC, antigen‑presenting cell; CTLA‑4, cytotoxic T‑lymphocyte associated protein 4; TCR, T cell receptor.
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eosinophils (111). These alterations occurred both prior to 
and following allergic reactions in order to reduce the body's 
immune reactivity (112,113). A preliminary study on a CD8+ 
T cell subpopulation in the peripheral blood has correlated 
the changes in cell distributions to the immune system 
disorder in patients with systemic lupus erythematosus. In 
particular, the proportion of CD8+CD28‑ Tregs subset, as 
well as the CD8+CD28‑/CD8+CD28+ T cell ratio, may reflect 
the disorder of cellular immune function. Furthermore, the 
increase of CD8+CD28‑ Tregs has been demonstrated to be 
associated with the control of disease progress (114‑118). 
Therefore, monitoring the proportion of CD8+CD28‑ Tregs 
may help to judge the progression of the disease, while an 
increased proportion of CD8+CD28‑ Tregs indicates that the 
autoimmune disease is under control.

CD8+ Tregs and other diseases. CD8+Foxp3+ Tregs existing 
in a prostate tumor have been reported to inhibit the immune 
responses (119), thus improving the possibility that the manipu-
lation of CD8+Foxp3+ Tregs function may raise the efficiency of 
immunotherapy for prostate tumor patients. Furthermore, the 
tumor: Whole body ratio of CD8+ Tregs is associated with the 
prognosis of cancer patients, including in ovarian and cervical 
cancer among others (120,121). A high CD8+ Treg ratio in the 
tumor mass may indicate a favorable prognosis. Additionally, 
CD8+ Tregs can be recruited into the central nervous system 
during neuroinflammation. However, the recruitment of CD8+ 
Tregs into the inflammation organs depends on the level of 
B7‑H1 on immunogenic DCs (73). This knowledge may be 
applied in the development of therapies based on DCs and 
CD8+ Tregs for neuroinflammation diseases.

7. Summary and applications

Currently, several issues remain unaddressed regarding 
the functions of Tregs and the corresponding research 
methodology (21,23). Firstly, phenotype identification and a 
functional/mechanistic study of CD8+ Tregs have to be further 
conducted in different experiment systems. In addition, it 
remains unclear whether different CD8+ cell subpopulations 
originate from common precursor cells. Finally, the applica-
tion of CD8+ Tregs can be further explored in the scenarios of 
prevention, diagnosis and clinical treatment of diseases.

Thus far, relatively well‑studied and well‑recognized 
CD8+ Tregs include natural CD8+CD28‑ T cells, as well as the 
induced CD8+CD28‑, CD8+CD25+ and CD8+CD122+ T cells. A 
systematic analysis on the transcription profile of these CD8+ 
Tregs identified CD25+CD28‑ to be the most common surface 
marker (5,122). Other surface markers include FoxP3, CD103, 
CD122 and CTLA‑4 (49,123).

Studies on CD8+ Tregs are of great value for human 
disease treatment, and thereby attract increasing researchers 
into this field. Investigating this group of cells may provide 
novel ideas for immune regulation and immune intervention. 
Furthermore, this may elucidate the pathogenesis of associated 
disease and offer an objective index to their diagnosis, 
treatment and evaluation. We believe that studies on CD8+ 
Tregs will generate broad application prospects in the fields of 
inflammatory diseases, autoimmune diseases, tumor immunity 
and transplantation tolerance.
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