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Abstract. The development of colorectal cancer (CRC) 
involves genetic and epigenetic modifications, and aberrant 
DNA methylation within gene promoters is a primary mediator 
of epigenetic inheritance in CRC. The present study evaluated 
whether promoter methylation of four CRC candidate genes 
[protocadherin γ subfamily A12 (PCDH-γ‑A12), solute carrier 
family 19 A 1 (SLC19A1), cAMP responsive element binding 
protein (CREB) and cylindromatosis (CYLD) contributed to 
the risk and metastasis of CRC by screening a total of 42 
CRC and 42 adjacent normal tissue samples. DNA methyla-
tion was measured by methylation‑specific polymerase chain 
reaction (MSP). Polymerase chain reaction (PCR) products 
were bisulfite converted and validated by sequencing. The χ2 
test was employed to assess the association between promoter 
methylation and a series of clinicopathological characteristics. 
The promoters of PCDH-γ‑A12 and SLC19A1 were observed 
to be more frequently methylated in CRC tissues than normal 
tissues. In addition, significantly higher methylation of the 
PCDH-γ‑A12 and SLC19A1 promoters was also observed 
in CRC tissues with lymph metastasis compared with those 
without lymph metastasis. In addition, no association was 
observed between CREB and CYLD methylation and the 

occurrence and metastasis of CRC. These results suggest 
that the hypermethylation of the PCDH-γ‑A12 and SLC19A1 
promoters may contribute to the occurrence and metastasis of 
CRC in the Han Chinese population.

Introduction

Colorectal cancer (CRC) is one of the most common digestive 
malignancies, and it arises through well‑defined sequential 
multi-step carcinogenesis that transforms normal glandular 
epithelium into invasive adenocarcinomas (1,2). The develop-
ment of CRC involves genetic and epigenetic modifications. 
Aberrant DNA methylation within gene promoters is a primary 
mediator of epigenetic inheritance in CRC (3,4).

DNA methylation typically occurs in CpG islands and it 
refers to the enzymatic addition of a methyl group to the 5' 
position of cytosine by DNA methyltransferases to produce 
5-methyl cytosine. Methylation of CpG islands in the gene 
promoter region may induce chromatin conformational 
modifications that inhibit access of transcriptional machinery, 
altering gene expression levels (5,6). Therefore, promoter 
methylation is commonly associated with gene silencing and 
promoter demethylation with gene expression (7,8).

There are complex changes of DNA methylation in a number 
of carcinomas, and particularly in CRC (9,10). Numerous 
genes are aberrantly methylated in CRC patients, including 
adenomatous polyposis coli (APC), WNT5A, mutL homolog 1 
(MLH1), cyclin‑dependent kinase inhibitor 2A (CDKN2A) and 
Ras association domain‑containing protein 1 (11‑15). Aberrant 
DNA methylation of gene promoters in CRC is involved in 
its occurrence, progression, diagnosis, staging, prognosis and 
response to chemotherapy (16).

The protocadherin gamma subfamily A12 (PCDH-γ‑A12) 
gene encodes a cell surface adhesion protein that serves 
essential roles in cell-cell and cell-matrix interactions and 
tumor metastasis (17,18). The solute carrier family 19 A 
1 (SLC19A1) gene encodes a membrane protein that is 
involved in the regulation of intracellular concentrations of 
folate (19). SLC19A1 gene mutation is associated with the risk 
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of CRC (20). The cAMP responsive element binding protein 
(CREB) gene encodes a transcription factor that induces the 
transcription of genes in response to hormonal stimulation 
of the cAMP pathway (21,22). P300/CREB binding protein 
genes promote cancer progression in colon cancer cell lines 
with microsatellite instability (23). Cylindromatosis (CYLD) 
encodes a cytoplasmic protein with three cytoskeletal-asso-
ciated protein-glycine-conserved domains, and it regulates 
cell proliferation, apoptosis, cell movement and cell differ-
entiation (24‑27). CYLD is downregulated or lost in colon 
carcinoma cell lines compared with primary human colonic 
epithelial cells. The functional relevant loss of CYLD expres-
sion may contribute to tumor development and progression, 
and it may provide a new target for therapeutic strategies (28).

Promoter methylation of the PCDH-γ-A12, SLC19A1, CREB 
and CYLD genes has been demonstrated to regulate their gene 
expression levels, and hypermethylation of these promoters 
has been observed in acute lymphoblastic leukemia (29), 
breast cancer (30,31) and malignant  melanoma (32). However, 
hypermethylation of the PCDH-γ-A12, SLC19A1, CREB and 
CYLD promoters has not been investigated in CRC. In light 
of the previous findings, the aim of the present study was 
to investigate whether PCDH-γ-A12, SLC19A1, CREB and 
CYLD gene promoter methylation contributed to the risk of 
CRC.

Materials and methods

Tissue sample collection. In this study, CRC patients who had 
not received radiotherapy, chemotherapy, targeted therapy 
or dendritic cell/cytokine-induced killer therapy prior to 
surgery were recruited between June 2012 and April 2013 
(Table I). CRC samples, normal adjacent tissue samples and 
matched metastatic lymph node samples were collected at 
the time of surgery from 42 primary sporadic CRC patients at 
the Department of Gastrointestinal Surgery in the Affiliated 
Hospital of Ningbo University, China. Tissues were immedi-
ately preserved in liquid nitrogen at ‑80˚C following removal 
from the body and stored at ‑80˚C until use. Normal adjacent 
tissues were collected from at least 5 cm away from the edge 
of the tumor, and there were no obvious tumor cells, as evalu-
ated by a pathologist. Tumor stage was determined according 
to Dukes' staging system, and cellular differentiation was 
graded according to Broders' grading system. Informed 
consent was given by all subjects. The Human Research 
Ethics Committee of Ningbo University approved all aspects 
of the study.

DNA isolation and bisulfite modification. Genomic DNA 
was isolated using a QIAamp DNA mini kit (Qiagen GmbH, 
Hilden, Germany). The concentration and quality of genomic 
DNA were determined using the NanoDrop ND-2000 spec-
trophotometer (Thermo Fisher Scientific, Inc., Waltham, MA, 
USA). The concentration of DNA was above 30 ng/µl and the 
purity of DNA was at the A260/A280 ratio of 1.7-1.9. DNA 
was bisulfite‑treated with the EZ DNA Methylation‑Gold kit 
(Zymo Research, Orange, CA, USA). Following the completion 
of bisulfite modification, all unmethylated cytosines in CpG 
islands were converted to uracil, while methylated cytosines 
remained unchanged.

Methylation‑specific polymerase chain reaction (MSP) 
and bisulfite sequencing. The methylated and unmethylated 
primers (Table II) were designed using the Primer Premier 6.0 
program (Premier Biosoft International, Palo Alto, CA, USA). 
MSP was performed in a total volume of 20 µl containing 
2 µl bisulfite modified DNA, 1 µmol each of forward and 
reverse primers, 10 µl Premix Taq (Takara Biotechnology Co., 
Ltd., Dalian, China) and 7 µl double‑distilled water with the 
following cycling parameters: 10 min of denaturation at 95˚C 
followed by 55 cycles of 30 sec at 95˚C, 45 sec at 72˚C and a 
final extension for 10 min at 72˚C. Polymerase chain reaction 
(PCR) products were then loaded and electrophoresed on 2% 
agarose gels, stained with ethidium bromide, and visualized 
under UV illumination. In order to confirm the result of 
methylation‑ and unmethylation‑specific PCR, PCR products 
randomly obtained from the group were sequenced bidirec-
tionally by Invitrogen (Thermo Fisher Scientific, Inc.) with the 
same primers used for MSP. 

Statistics. Statistical analysis was performed using the 
Statistical Package for the Social Sciences (SPSS) statistical 
software package (version 16.0; SPSS, Inc., Chicago, IL, 
USA), and the results were obtained using GraphPad Prism 
version 5.0 (GraphPad Software, Inc., La Jolla, CA, USA). 
All analyses were two-sided, and P<0.05 was considered to 
indicate a statistically significant difference.

Results

Methylation rates of promoters in CRC vs. normal tissues. A total 
of 42 pairs of CRC and adjacent normal tissues were examined, 
and representative results of the agarose gel electrophoresis were 
selected (Fig. 1). The results revealed that the methylation rates 
of PCDH-γ‑A12, SLC19A1, CREB and CYLD promoters in CRC 
were 83.33% (35/42), 78.57% (33/42), 26.19% (11/42) and 14.29% 
(6/42), while the methylation rates of these promoters in normal 
tissues were 57.14% (24/42), 45.24% (19/42), 11.90% (5/42) and 
11.90% (5/42). PCDH-γ‑A12 and SLC19A1 gene promoters were 
more frequently methylated in CRC tissues than in normal tissues 
(83.33% vs. 57.14%, P=0.009 and 78.57% vs. 42.54%, P=0.002), 
while there was no significant difference in methylation rates 
of CREB and CYLD gene promoters between CRC tissues and 
normal tissues (26.19% vs. 11.90%, P=0.095 and 14.29% vs. 
11.90%, P=0.746; Table III). 

Methylation rates of promoters in lymph vs. non‑lymph 
metastasis CRC tissues. In addition, the methylation rates 
of PCDH-γ‑A12, SLC19A1, CREB and CYLD promoters in 
lymph metastasis CRC tissues were 100.00% (21/21), 95.24% 
(20/21), 33.33% (7/21) and 19.05% (4/21), while the methylation 
rates of these promoters in non-lymph metastasis CRC tissues 
were 66.67% (14/21), 61.90% (13/21), 19.05% (4/21) and 9.52% 
(2/21). PCDH-γ‑A12 and SLC19A1 gene promoters were more 
frequently methylated in lymph metastasis CRC tissues than 
non-lymph metastasis CRC tissues (100.00% vs. 66.67%, 
P=0.013% and 95.24% vs. 61.90%, P=0.024), while there was 
no significant difference in the methylation rate of CREB and 
CYLD gene promoters between lymph metastasis CRC tissues 
and non-lymph metastasis CRC tissues (33.33% vs. 19.05%, 
P=0.292 and 19.05% vs. 9.52%, P=0.659; Table IV).
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Bisulphite sequencing of PCDH‑γ‑A12, SLC19A1, CREB and 
CYLD genes. In order to confirm the results of the PCR‑based 
methylation analysis describe above, high‑resolution bisulfite 
genomic sequencing was performed in the stochastic samples 
derived from the methylation PCR experiments. In agreement 
with the MSP results, CpG dinucleotides of the PCDH-γ‑A12 
and SLC19A1 promoters in the samples demonstrated extensive 
hypermethylation, whereas the CREB and CYLD promoters 
were unmethylated at these CpG dinucleotides (Fig. 2).

Correlation between methylation status of promoters and 
clinicopathological factors. The correlation between the 
methylation status of the PCDH-γ‑A12, SLC19A1, CREB and 
CYLD gene promoters and the clinicopathological character-
istics of CRC is shown in Table V. There was no significant 
difference in clinicopathological factors, including sex, age, 
tumor-node-metastasis stage, lymph node status, metastasis 
status, tumor location, differentiation status, tumor size and 
histological grade. There was also no correlation between the 
methylation status of the PCDH-γ‑A12, SLC19A1, CREB and 
CYLD gene promoters and the serum levels of carcinoembry-
onic antigen (CEA) and carbohydrate antigen 19‑9 (CA19‑9).

Discussion

Cancer develops through a multi-step process which results 
from the progressive accumulation of genetic and epigenetic 
alterations (33). Epigenetic modifi cations, which have a funda‑ (33). Epigenetic modifi cations, which have a funda‑(33). Epigenetic modifications, which have a funda-
mental role in the regulation of gene expression, involve DNA 
methylation, specific histone modifications and non‑coding 
RNA interventions (34,35). As one of the main epigenetic modi‑ (34,35). As one of the main epigenetic modi‑(34,35). As one of the main epigenetic modi-
fications, DNA methylation of promoters often downregulates 
gene transcription, while DNA demethylation of promoters 
activates gene expression. DNA methylation-mediated tumor 
suppressor gene silencing may contribute to tumor progres-
sion (7,36). Aberrant DNA methylation of gene promoters 
has become a promising biomarker for the early diagnosis of 
diseases (37‑41). 

In the colon, aberrant DNA methylation arises extremely 
early, initially in normal‑appearing mucosa, and it may be 
part of the age‑associated field defects observed in sporadic 
CRC (42). Hypermethylation in CpG islands has been 
demonstrated to be a novel mechanism of tumor suppressor 
gene silencing (7,8). A number of genes have now been 
demonstrated to be hypermethylated in colorectal tumors, 
including APC (11), MLH1 (43) and O6-methylguanine DNA 
methyltransferase (44). For example, the inactivation of the 
cyclin‑dependent kinase inhibitor P16/CDKN2A/INK4a by 
methylation leads to the disruption of cell-cycle regulation and 
potentially provides a growth advantage to affected cells (45).

PCDH-γ‑A12 is a member of the protocadherin γ gene 
cluster, which includes 22 genes divided into 3 subfamilies 
(subfamily A, B and C) (46). The exon of PCDH-γ‑A12 encodes 
the extracellular region, which includes six cadherin ectodo-
mains and a transmembrane region. These cadherin‑like cell 
adhesion proteins most likely serve a critical role in the estab-
lishment and function of specific cell‑cell connections in the 
brain and cancer (18). The hypermethylation of PCDH-γ‑A12 
induces the downregulation of PCDH-γ‑A12 gene transcrip-
tion by rendering the chromatin structure inaccessible to 

the transcription machinery in a variety of tumors including 
bladder cancer, breast cancer, acute lymphoblastic leukemia 
and non‑small cell lung cancer (17,29,47,48). The present 
study in CRC provides new evidence for the contribution of 
PCDH-γ‑A12 promoter hypermethylation to the occurrence 
and metastasis of CRC.

SLC19A1 encodes a membrane protein that is a transporter 
of folate, and is involved in the regulation of intracellular 
concentrations of folate. SLC19A1 is also a major transporter 
of antifolate drugs used for certain types of cancer chemo-
therapy, including methotrexate (MTX) (30). The expression 
of SLC19A1 is downregulated following exposure to MTX in 
breast cancer, and a reverse correlation was identified between 
the promoter methylation and mRNA levels of SLC19A1. A 
variant of the SLC19A1 gene is associated with metastatic 
colorectal cancer (20). The present study in CRC adds new 
evidence for the contribution of SLC19A1 promoter hyper-
methylation to the occurrence and metastasis of CRC.

Certain studies have focused on the correlation between 
colorectal cancer clinical features and the methylation of 
certain genes, including p15, APC and E‑cadherin, suggesting 
that the inactivation of certain tumor suppressor genes through 
aberrant promoter methylation of CpG islands may serve a 
role in the development of colorectal cancer (49,50). Multiple 

Table I. Clinical profiles of the colorectal cancer patients.

Characteristics Subgroup Patients, n

Gender Male 28
 Female 14
Age (years) ≤60 16
 >60 26
TNM stage 1, 2 21
 3, 4 21
Lymph metastasis Yes 21
 No 21
Distant metastasis Yes 8
 No 34
CEA ≥5.0 ng/ml 15
 <5.0 ng/ml 27
CA19‑9 ≥37 U/ml 9
 <37 U/ml 33
Tumor location Colon 26
 Rectum 16
Differentiation Poor 10
 Moderate 32
 Good 0
Tumor size <5 cm 28
 ≥5 cm 14
Histological Adenocarcinoma 40
classification Mucinous adenocarcinoma 2
 Undifferentiated carcinoma 0

TNM, tumor‑node‑metastasis; CEA, carcinoembryonic antigen; 
CA19‑9, carbohydrate antigen 19‑9.
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methylation pathways may be involved in the tumorigenesis 
of CRC and associated with the aggressiveness of clinical 
disease (37). In the present study, the correlation between the 

methylation of PCDH-γ‑A12, SLC19A1, CREB and CYLD and 
colorectal cancer clinical features was examined. However, no 
significant correlation was identified between PCDH-γ‑A12, 

Figure 1. Representative results for methylation status of protocadherin γ subfamily A12 (PCDH-γ‑A12), solute carrier family 19 A 1 (SLC19A1), cAMP 
responsive element binding protein (CREB) and cylindromatosis (CYLD) genes in colorectal cancer tissues (T) and adjacent normal tissues (N). M, methylated; 
U, unmethylated.

Table III. Methylation status of PCDH‑γ‑A12, SLC19A1, CREB and CYLD genes in colorectal cancer and normal tissues.

Gene Group Total M U M% χ2 P-value

PCDH‑γ‑A12 Cases 42 35 7 83.33 6.891 0.009
 Controls 42 24 18 57.14  
SLC19A1 Cases 42 33 9 78.57 9.894 0.002
 Controls 42 19 23 45.24  
CREB Cases 42 11 31 26.19 2.779 0.095
 Controls 42 5 37 11.90  
CYLD Cases 42 6 36 14.29 0.105 0.746
 Controls 42 5 37 11.90  

PCDH‑γ‑A12, protocadherin γ subfamily A12; SLC19A1, solute carrier family 19 A 1; CREB, cAMP responsive element binding protein; 
CYLD, cylindromatosis; M, methylated; U, unmethylated.

Table II. List of all primers used.

Gene Subgroup Sense (5'‑3') Antisense (5'‑3') Size (bp)

PCDH‑γ‑A12 M ATTAAGGTGGTGGCGGTGGAT GACGCCGACGCTCCTATCAA 449
 U AAGGTGGTGGTGGTGGATAG ACCAACACTCCTATCAAAC 443
SLC19A1 M TTGTTGTAGCGGTGTTGGAAGG TCCGCCGCAACCTACGAAT 361
 U TTTGTTGTAGTGGTGTTGGAAG TTCCACCACAACCTACAAAT 363
CREB M CGGCGGTTAAGAGTAGAGTTA GCGTCACTCACCAACACT 492
 U TGGTGGTTAAGAGTAGAGTTA TCACTCACCAACACTCCAC 489
CYLD M AGTTGGTGGTAGCGTAGCG CATTCACTAACCTCGAACGA 495
 U TGGTGGTAGTGTAGTGTTT TCACTAACCTCAAACAACA 489

PCDH‑γ‑A12, protocadherin γ subfamily A12; SLC19A1, solute carrier family 19 A 1; CREB, cAMP responsive element binding protein; 
CYLD, cylindromatosis; M, methylated; U, unmethylated.
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SLC19A1, CREB and CYLD methylation and the clinical 
features, which may be due to the lack of power in the samples 
used. 

CEA is a member of a family of cell surface glycopro-
teins that are excessively produced in the majority of human 
colorectal carcinomas (51). CEA measurement is mainly used 
as a tumor marker to monitor colorectal carcinoma treatment, 
to identify recurrences following surgical resection and to 
localize cancer spread through measurement of biological 
fluids (52,53). CA19‑9 is a useful tumor‑associated antigen 
for the serological detection of colorectal carcinomas, and 
may be used to monitor patients with advanced colorectal 
carcinomas (54). One aim of the present study was to observe 
whether the status of PCDH-γ‑A12, SLC19A1, CREB and 
CYLD promoter methylation had a correlation with the serum 
level of CEA and CA19‑9. However, no significant correlation 
was observed between PCDH-γ‑A12, SLC19A1, CREB and 
CYLD promoter methylation and the serum level of CEA 
and CA19‑9. This may imply that aberrant methylation of 
PCDH‑γ‑A12, SLC19A1, CREB and CYLD combined with 
conventional tumor markers could serve as complementary 

markers in the diagnosis of CRC. However, further study is 
necessary to confirm this hypothesis.

In conclusion, PCDH-γ‑A12 and SLC19A1 promoters, 
but not CREB and CYLD promoters, are hypermethylated 
and contribute to the occurrence and metastasis of colorectal 
cancer. These findings may provide a new direction in the 
detection and treatment of CRC. Future research is required to 
determine the detailed mechanisms of how the PCDH-γ‑A12 
and SLC19A1 genes contribute to the risk of CRC.
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Figure 2. Bisulphite sequencing of protocadherin γ subfamily A12 (PCDH-γ‑A12), solute carrier family 19 A 1 (SLC19A1), cAMP responsive element binding 
protein (CREB) and cylindromatosis (CYLD) genes.

Table IV. Methylation status of PCDH‑γ‑A12, SLC19A1, CREB and CYLD genes in lymph metastasis and non-lymph metastasis 
colorectal cancer tissues.

Gene Subgroup Total M U M% χ2 P-value

PCDH-γ-A12 Cases 21 21 0 100.00 6.171 0.013
 Controls 21 14 7 66.67  
SLC19A1 Cases 21 20 1 95.24 5.091 0.024
 Controls 21 13 8 61.90  
CREB Cases 21 7 14 33.33 1.109 0.292
 Controls 21 4 17 19.05  
CYLD Cases 21 4 17 19.05 0.194 0.659
 Controls 21 2 19 9.52  

PCDH‑γ‑A12, protocadherin γ subfamily A12; SLC19A1, solute carrier family 19 A 1; CREB, cAMP responsive element binding protein; 
CYLD, cylindromatosis; M, methylated; U, unmethylated.
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