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Abstract. Lung cancer (LC) is a leading cause of cancer- 
associated mortalities worldwide. Adenocarcinoma (AC) 
and squamous cell carcinoma (SCC) account for ~70% of all 
cases of LC. Since AC and SCC are two distinct diseases, 
their corresponding prognostic genes associated with patient 
survival time are expected to be different. To date, only a 
few studies have distinguished patients with good prognosis 
from those with poor prognosis for each specific subtype. 
In the present study, the Cox filter model, a feature selection 
algorithm that identifies subtype‑specific prognostic genes 
to incorporate pathway information and eliminate redundant 
genes, was adopted. By applying the proposed model to data 
on non-small cell lung cancer (NSCLC), it was demonstrated 
that both redundant gene elimination and search space 
restriction can improve the predictive capacity and the model 
stability of resulting prognostic gene signatures. To conclude, 
a pre‑filtering procedure that incorporates pathway informa-
tion for screening likely irrelevant genes prior to complex 
downstream analysis is recommended. Furthermore, a feature 
selection algorithm that considers redundant gene elimination 
may be preferable to one without such a consideration.

Introduction

Lung cancer (LC) is a leading cause of cancer-associated 
mortalities worldwide. Histologically, LC is stratified into two 
categories, small cell lung cancer (SCLC) and non-small cell 
lung cancer (NSCLC), of which the latter is more prevalent (1). 
NSCLC can be further classified into three major subtypes, 
where adenocarcinoma (AC) and squamous cell carcinoma 
(SCC) together account for ~70% of the total cases of LC (2). 
Since AC and SCC differ in cell of origin, location within 

the lung, growth pattern and molecular mechanisms, they are 
regarded as two distinct diseases (3). Until recently, however, 
NSCLC subtypes had been typically treated with same thera-
peutic approaches (1). Apart from a lack of timely detection 
of tumors, the administration of homogenous treatments to 
NSCLC patients regardless of the histology subtypes might 
account for why no substantial improvement in the 5-year 
survival rate of patients with NSCLC has been made over 
the years (3,4). Therefore, more ‘personalized’ therapeutic 
strategies for AC and SCC patients are highly desirable, which 
necessitates the identification of subtype‑specific prognostic 
molecular markers for AC and SCC.

Feature selection or variable selection, which aims at 
selecting a gene signature (subset) among thousands of genes 
with objectives, including diagnosis of diseases, segmentation 
of disease subtypes and drug response or survival predic-
tion for patients, is currently becoming a routine practice in 
bioinformatics (5,6). Regarding NSCLC, extensive efforts 
have been devoted to distinguishing AC from SCC and also to 
distinguish patients with good prognosis from those with poor 
prognosis with the aid of feature selection algorithms (3,7-11). 
Compared with the diagnosis task or the classification task, 
it has been demonstrated that the prognosis task is more 
difficult to accomplish (12,13). Furthermore, the present study 
focused on subtype‑specific prognosis, with extra consider-
ation on subtype information to introduce more complexity 
to statistical modeling. Subtype-specific prognostic genes 
may be identified by either separate application of a feature 
selection method to each subtype or by a modification of an 
existing method to enable the identification of subtype‑specific 
prognostic genes (14). Compared with a separate modeling 
method where feature selection algorithms that can handle 
survival data (LASSO method and random forest method) 
was implemented on each subtype, a natural extension is more 
theoretically sound but accompanied with extra statistical 
complexity (15). The two feature selection algorithms, the 
Cox filter method and the Cox‑Threshold Gradient Descent 
Regularization (Cox‑TGDR) method (15,16), belong to the 
natural extension category. (Both the Cox filter method and 
the Cox‑TGDR method were proposed by the authors). These 
two methods are all based on the seminal model of survival 
analysis: A Cox regression model (17).

Gene expression profiles contain grouping structure with 
genes inside each group that are highly correlated and there-
fore more likely to co-function together to affect biological 
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processes (18,19). However, both the Cox filter method and 
the Cox‑TGDR method are typical gene‑based feature selec-
tion methods where the underlying grouping structure is 
ignored (20). By contrast, a pathway-based feature selection 
method incorporates the grouping structure either explicitly or 
implicitly to guide the selection of relevant genes (21). Many 
studies have demonstrated that a pathway-based feature selec-
tion method is usually superior to its gene-based counterpart 
in terms of predictive capacity, model stability and biological 
interpretation (21-25).

Furthermore, a failure to account for the correlations among 
genes may result in many ‘redundant’ genes being included, 
and therefore an increase in the false positive rate. As the Cox 
filter method screens the relevant genes individually (see the 
Materials and Methods section for details), it has no control over 
the false positive rate. The simulations conducted in previous 
studies (15,16) have justified this point. Until the drawback of 
false positive rate is fully addressed, the widespread application 
of the Cox filter method remains challenging.

In this article, the Cox filter method was extended so 
that the resulting extension not only accounts for the interac-
tions/dependency among genes but also eliminates many 
redundant genes. The GeneRank method (26) was employed 
to pre‑filter genes and subsequently average correlation coef-
ficients were calculated to determine the correlation of a 
specific gene with other genes in the search space. Given that 
the GeneRank method was also used to pre‑filter genes in a 
previous study by the present authors (14), these two studies 
have some similarities. Nevertheless, the objectives of the 
studies differ dramatically. The aim of the previous study (14) 
was to illustrate that for different outcomes of interest 
(e.g., segmentation of different subtypes versus predicted 
survival time), the corresponding relevant genes differ and 
therefore a supervised learning method is preferred over an 
unsupervised method. By contrast, the present study focuses 
on the identification of subtype‑specific gene signatures.

After the proposed procedure was applied to the NSCLC 
gene expression data and compared with several relevant 
algorithms, whether the proposed procedure can identify 
gene signatures with better predictive performance and more 
meaningful biological implication than other methods was 
determined.

Materials and methods

Experimental data. The microarray data included GSE30219, 
GSE37745 and GSE50081 datasets, which were publicly assess-
able from the Gene Expression Omnibus (GEO, https://www.
ncbi.nlm.nih.gov/geo/) repository. The inclusion criteria were: 
i) Being profiled on the Affymetrix HG‑U133 Plus 2.0 plat-
form; ii) inclusion of AC and SCC subtypes; iii) inclusion of 
early pathological stages (stage I or II); iv) no administration 
of adjuvant therapy to patients; and v) availability of the raw 
data so that the same pre-processing procedure was used to 
obtain the gene expression values. There were 85 AC and 21 
SCC patients, 40 AC and 24 SCC patients, 127 AC and 42 SCC 
patients in GSE30219, GSE37745 and GSE50081, respectively. 
In total, there were 339 patients in the integrated dataset that 
combined these three datasets together, which served as the 
training set in the present study.

The RNA-Seq data were downloaded from The Cancer 
Genome Atlas Data Portal (level 3) (https://tcga‑data.nci.nih 
.gov/tcga/). The cohorts that were considered are: LUAD for 
AC subtype and LUSC for SCC subtype. By restricting the 
patients to those at early stages of disease, not undergone 
any adjuvant treatment and where survival information was 
available, 70 AC and 55 SCC patients were included.

Pre‑processing procedures. Raw data (CEL files) of the 
microarray data sets were downloaded from the GEO reposi-
tory. The expression values were obtained using the fRMA 
algorithm (27) and were normalized using quantile normal-
ization separately for each experiment. Then, the expression 
values of these three studies were combined together and the 
COMBAT algorithm (28) was used to eliminate the potential 
batch effects. The resulting data served as the training set and 
were referred to as the integrated dataset.

Counts‑per‑million (CPM) values for the RNA‑seq data 
were calculated and log2 transformed by Voom function (29) in 
R limma package (30). The RNA-seq data were used as the test 
set to validate the performance of resulting prognostic signa-
tures. There were 14,573 unique genes annotated by both the 
microarray data and the RNA-seq data. The protein-to-protein 
interaction information was retrieved from the Human Protein 
Reference Database (HPRD, http://www.hprd.org). There were 
9,672 protein‑coding genes annotated by the HPRD database 
(Release 9). The downstream analysis was carried out using 
the overlapped 8,023 genes annotated by the microarray data, 
the RNA‑seq data and the HPRD database. Compared with 
a previous study by the authors, the training set and the total 
genes under consideration were different in the present study. 
Specifically, the data from GSE50081 experiment were used to 
train the prognostic signatures, and a number of pre‑filtering 
steps were performed to downsize the number of genes under 
consideration in the microarray data to 6,202 (16).

Statistical methods. Cox filter method. The Cox filter 
method (16) was used to identify genes that were informative 
of survival rate for AC/SCC histology subtypes. In this method, 
each gene was fit with a Cox model. The hazard function of 
patient i for gene g (g=1,…,p) is given by:

  Eq. 1

where, Xij=(Xij1,...,Xijp)T represents the actual expression values 
for the p genes under consideration and λ0g(t) is an unknown 
baseline hazard function. I (j=SCC) is an indicator, it takes 
the value of 1 if the histology subtype j of patient i is SCC 
or otherwise the value of 0. The values of βACg (i.e., β2g) and 
βSCCg (i.e., β2g+β3g) determine if subtype‑specific prognostic 
genes exist. Specifically, βACg≠0 but βSCCg=0 corresponds to an 
AC‑specific gene while βSCCg≠0 but βACg=0 corresponds to an 
SCC‑specific gene.

GeneRank. The GeneRank method (26) calculates ranks 
for genes by accounting for both the gene expression values 
and the connectivity information among them. Firstly, 
according to whether a connection is recorded between genes 
in the HPRD database, a pxp adjacency matrix was made 
(here, p is the number of genes under consideration) whose 
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ijth and jith components are 1 if gene i and gene j are connected, 
0 otherwise. Then, the GeneRank method solves the following 
equation:

  Eq. 2

where W stands for the adjacency matrix of genes, and D is 
a diagonal matrix, where diagonal components record the 
number of genes that a specific gene is connected to in the 
gene network graph. The gene expression value is represented 
by exp. In the GeneRank method, d is a tuning parameter, 
balancing the effect of the expression value of a gene and its 
level of importance inside the whole gene-to-gene interac-
tion network. The gene expression values only determine the 
ranks of the genes when d equals to 0. On the other hand, the 
GeneRanks depend completely on the connectivity level of 
genes when d=1. The default value of d is 0.5.

In the present study, the ranks generated by the GeneRank 
method were used to rearrange genes in the ascending order 
and then the search domain was restricted to the top ranked 
genes in the resulting list. With this filter, the least important 
genes in both pathway connectivity and expression difference 
were ruled out.

Redundant gene elimination. To eliminate the redundant 
genes, which are highly correlated with the true causal genes 
and therefore tend to be also selected by a feature selection 
algorithm, particularly a filter method, a method proposed 
previously (31) was adopted to account for the correlation 
coefficients between genes during the filtering process. 
Specifically, the average correlation coefficient between a 
candidate gene g and other genes in the restricted search space 
was calculated as follows:

  Eq. 3

where, |cor(g.j)| represents the absolute value of Pearson's 
correlation coefficient (PCC) between gene g and gene j, and 
|S| is the total number of genes in the search space. Then, a gene 
is regarded to be relevant if it fits two conditions: i) its corre-
sponding adjusted P‑values of the Cox filter model are <0.05. 
(The BH procedure was used to adjust for multiple comparison 
problem); and ii) its average absolute correlation coefficients 
in the search space are <0.2. With the second restriction, 
i.e., the restriction on the average PCC value of a gene, some 
control over the redundant genes is provided. Originally, a new 
statistic was defined that multiplied the adjusted P‑value by 
corgs for gene g, and this was used to determine the significance 
level of genes. The newly defined statistic was named as RRP 
(P‑value with redundant gene removal). However, it is realized 
that RRP has some fatal drawbacks. For instance, if the PCCs 
of a gene with other genes in the search space are all close to 
0, then its RRP is extremely small although the P‑value in the 
Cox filter model for this specific gene is 1. As a result, the RRP 
statistic had been overruled.

Sign average. A regression model would become 
non‑identifiable when the number of covariates exceeds the 

number of samples. To avoid this, the risk profile of a patient 
was summarized as the sign average (13,32) of the expression 
values over all selected genes. Specifically for each subtype, 
all genes inside the selected gene subset, i.e., the AC‑specific 
and SCC‑specific prognostic genes are stratified into either 
the hazardous group H or the preventive group P according 
to the signs of their estimated effects in the Cox filter method, 
i.e., β2g for AC and β2g+β3g for SCC. In the hazardous group, 
the genes for which increased expression is associated with a 
higher hazard are included. Conversely, the genes for which 
an increment in expression is associated with a lower hazard 
of mortality are put in the preventive group. Of note, there are 
two sets of notations, i.e., HAC in which β2g >0 and PAC

 in which 
β2g <0 for AC patients, and HSCC in which β2g+β3g >0 and PSCC

 

in which β2g+β3g <0 for SCC patients in the present study. 
Denoting the number of genes inside the gene set GS as |GS|, 
the sign average for AC patient i(i=1,…, n1) and SCC patient 
j (j= n1+1,…, n) is defined respectively as:

  

Eq. 4

Statistical metrics. The first metric used to evaluate the 
performance of a resulting prognostic gene signature is the 
censoring‑adjusted C‑statistic (33) over the follow‑up period 
(0, τ). It is defined as:

  Eq. 5

where g(X) is the risk score for a subject with predictor vector 
X. Although a value of 0.5 for the C‑index corresponds to the 
random guess model, a moderate value in between 0.6-0.7 
already indicates a satisfactory performance as discussed 
previously (34).

In order to evaluate the stability or robustness of the 
resulting signatures, a Rand index was also calculated. With 
k runs (e.g., the resulting gene lists by training on k different 
datasets) of an algorithm, the Rand index is defined as

   Eq. 6

where ∩ represents the size of intersection between two gene 
lists, and ∪ represents the size of union between two gene 
subsets gsi and gsj, where gsi and gsj were obtained from the 
ith and jth runs, respectively. Given the present study aims to 
select subtype-specific prognostic genes for AC and SCC, 
these metrics were calculated separately for AC and SCC.

The proposed procedure consisted of three steps. Firstly, 
all 8,023 genes were ranked in the ascending order according 
to their GeneRanks. Secondly, for a specific k value (k varies 
from 200 to 7,800 with an increment of 200 to 8,023), the 
search space (the number of genes under consideration) was 
restricted to those on the top k of this ordered gene list, and 
the corresponding adjusted P‑values for β2 and (β2+β3) coef-
ficients for a gene and the absolute average of its correlation 
coefficients with other genes in the search space were consid-
ered together to select prognostic genes for AC and SCC. 
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Finally, the sign averages for AC‑ and SCC‑specific genes and 
the performance statistics were calculated. Steps 2 and 3 were 
repeated over all possible k values. The optimal k value for 
AC and SCC subtypes is the one with the largest C-statistics 
and the smallest sizes of the resulting gene signatures on the 
training set. Fig. 1 illustrates the proposed procedure, which 
is referred to as the Cox filter method with redundant gene 
elimination (RGE) herein.

The proposed procedure first imposed search space 
restriction and subsequently removed redundant genes inside 
the restricted search space. One may argue a procedure 

in the reverse order, i.e., the removal of redundant genes 
followed by search space restriction, may lead to same or 
at least similar results. However, conducting redundant 
gene elimination first may result in the remaining genes 
being almost uncorrelated with each other. The connectivity 
weights of those genes are approximately at the same level, 
and the rearrangement of genes according to GeneRanks 
becomes meaningless. This method also does not take into 
consideration pathway information, Alternatively, a strategy  
instead of a combination of the GeneRank method and 
redundant gene elimination may be employed. However, this 

Figure 1. Flowchart for the proposed Cox filter method with redundant gene elimination. The Cox filter + RGE method may be divided into three steps: i) 
Ascending ranking of genes under consideration according to the ranks given by the GeneRank method; ii) restricting the search space to the first k genes and 
fitting the Cox filter models for these k genes; and iii) calculating the corresponding P‑values and average absolute Pearson's correlation coefficients for each 
gene and determining the relevance level of the gene (with P‑value<0.01 and corgs<0.2 deemed to indicate relevance). Steps 2 and 3 are repeated over a grid 
of values for k (k=200, 400, …7800, 8023). AC, adenocarcinoma; HPRD, Human Protein Reference Database; PCC, Pearson's correlation coefficient; RGE, 
redundant gene elimination; SCC, squamous cell carcinoma.
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was not investigated as it is beyond the scope of the present 
study.

Biological relevance and gene set enrichment analysis. The 
GeneCards database (www.genecards.org) was used to search 
for the biological relevance of the selected genes, and the String 
software (www.string-db.org) was used to obtain enriched 
pathways/gene sets for the AC‑specific and SCC‑specific 
prognostic signatures.

Statistical language and packages. R language (version 3.2; 
www.r‑project.org) was used to carry out all statistical analysis 
in the present study. The R packages used included survival, 
survAUC, gelnet, pathClass, limma, annotation, affy and 
hgu133plus2.db.

Results

In the present study, the integrated data of three microarray 
experiments were used to train the final models. The perfor-
mance of the resulting prognostic signatures was validated on 
the RNA-Seq dataset, which is independent from the micro-
array datasets. Firstly, Schoenfeld residuals were calculated to 
test the proportional hazards assumption of the Cox models. 
The P‑values for those tests ranged from 0.003 to 0.9999; 
P<0.05 for 141 values and P<0.01 for 27 values. These numbers 
were <5% and 1% of the total number of genes. Therefore, the 
proportional hazard assumption is valid in the present study.

The C-statistics and the model sizes on the training set 
are given in Fig. 2. Based on these two statistics, the resulting 
signatures of the first 1,000 genes for AC and the first 
4,000 genes for SCC were chosen and presented in Table I. 
In the same table, the performance statistics for the Cox filter 
method (15) with search space restriction but without redundant 
gene elimination, the Cox filter method with redundant gene 
elimination but no space restriction and the original Cox filter 
method (corresponding to the Cox filter method without both 
redundant gene elimination and space restriction) and two 
other relevant algorithms (the Cox‑TGDR method (16) and the 
LASSO (35) for AC and SCC, respectively) were also listed.

The most important finding is that the additional redundant 
gene elimination indicates significant gains in terms of perfor-
mance statistics, i.e., better C-statistics and smaller sizes of the 
resulting signatures, which is in consistent with the findings 
of other investigators (31,36). Of note, it is usually common 
that the test set has a poorer performance compared with the 
training set, due to the following reasons: i) The different 
characteristics among patients in the training set and the test 
set; or/and ii) the potential of over‑fitting. Given a moderate 
value of >0.6 for the C-index is regarded to have a satisfactory 
performance (33), the predictive performances of the resulting 
prognostic signatures obtained by the proposed procedure are 
all acceptable. Furthermore, the training set used previously 
(i.e., the data of GSE50081) has a moderate sample size. To 
date, a perfect performance has not been achieved with the 
test set using this specific training set (14‑16). To address this, 
two additional microarray experiments were included, and 
the training set used in the present study is a combination of 
all three studies. The resulting signatures trained from the 
integrated data outperform the signatures from GSE50081.

Another finding is that with a suitable restriction on the 
search space, the resulting prognostic signatures tend to have 
a better performance than those without such a restriction 
(as shown in Table I and Fig. 2). This supports the use of a 
pre‑filtering process (e.g., ranking genes using the GeneRank 
method on expression levels and importance level in the gene 
network following by selecting the top genes in the resulting 
list) prior to downstream analysis. A pre‑filtering process may 
screen out the genes that are highly unlikely to be relevant 
genes and thus reduces the computing burden. Compared with 
other relevant algorithms, the Cox filter method has the best 
performance. The Cox filter method is easier to implement and 
more computationally efficient than the Cox‑TGDR method, 
which may make the advantage of a pre‑filtering procedure 
with regards to reducing the computing burden less obvious. 
However, the present authors do not exclude the probability 
that the Cox‑TGDR method is optimal for some specific data 
structures, and therefore such an advantage is more essential 
in those applications.

The patients were stratified into two groups‑patients with a 
high risk of mortality and those with a low risk of mortality-by 
using the median values of the resulting sign average scores 
for the patients in the training set. Then, the Kaplan-Meier 
curves were constructed (Fig. 3), and the two curves were 
compared using log‑rank tests. In the training set, the P‑values 

Figure 2. Determination of the optimal cutoffs for AC subtype and SCC 
subtype search spaces by training of the NSCLC microarray data: (A) The 
C-statistic under all scenarios (with k taking different values, i.e., k=200, 
400, …7800, 8023; (B) The sizes of resulting prognostic signatures under all 
scenarios. The C‑statistic and the final sizes determine the optimal cutoffs 
for the restricted search space of AC and SCC, respectively, i.e., the one 
with the largest C‑index and the smallest final model size was chosen. AC, 
adenocarcinoma; NSCLC, non-small cell lung cancer; SCC, squamous cell 
carcinoma. 
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of the corresponding log-rank tests were 3.59x10-14 for AC and 
9.37x10-8 for SCC, respectively. However, the corresponding 

P‑values were 0.075 and 0.123 in the test set, indicating a 
statistically non‑significant difference between the survival 

Figure 3. Kaplan‑Meier plots of AC‑specific prognostic signature and SCC‑specific prognostic signature. Based on the risk scores (i.e., the sign averages of 
AC‑specific signature for AC patients and the sign averages of SCC‑specific signature for SCC patients), patients were divided into two categories (low‑risk 
group and high‑risk group) using the medians of risk scores as cutoffs. The P‑values of log‑rank tests comparing the survival curves of the low‑risk and 
high-risk groups are shown. AC, adenocarcinoma; SCC, squamous cell carcinoma.

Table I. Performance statistics for the non‑small cell lung cancer application using different algorithms.

 C-statistics
 --------------------------------------------------------------------
Variable Size Rand index (%) Training set Test set

G(1)~G(1000) + RGE: AC 35 26.97 0.725 0.694
G(1)~G(4000) +RGE: SCC 44 16.84 0.833 0.817
G(1)~G(1000): AC 45 26.04 0.703 0.714
G(1)~G(4000): SCC 380 26.91 0.702 0.771
Cox‑filter +RGE: AC 259 16.67 0.699 0.610
Cox‑filter +RGE: SCC 119 15.44 0.824 0.805
Cox‑filter: AC 329 24.05 0.681 0.538
Cox‑filter: SCC  836 27.85 0.714 0.778
Cox‑TGDR: AC  62 7.78 0.684 0.559
Cox‑TGDR: SCC 76 5.77 0.721 0.567
LASSO: AC  9 14.87 0.724 0.583
LASSO: SCC 10 12.39 0.814 0.706

G(1)~G(k): The search space is the first k genes ordered by the GeneRank method. The results were trained using the integrated dataset and 
verified using the TCGA RNA‑sequencing data. AC, Adenocarcinoma; RGE, redundant gene elimination; SCC, squamous cell carcinoma; 
TGDR, Threshold Gradient Descent Regularization.
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curves of the high-risk and low-risk groups. Furthermore, 
other cutoffs (mean, the first and third quartiles) were used, 
and the results remained the same. Given there were few 
mortalities recorded for the RNA-seq data and there were no 
mortalities in the identified low‑risk groups, the predictive 
performance evaluated on the basis of the log-rank tests is still 
acceptable.

For the 35‑gene AC‑specific prognostic signature and the 
44‑gene SCC‑specific prognostic signature, the GeneCards 
database was searched for the biological relevance of these 
selected genes. According to the GeneCards database, 
CYP1A2, EGAG9, BRDT, DDC, ADCYAP1R1, PIWIL4, 
CENT2, TACR1, ABCA2 and NEFH are directly associated 
with LC. EGAG9, CYP1A2, CRISP3, BRDT, BRSK1, DDC, 
TACR1, ABCA2, CTNNA3, CCNO, TAC3 and CA6 are 
directly associated with AC among the AC‑specific signatures. 
Among the SCC‑specific signatures, CP19A1, CYP3A4, KLF2, 
ACLY, MASP1, SOX18, SERPINE2, BHLHE41, PDYN, 
FGF4, NUAK1, GCNT1, CCT4 and EBNA1BP2 are directly 
associated with LC. FGF4, CYP19A1, PTPN2, CYP3A4, 
SERPINE2, SOX18, MMP20, MASP1, KLF2, ERP44, 
NUAK1 and RAET1E are directly associated with SCC. All 
respective remaining genes in each category were indirectly 
associated with LC, AC and SCC. Among the indirectly related 
genes, many genes were associated with the corresponding 
diseases through their association with the well-known cancer 
gene: TP53. Additionally, there was no overlap between the 
AC‑specific and SCC‑specific prognostic signatures. Likewise, 
there was no overlap between the AC‑specific prognostic and 
SCC‑specific prognostic signatures when the LASSO method 
implemented separately for each subtype. By contrast, there 
were substantial overlaps (32/106, 30.19%) between the 
AC‑specific prognostic signature and the SCC‑specific prog-
nostic signature when the Cox‑TGDR method was used. The 
resulting prognostic signatures by the proposed procedure, 
the Cox‑TGDR and the separate LASSO analysis are listed 
in Table II. The overlapping signatures as identified by the 
LASSO method, the Cox‑TGDR method and the proposed 
procedure for AC and SCC are presented in Fig. 4.

Given there was no overlap between the AC‑specific and 
SCC-specific prognostic signatures, how these signatures 
intersected at the pathway level was examined. Using the String 
software, enriched pathways/gene sets for the AC‑specific 
prognostic SCC‑specific prognostic signatures were searched 
separately. Using the default cutoff value of 0.05 for the False 
Discovery Rate (FDR), there were 5 GO Biological Process 
(BP) terms, 1 GO Molecular Function (MF) terms, 4 GO 
Cellular Component (CC) terms and 0 KEGG pathways that 
were significantly enriched by the AC-specific prognostic 
genes, respectively. These sets of gene are listed in Table III. 
By contrast, there were 11 BP terms, 0 MF terms, 23 CC terms 
and 2 KEGG pathways that were significantly enriched for the 
SCC‑specific genes. The enriched gene sets for the SCC‑specific 
prognostic signature are listed in Table IV. Furthermore, there 
was no overlap between the enriched gene sets for AC and 
SCC, indicating the pathways enriched by the subtype‑specific 
genes differ. With redundant gene elimination, the identified 
AC‑specific and SCC‑specific signatures differ completely at 
the levels of genes and pathways. By contrast, without redun-
dant gene elimination, there were substantial overlaps between 

the identified signatures, which suggest redundant gene elimi-
nation is beneficial for identifying those genes that are specific 
for a particular subtype.

Discussion

In this article, the Cox filter model was extended to solve two 
additional issues. One issue was how to incorporate pathway 
information by excluding the genes with less importance in 
the gene-to-gene interaction network. The other issue involved 
eliminating the potential redundant genes by adding an extra 
restriction on the average absolute correlation coefficients of a 
gene with other genes in the search space.

Using NSCLC gene expression data, it was demonstrated 
that the proposed method does outperform the original 
Cox‑filter method and the Cox‑TGDR method. Similar to 
the Cox filter method, the Cox‑TGDR method is capable 
of identifying subtype‑specific prognostic genes and does 
not take pathway information into consideration. However, 
it is superior to the original Cox‑filter method in terms of 
redundant gene elimination, since it considers the additive 
effects among genes, so the proposed method presents certain 
advantages.

Apart from different objectives, there are substantial 
differences between the present study and a previous study by 
the authors (14). Firstly, the patients were classified into either 
the high-risk group or the low-risk group according to survival 
time in the previous study (14). Secondly, no separation on 
AC and SCC subtypes was made in the previous study (14), 
therefore the resulting signatures were general for these two 
subtypes instead of being specific for each subtype. Thirdly, 
the Radical Coordinate Visualization plot (36), which was 
used for feature selection in the previous study (14), imposes 
restrictions on the maximal size of a resulting gene signature. 
Finally, GSE50081, which was used as the training set in the 
previous study (14), accounted for 40% of the size of the inte-
grated data. In the previous study, it was concluded that no 
good separation between the two risk groups was obtained; 
since the best C-index (the same test set was used in these two 
studies) was only 0.54 (14). By contrast, the present study used 
survival time data directly and a larger data set to identify 
subtype‑specific prognostic genes with the Cox filter method, 
which has no restriction on the maximal size of a signature. 
With these advantages, the C-statistics have been improved 
dramatically in the present study.

Consistent with other studies (31,37), it was demonstrated in 
the present study that redundant gene elimination has beneficial 
effects on feature selection. With redundant gene elimination 
by comparing the Cox filter method with RGE and the original 
Cox filter method, the resulting signatures have better predictive 
performance, smaller model sizes and more subtype‑specific 
genes. Furthermore, the present study demonstrated that the use 
of a pre‑filtering process prior to downstream analysis is very 
beneficial, which is consistent with previous findings by the 
authors (9) and the work by others (38,39). Therefore, it is highly 
recommended to carry out the pre‑filtering process, particu-
larly when a very complicated and time-consuming statistical 
method was selected for downstream analysis. Certainly, the 
method of conducting the pre‑filtering procedure is also of 
importance. In the present study, the GeneRank method was 
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Table II. Resulting prognostic gene signatures by the proposed procedure, the Cox‑TGDR method and the separate LASSO 
analysis for each subtype.

 Cox filter with RGE LASSO Cox‑TGDR
-------------------------------------------------------------- ---------------------------------------------------------- --------------------------------------------------------------------------------------------------------
AC‑specific  SCC‑specific  AC‑specific  SCC‑specific  AC‑specific  SCC‑specific  Overlapped genesa 
(44.3%) (55.7%) (47.4%) (52.6%) (28.3%) (41.5%)  (30.2%)

N4BP3 PASK EBAG9 ZPBP ELSPBP1 N4BP3 COMMD6
NLRP4 EIF1AY KRT15 TENC1 AKAP4 GNRHR DR1
ADCYAP1R1 SLC22A9 TACR1 RAD50 RHOD PAH MICALCL
GRM6 ZNF518A FCER1A CRYAA CD177 MBD6 PRMT6
ERMAP CYP3A4 C6orf203 MASP1 ALOX12B VAV2 SEMA3A
GRK7 PLAC8 WNT7A IL1A MMP3 APIP IBTK
TACR1 EBNA1BP2 ENG SATB1 ACTR1B RDX HUS1B
CTNNA3 NYNRIN LMTK2 CDH5 ABCC2 CLNK DDB2
PAH BHLHE41  NF2 TMF1 TTPAL SLC1A6 RNF32
CCNO EVC2  AKT1 DNAJB2 STXBP6 PPCDC
RAB3C NCOA7   SLC6A2 HIST1H1C ZNF91
CA6 NUAK1   PKP1 LMX1A DRD4
SPINK5 CPN2   GCNT1 GPR26 IL5RA
PIWIL4 CYP19A1   STRA13 RAPSN ASCL2
RABGAP1 BCAP29   NUMA1 PSMF1 GABARAPL1
SLC22A4 KCNJ8   IL1F10 EPHA4 NRG1
NEURL2 FAM115A   E2F2 UPK2 GTF2A1L
SNX24 CKAP2   SLC2A4 RGS13 PRLHR
BRDT KLF2   RNF220 NUP88 DCP1B
NEFH SOX18   AP4E1 RRP1B NUP205
PLCD4 ANKRD7   LSM10 FUBP3 PLEKHG4
ABCA2 PKN2   CPSF7 NFIB EMB
DDC FGF4   TRIM63 KRT85 ADAM2
CRISP3 PTPN2   ALOX12 RAD52 SSR4
SIRPB1 GCNT1   CEACAM3 PRKAG1 FAM71C
CWC25 GABRA4   CARD16 CD3EAP KRT2
AAGAB TAF1B   COL23A1 ARG1 SIM1
SAP30L CCT4   SARS2 KCNA10 PAPPA2
FBXO44 CCDC42   PITX1 FGF10 EPB41L1
EBAG9 BFSP2   NGFR ZNF417 PAIP2B
BRSK1 ZFAND5    MAP4 TM4SF1
GABRB1 SERPINE2    ATG4B KRT15
CYP1A2 RBM11    FANCC 
CETN2 PDYN    JDP2 
TAC3 PGS1    EIF2B1 
 RAET1E    KLK6 
 RYR3    LINGO1 
 ZPBP    RFXAP 
 SLC17A1    ZBTB25 
 ACLY    IL5 
 MMP20    S100A1 
 NUDT5    BIRC3 
 ERP44    GRIN2B 
 MASP1    FBXW7 

aGenes that are overlapped between the AC‑specific prognostic signatures and the SCC‑specific prognostic signatures. The proportion of each 
stratum (i.e., AC‑specific genes, SCC‑specific genes and overlapped genes) was listed below each category. AC, lung adenocarcinoma; SCC, 
lung squamous cell carcinoma; RGE, redundant gene elimination; TGDR, Threshold Gradient Descent Regularization.
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used, which considers pathway information. Numerous studies 
have previously demonstrated that incorporating pathway 
information improves the predictive capacity of a feature selec-
tion method (21‑25). Likewise, a pre‑filtering procedure that 
incorporates pathway information is also more helpful for a 
feature selection process. To conclude, the GeneRank method 
is preferable as a pre‑filtering procedure over a method that 
does not consider any pathway information, such as moderated 
t-tests in the R limma package (30).
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Table III. Enriched GO terms and Kyoto Encyclopedia of Genes and Genomes pathways using the 35-gene lung adenocarcinoma- 
specific prognostic signature.

Pathway ID  Pathway description FDR

Cellular component   
  GO.0002199 Zona pellucida receptor complex 4.84x10-14

  GO.0005832 Chaperonin-containing T-complex 8.25x10-12

  GO.0044297 Cell body 3.66x10-4

  GO.0005874 Microtubule 5.04x10-3

Biological process   
  GO.0007339 Binding of sperm to zona pellucida 1.39x10-8

  GO.1901998 Toxin transport 1.50x10-6

  GO.0051084 De novo posttranslational protein folding 3.32x10-6

  GO.0007338 Single fertilization 6.64x10-6

  GO.0006457 Protein folding 5.19x10-4

Molecular function   
  GO.0051082 Unfolded protein binding 2.37x10-3

The 35‑gene lung adenocarcinoma prognostic signature was identified using the Cox filter method with redundant gene elimination. The search 
space was restricted to the first 1,000 genes (the orders were obtained using the GeneRanks method). FDR, False Discovery Rate; GO, Gene 
Ontology.

Figure 4. Venn‑diagrams of the respective AC‑specific and SCC‑specific prognostic signatures as selected by the proposed method, the Cox‑TGDR method 
and the LASSO method. These two Venn-diagrams showed there were no or few overlaps between the signatures selected by different feature selection 
methods. AC, lung adenocarcinoma; EBAG9, estrogen receptor binding site associated, antigen, 9; KRT15, keratin 15; MASP1, mannan binding lectin serine 
peptidase 1; RGE, redundant gene elimination; SCC, lung squamous cell carcinoma; TACR1, tachykinin receptor 1; TGDR, Threshold Gradient Descent 
Regularization; ZBP1, Z‑DNA binding protein 1.
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Table IV. Enriched GO terms and KEGG pathways using the 44‑gene SCC subtype specific prognostic signature.

Pathway ID  Pathway description FDR

Cellular component  
  GO.0005681 Spliceosomal complex 1.12x10-13

  GO.0071013 Catalytic step 2 spliceosome 5.34x10-12

  GO.0030529 Ribonucleoprotein complex 2.33x10-7

  GO.0071942 XPC complex 7.11x10-6

  GO.0097525 Spliceosomal snRNP complex 9.11x10-6

  GO.0005686 U2 snRNP 2.25x10-4

  GO.0016607 Nuclear speck 1.37x10-3

  GO.0005654 Nucleoplasm 4.32x10-3

  GO.0044428 Nuclear part 4.32x10-3

  GO.0000974 Prp19 complex 5.58x10-3

  GO.0005684 U2-type spliceosomal complex 1.66x10-2

  GO.0043227 Membrane-bounded organelle 1.68x10-2

  GO.0032991 Macromolecular complex 1.76x10-2

  GO.0043226 Organelle 1.76x10-2

  GO.0044424 Intracellular part 1.76x10-2

  GO.0031981 Nuclear lumen 2.31x10-2

  GO.0097458 Neuron part 2.40x10-2

  GO.0031410 Cytoplasmic vesicle 2.49x10-2

  GO.0044446 Intracellular organelle part 2.49x10-2

  GO.0005622 Intracellular 3.01x10-2

  GO.0016023 Cytoplasmic membrane-bounded vesicle 4.67x10-2

  GO.0036477 Somatodendritic compartment 4.67x10-2

  GO.0043231 Intracellular membrane-bounded organelle 4.67x10-2

Biological process  
  GO.0000398 mRNA splicing, via spliceosome 3.62x10-11

  GO.0008380 RNA splicing 2.74x10-10

  GO.0006397 mRNA processing 2.33x10-9

  GO.0007217 Tachykinin receptor signaling pathway 2.60x10-9

  GO.0060359 Response to ammonium ion 4.28x10-3

  GO.0000715 Nucleotide‑excision repair, DNA damage recognition 9.43x10-3

  GO.0043279 Response to alkaloid 1.64x10-2

  GO.0032355 Response to estradiol 2.00x10-2

  GO.0043278 Response to morphine 4.27x10-2

  GO.0046878 Positive regulation of saliva secretion 4.27x10-2

  GO.0006289 Nucleotide-excision repair 4.38x10-2

KEGG pathways   
  3040 Spliceosome 4.66x10-19

  3420 Nucleotide excision repair 3.49x10-2

The 44‑gene SCC prognostic signature was identified using the Cox filter method with redundant gene elimination. The search space was 
restricted to the first 4,000 genes (The orders were obtained using the GeneRanks method). FDR, False Discovery Rate; GO, Gene Ontology; 
KEGG, Kyoto Encyclopedia of Genes and Genomes; SCC, squamous cell carcinoma.
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