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Abstract. The present study aims to investigate the radiosensi-
tization effect of the migration and invasion inhibitory protein 
(MIIP) gene on nasopharyngeal carcinoma (NPC) cells. The 
MIIP gene was transfected into NPC 5‑8F and CNE2 cells. 
The level of MIIP was analyzed by quantitative reverse 
transcription‑polymerase chain reaction analysis and western 
blot. The changes in radiosensitivity of the cells were analyzed 
by colony formation assay. The changes in cell apoptosis and 
cycle distribution following irradiation were detected by flow 
cytometry. The expression of BCL2 associated X, apoptosis 
regulator/B‑cell lymphoma 2 was evaluated using western 
blot. DNA damage was analyzed by counting γ‑H2AX foci. 
The expression levels of γ‑H2AX were evaluated by immu-
nofluorescence and western blot. In a previous study by the 
authors, the results indicated that the expression of MIIP gene 
evidently increased in MIIP‑transfected 5‑8F (5‑8F OE) and 
MIIP‑transfected CNE2 (CNE2 OE) cells compared with 
the parental or negative control cells. In the present study, 
the survival rate of 5‑8F OE and CNE2 OE cells markedly 
decreased following irradiation (0, 2, 4, 6 and 8 Gy) compared 
with the negative control (5‑8F NC and CNE2 NC) and the 
untreated (5‑8F and CNE2) groups. The expression of MIIP 
was able to increase apoptosis, which resulted in G2/M cell 

cycle arrest and DNA damage repair was attenuated in 5‑8F 
and CNE2 cells following irradiation as measured by the accu-
mulation of γ‑H2AX. It was indicated that MIIP expression 
is associated with the radiosensitivity of NPC cells and has a 
significant role in regulating cell radiosensitivity.

Introduction 

Nasopharyngeal carcinoma (NPC) is one of the most preva-
lent malignancies in southern China and Southeast Asia (1). 
Radiotherapy (RT) is one of the most powerful, highly effective 
treatments for NPC (1,2). However, resistance to radiation is 
the leading cause of treatment failure (2). Therefore, increasing 
the radiosensitivity of NPC is important. The potential mecha-
nism underlying the radiosensitivity of NPC remains unclear. 
Therefore, markers associated with radiosensitivity need to be 
examined, and the molecular mechanisms of these markers 
need to be further investigated.

The migration and invasion inhibitory protein (MIIP) 
gene, also termed IIp45 gene, has a key role in tumorigen-
esis (3‑5). MIIP gene, which is located in the chromosome 
1p36 region and spans 12.6 kb of genomic DNA, inhibits the 
migration and invasion of cells (3‑6). The chromosome 1p36 
region containing MIIP is absent in a wide range of human 
cancer cases, including NPC (3‑13), but the role of MIIP in 
radiosensitivity of NPC has not been studied.

DNA double‑stranded breaks (DSBs) are the most 
dangerous lesions caused by ionizing radiation (IR) as they 
seriously threaten cell viability and genome stability. The 
phosphorylation of H2AX is one of the earliest events that 
occur in the chromatin surrounding DNA DSBs  (14,15). 
Through phosphorylation‑dependent protein‑protein interac-
tions, phosphorylated H2AX (γ‑H2AX) recruits abundant 
DNA damage‑response (DDR) proteins to areas of damaged 
chromatin and initiates the DDR, which includes DNA repair 
and cell cycle checkpoint  (16). Apart from activating the 
checkpoint, γ‑H2AX may also be involved in the repair of 
damaged DNA directly by stabilizing the broken ends (17). 
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When DNA has been repaired, the γ‑H2AX foci disappear 
and the checkpoint is closed, allowing re‑entry into the cell 
cycle  (18). Thus, timely dephosphorylation of γ‑H2AX is 
critical to the dissociation of repair proteins and to the release 
of the cells from cell cycle checkpoints. As a sensor of DNA 
damage signaling, γ‑H2AX is widely thought to be a molecular 
marker for IR‑induced DSBs, and it is one of the popular topics 
in the research on mechanisms of DDR.

In the current study, the effects of MIIP gene on radiosen-
sitivity in NPC cells and the possible molecular mechanism 
were investigated. It was indicated that the overexpression of 
MIIP may enhance the radiosensitivity of NPC cells. MIIP 
gene induces the expression and persistence of γ‑H2AX, 
which stands for the earliest occurrence in the IR‑induced 
DNA DSBs.

Materials and methods 

Cell lines and cell culture. The human NPC 5‑8F and CNE2 
cell lines were provided by the Research Center of Clinical 
Oncology of the Affiliated Jiangsu Cancer Hospital (Nanjing 
Medical University, Nanjing, China). Although it was reported 
that the CNE2 cell line was potentially contaminated on 
September 2014 (19), several studies based on this cell line 
have been published afterwards (20‑23), which seem to support 
the authors' view that the misidentification issue was unlikely 
to affect the outcomes of the present study. 

MIIP was overexpressed in 5‑8F and CNE2 cell lines 
by lentivirus‑mediated transduction. All cells were cultured 
in Roswell Park Memorial Institute‑1640 medium (Corning 
Incorporated, Corning, NY, USA) containing fetal bovine 
serum (Thermo Fisher Scientific, Inc., Waltham, MA, USA) 
at a final concentration of 10% and grown in a humidified 
incubator with 5% CO2 at 37˚C.

Colony‑forming assay. Cell growth following treatment 
with IR was analyzed by colony‑formation assay. The cells 
were seeded in six‑well plates at different cell densities 
(2x102‑8x102 cells/well) for 12 h and exposed to IR at 0, 2, 4, 
6 and 8 Gy. Then, the cells were cultured at 37˚C for 10 days, 
and colonies were stained with Giemsa at 25˚C for 2 h. The 
surviving colonies with >50 cells were counted using a light 
microscope (Olympus Corp., Tokyo, Japan). The experiments 
were performed three times. 

Flow cytometric analysis. For apoptosis analysis, negative 
control (5‑8F NC and CNE2 NC) and MIIP‑transfected (5‑8F 
OE and CNE2 OE) cells were seeded in six‑well plates for 12 h 
(10x104 cells/well). Two parallel holes for each cell line were 
exposed to 6 Gy IR. Then, the cells were incubated at 37˚C for 
72 h and washed twice with ice‑cold PBS. The apoptotic cells 
were detected by Annexin V‑fluorescein isothiocyanate/prop-
idium iodide (PI) staining. 

For cell cycle analysis, negative control and MIIP‑ 
transfected cells were plated in 60 mm2 culture dishes for 
12 h (10x104  cells/well). Two parallel holes for each cell 
line were exposed to 6 Gy IR. Then, the cell cultures were 
terminated after 24 h. The cells were collected and fixed with 
70% ice‑cold ethanol and stained with PI to detect cell cycle 
distribution. 

The percentage of apoptotic cells and the distribution of 
cell cycle were detected by flow cytometry (FCM), and the 
data were analyzed by flow cytometry analysis software 
(Kaluza 1.6; Beckman Coulter, Inc., Brea, CA, USA). The 
aforementioned procedures were conducted in three replicates. 

Immunofluorescence. Negative control and MIIP‑transfected 
cells were seeded on cover glasses and placed in six‑well plates 
for 12 h (10x104 cells/well). The cells were exposed to 6 Gy IR, 
and then the cell cultures were terminated after 0, 1 and 24 h. 
The cells were fixed with 4% paraformaldehyde for 30 min 
at room temperature and permeabilized with 0.5% Triton 
X‑100 solution. Then, the samples were incubated with the 
primary antibody against γ‑H2AX (1:100; catalog no. 2577; 
Cell Signaling Technology, Inc., Danvers, MA, USA) at 4˚C 
overnight. This was followed by incubation with secondary 
antibody Cy3‑conjugated goat anti‑rabbit IgG (1:100; red; 
catalog no. GB21303; Servicebio, Wuhan, China) at room 
temperature for 1 h. The DNA was stained using DAPI. Finally, 
DSBs were detected by an immunofluorescence microscopy 
(Olympus Corp., Tokyo, Japan) and ZNE Lite (version 2.3; 
ZEISS Corp., Jena, Germany).

Western blot analysis. The cells were extracted and prepared 
in modified RIPA buffer (Beyotime Institute of Biotechnology, 
Haimen, China). Total protein was extracted, and protein 
concentration was quantified using a BCA protein assay kit 
(Beyotime Institute of Biotechnology). Equivalent quantities 
of protein (20 mg) were run on 10% SDS‑PAGE gels. Then, 
the proteins were transferred onto polyvinylidene fluoride 
membranes (Bio‑Rad Laboratories, Inc., Hercules, CA, USA). 
The membranes were blocked with 5% non‑fat milk at room 
temperature for 2 h. The membranes were incubated with the 
relevant primary antibodies against γ‑H2AX (1:1,000; catalog 
no. 2577; Cell Signaling Technology, Inc.) or B‑cell lymphoma 
2 (Bcl‑2; 1:500; catalog no. sc‑7382; Santa Cruz Biotechnology, 
Inc., Dallas, TX, USA) or BCL2 associated X, apoptosis 
regulator (Bax 1:1,000; catalog no.  2772; Cell Signaling 
Technology, USA) in TBS‑Tween‑20 (TBST) containing 
5% non‑fat milk (Sigma‑Aldrich; Merck KGaA, Darmstadt, 
Germany) at 4˚C overnight, followed by three washes in TBST 
for 10  min per wash. Subsequently, the membranes were 
incubated with horseradish peroxidase (HRP)‑conjugated 
goat anti‑rabbit (catalog no. 7074) and HRP‑conjugated goat 
anti‑mouse (catalog no. 7076) IgG (1:1,000; Cell Signaling 
Technology, USA) for 1 h at room temperature. β‑actin (1:500; 
catalog no. BM0627; Wuhan Boster Biological Technology, 
Ltd., Wuhan, China) was used as a loading control. Protein 
bands were visualized using the ECL detection reagent (EMD 
Millipore, Billerica, MA, USA) and analyzed using Bio‑Rad 
Laboratories Quantity One software (Bio‑Rad Laboratories, 
Inc., Hercules, CA, USA). All data analyses were repeated 
three times independently.

Statistical analysis. The data are expressed as the mean ± stan-
dard deviation (SD). Statistical analysis was performed using 
unpaired Student's t‑test and one‑way analysis of variance 
(ANOVA) test with Student‑Newman‑Keuls test using 
Graphpad (version 5.0; GraphPad Software, Inc., La Jolla, CA, 
USA) and SPSS (version 19.0; IBM Corp., Armonk, NY, USA). 
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P<0.05 was considered to indicate a statistically significant 
difference.

Results 

Overexpression of MIIP affects the sensitivity of 5‑8F and 
CNE2 cells to IR. The radiosensitizing effects of MIIP were 
initially measured using clonogenic assay. The colony forma-
tion assay of 5‑8F and CNE2 cells that were treated with or 
without 4 Gy IR are indicated in Fig. 1A and D. The survival 
fractions of cells following exposure to 4 Gy IR are shown in 
Fig. 1B and E. Notably, the survival fraction of cells in the 5‑8F 
OE and CNE2 OE groups significantly decreased following 
irradiation compared with the negative control and untreated 
groups. As shown in Fig. 1C and F, a dose‑dependent decrease 
in survival occurred in 5‑8F and CNE2 cells following irra-
diation (0, 2, 4, 6 and 8 Gy). These results confirmed that the 
overexpression of MIIP was able to suppress the growth of 
NPC cells following irradiation.

Effect of the MIIP gene on cell apoptosis. Apoptotic rates 
were analyzed 72 h following irradiation treatments, and 
untreated cells were used as controls. Exposure of the NPC 
cells to irradiation could significantly increase the apoptosis 
of NPC cells (Fig. 2A-D). Moreover, the MIIP gene over-
expression groups exhibited markedly higher apoptotic rate 
compared with the negative control groups in the absence 
of IR. Following radiation with 6 Gy, the apoptotic rates of 
the MIIP gene overexpression groups were also significantly 

higher compared with that of the negative control groups 
(Fig. 2A-D). To further uncover the underlying mechanism 
by which MIIP gene regulates radiosensitivity, the expression 
levels of Bax and Bcl‑2 proteins, which were related to cell 
apoptosis, were analyzed by western blotting. The 5‑8F OE 
and CNE2 OE cells exhibited notably higher Bax expression 
and considerably lower Bcl‑2 expression compared with 5‑8F 
NC and CNE2 NC cells (Fig. 2E-H). Therefore, the overex-
pression of the MIIP gene may enhance the apoptosis of NPC 
cells following irradiation. 

Effect of the MIIP gene on cell cycle distribution. To further 
assess the causes of radiation sensitivity, FCM analysis was 
employed to confirm the effect of MIIP on the distribution 
of cell cycle following irradiation. The cells were exposed 
to 6 Gy irradiation, and analyses were conducted at 0 and 
24 h following treatment. As shown in Fig. 3A‑D, irradia-
tion was able to significantly disrupt cell cycle progression 
and cause a sharp increase in the proportion of cells in the 
G2/M phase in 5‑8F OE and CNE2 OE cells compared 
with 5‑8F NC and CNE2 NC cells. In the absence of IR, 
no significant difference was observed between the cell 
cycle profiles of cells in the MIIP gene overexpression and 
control groups (Fig. 3A‑D). By contrast, the percentage of 
cells in the MIIP gene overexpression group was markedly 
higher in the G2/M phase compared with the control cells 
at 24 h following 6 Gy irradiation (Fig. 3B and D). The 
overexpression of MIIP gene enhanced the G2/M cell cycle 
arrest that was induced by IR. 

Figure 1. Overexpression of MIIP gene affects the radiosensitivity of 5‑8F cells. (A) The colony formation assay in 5‑8F, 5‑8F NC and 5‑8F OE cells that were 
treated with or without IR. (B) The survival fractions of 5-8F, 5-8F NC and 5-8F OE cells following exposure to 4 Gy IR. (C) The survival fractions of 5-8F, 
5-8F NC and 5-8F OE cells at different doses of IR (0, 2, 4, 6 and 8 Gy). (D) The colony formation assay in CNE2, CNE2 NC and CNE2 OE cells that were 
treated with or without IR. (E) The survival fractions of CNE2, CNE2 NC and CNE2 OE cells following exposure to 4 Gy IR. (F) The survival fractions of 
CNE2, CNE2 NC, and CNE2 OE cells at different doses of IR (0, 2, 4, 6 and 8 Gy). n=3 for each group. *P<0.05. IR, ionizing radiation; MIIP, migration and 
invasion inhibitory protein. 
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Figure 2. Overexpression of MIIP gene affects apoptosis that is induced by IR. (A and B) Apoptotic changes in 5‑8F NC and 5‑8F OE cells following exposure 
to 6 Gy IR for 72 h. Quantification of the percentage of apoptotic cells (right) is shown. (C and D) Apoptotic changes in CNE2 NC and CNE2 OE cells following 
exposure to 6 Gy IR for 72 h. Quantification of the percentage of apoptotic cells is presented. (E and G) Changes in Bax and Bcl‑2 expression in different groups 
of 5‑8F cells following exposure to 6 Gy IR. The relative protein expression of 5‑8F NC and 5‑8F OE cells is presented. (F and H) Changes in Bax and Bcl‑2 
expression in different groups of CNE2 cells following exposure to 6 Gy IR. The relative protein expression of CNE2 NC and CNE2 OE cells is presented. 
n=3 for each group. *P<0.05, **P<0.01. Bax, BCL2 associated X, apoptosis regulator; Bcl‑2, B‑cell lymphoma 2; IR, ionizing radiation; MIIP, migration and 
invasion inhibitory protein; NC, negative control; OE, MIIP‑transfected cells. 
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MIIP participates in IR‑induced γ‑H2AX foci formation. 
IR inflicts various types of damage to the genome to kill 
cells (24). It was speculated that the radiosensitizing effect of 
MIIP gene on NPC cells may originate from the impairment in 
the repair of DSBs. Therefore, the levels of DSBs in 5‑8F and 
CNE2 cells following exposure to IR at different time points 
were determined by immunofluorescence staining of γ‑H2AX 
foci. Following irradiation at 6 Gy, the number of nuclear foci 
containing γ‑H2AX at 1 h was markedly higher in 5‑8F OE and 
CNE2 OE cells compared with 5‑8F NC and CNE2 NC cells. 
As a result of DBS repair, the number of foci decreased from 1 
to 24 h. Meanwhile, the 5‑8F OE and CNE2 OE cells exhibited 
slower decay of γ‑H2AX foci following irradiation compared 
with 5‑8F NC and CNE2 NC cells. In addition, 5‑8F OE and 
CNE2 OE groups exhibited higher levels of γ‑H2AX compared 
with 5‑8F NC and CNE2 NC, respectively (Fig. 4A and B). The 
same results were observed by western blot analysis (Fig. 4C-F). 
Therefore, the MIIP gene was able to increase the induction and 
persistence of IR‑induced γ‑H2AX foci.

Discussion 

Clinically, radiosensitivity and radioresistance have impor-
tant roles in treatment of NPC (25,26). However, the accurate 

molecular mechanisms underlying their roles remain unclear. 
Several reports demonstrated that numerous tumor suppressor 
genes and oncogenes are associated with radiosensi-
tivity (27‑33). MIIP was first identified in a yeast two‑hybrid 
screen for proteins that interact and inhibit insulin‑like growth 
factor binding protein 2 (6). Further studies on insulin‑like 
growth factor binding protein 2 indicated that MIIP regulates 
cell migration and mitosis (34). MIIP is underexpressed in 
a wide range of types of human cancer, including glioma, 
endometrial cancer, breast cancer, lung cancer, esophageal 
cancer, prostate cancer, neuroblastoma and pheochromo-
cytoma (3‑10). A decreased MIIP expression is associated 
with tumorigenesis and progression of endometrial cancer 
as MIIP inhibits the migration and invasion of endometrial 
cancer cells (4). Moreover, MIIP inhibits the migration and 
invasion of glioma cells (6). Wen et al (5) found that MIIP 
accelerates epidermal growth factor receptor protein turnover 
and attenuates the proliferation of non‑small cell lung cancer 
cells. Additionally, a previous study conducted by our team 
indicated that the expression of MIIP mRNA was reduced 
in human NPC cell lines (5‑8F and CNE2) compared with 
normal nasopharyngeal epithelial cell line (NP69), and the 
MIIP gene played a notable role in the pathogenesis of NPC 
(unpublished). Therefore, the current study was designed to 

Figure 3. Overexpression of MIIP gene exacerbates G2/M checkpoint arrest. (A) Cell cycle profiles of 5‑8F OE and 5‑8F NC cells. (B) Quantification of 
cell cycle distribution of 5‑8F OE and 5‑8F NC cells. Overexpression of MIIP gene resulted in an increased proportion of 5‑8F OE cells in the G2/M phase. 
(C) Cell cycle profiles of CNE2 OE and CNE2 NC cells. (D) Quantification of cell cycle distribution of CNE2 OE and CNE2 NC cells. Overexpression of 
MIIP gene resulted in an increased proportion of CNE2 OE cells in G2/M phase. MIIP, migration and invasion inhibitory protein; NC, negative control; OE, 
MIIP‑transfected cells. 
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Figure 4. MIIP gene regulates the formation of γ‑H2AX foci. (A) Overexpression of MIIP resulted in increased formation of γ‑H2AX foci following exposure 
to IR (magnification, x400). The cells were treated with 6 Gy and fixed at 1 and 24 h post‑irradiation. The cells were subsequently stained with antibodies. 
(B) Overexpression of MIIP resulted in increased formation of γ‑H2AX foci in 5‑8F cells following exposure to IR (magnification, x400). The cells were 
treated with 6 Gy and fixed at 1 and 24 h post‑irradiation. The cells were subsequently stained with antibodies. (C and E) Changes of γ‑H2AX in different 
groups of 5‑8F cells. The cells were untreated or irradiated with 6 Gy IR and harvested 1 and 24 h later. The cells were then used for western blot analysis. 
The relative expression of γ‑H2AX protein in 5‑8F cells is presented. (D and F) Changes in γ‑H2AX expression in different groups of CNE2 cells. The cells 
were untreated or irradiated with 6 Gy IR and harvested 1 and 24 h later. The cells were then used for western blot analysis. The relative expression of γ‑H2AX 
protein in CNE2 cells is presented. *P<0.05, **P<0.01. MIIP, migration and invasion inhibitory protein; NC, negative control; OE, MIIP‑transfected cells.
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investigate the association between MIIP and radiosensitivity 
of NPC cells. 

One of the most reliable methods to evaluate cell survival 
is the colony formation assay, which is the gold standard 
for detecting radiosensitivity (35). In the present study, all 
radiosensitization parameters were calculated using the 
linear‑quadratic model  (25). Consequently, it was demon-
strated that the survival fraction significantly decreased in the 
MIIP gene overexpression groups at a given dose of irradia-
tion in comparison with the negative control and untreated 
groups. Moreover, a dose‑dependent decrease in survival 
was observed in 5‑8F and CNE2 cells following irradiation. 
Therefore, the MIIP gene may exert a radiosensitization effect 
on NPC cells. 

In previous studies, tumor radiosensitivity is associated 
with numerous factors, including tumor microenvironment, 
apoptosis, cell cycle regulation and DNA repair dysfunc-
tion (36). Apoptosis is one of the most important mechanisms 
of cell death following IR, and the apoptosis index is posi-
tively correlated with tumor radiosensitivity (37). Moreover, 
several studies indicated that Bcl‑2 and Bax have a significant 
role in cell apoptosis (38,39). Following irradiation, the apop-
totic rate in the 5‑8F OE and CNE2 OE groups increased 
along with increased Bax expression and decreased Bcl‑2 
protein expression. In theory, the inhibition of MIIP would 
lead to the suppression of the radiation‑induced apoptosis 
of NPC cells. However, in a previous study by the present 
authors, it was indicated that the expression of MIIP gene 
is very low in NPC cell lines (unpublished). Therefore, in 
the present study, the overexpression of MIIP was carried 
out instead of knockdown. It was demonstrated that the over-
expression of MIIP and irradiation increased cell apoptosis 
by activating the Bax/Bcl‑2 signaling pathway in NPC cells, 
which may be one of the potential underlying mechanisms of 
radiosensitization.

Apart from stimulating apoptosis, DNA damage main-
tains genomic integrity by causing responses to conserved 
DNA damage, activating cell cycle checkpoints, and 
allowing DNA repair (40,41). Cells in the G2/M phase are 
the most sensitive to IR, whereas those in the S phase are 
resistant  (42). Radiosensitization had been achieved in 
previous studies by inducing cell cycle arrest at G2/M using 
gene therapy or taxanes (43,44). The present study analyzed 
the changes in cell cycle by flow cytometry. The overexpres-
sion of MIIP increased the proportion of 5‑8F and CNE2 
cells in the G2/M phase following exposure to IR, thereby 
indicating that G2 phase delay may result in the sensitization 
of irradiated cells.

The activation of checkpoint mechanisms following 
exposure to DNA damage is critical to the maintenance of 
genomic integrity and prevention of cancer development (45). 
DNA DSBs induce a checkpoint response that inhibits further 
progression of cell cycle and promotes repair of damaged 
DNA in response to genotoxic stress (46). 

In IR‑induced DSBs, γ‑H2AX occurs immediately 
following the appearance of DSBs and is crucial to the forma-
tion of foci at the chromatin surrounding the DSB. Then, 
numerous other substrates are modified, which leads to check-
point activation, DNA repair and/or apoptosis. After finishing 
the repair of damaged DNA, γ‑H2AX foci disappear, and 

the checkpoint is closed, which allows re‑entry into the cell 
cycle. In mammalian cells, γ‑H2AX could accumulate around 
damaged chromatin (14,47‑49). In the present study, γ‑H2AX 
appeared in nuclear foci within 1 h following exposure to IR. 
The overexpression of MIIP markedly increased the number 
of γ‑H2AX foci in 5‑8F and CNE2 cells. The same results 
were observed in the western blot analysis. These results 
indicated that the overexpression of MIIP may enhance the 
radiosensitivity of NPC cells, and then promote the cascade 
of DNA damage signal induced by IR, accumulating and 
retaining DDR proteins at the DNA damage sites. However, 
further studies are needed to examine other mechanisms of 
radiosensitization.

In conclusion, MIIP improved the radiosensitivity of NPC 
cells via promoting cell apoptosis by regulating the expression 
of bax and bcl‑2, and inducing cell cycle arrest at the G2/M 
phase, as well as inhibiting the repair of DBS. MIIP appears 
to be a potential radiotherapy sensitization agent for the treat-
ment of NPC. 
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