
ONCOLOGY LETTERS  15:  9994-10000,  20189994

Abstract. Cervical cancer (CC) is a leading cause of canc
er‑associated mortality in women; thus, the present study 
aimed to investigated potential target genes and pathways 
in patients with CC by utilizing an ensemble method and 
pathway enrichment analysis. The ensemble method inte-
grated a correlation method [Pearson's correlation coefficient 
(PCC)], a causal inference method (IDA) and a regression 
method [least absolute shrinkage and selection operator 
(Lasso)] using the Borda count election algorithm, forming 
the PCC, IDA and Lasso (PIL) method. Subsequently, the 
PIL method was validated to be a feasible approach to 
predict microRNA (miRNA) targets by comparing predicted 
miRNA targets against those from a confirmed database. 
Finally, Kyoto Encyclopedia of Genes and Genomes pathway 
enrichment analysis was conducted for target genes in the 
1,000 most frequently predicted miRNA‑mRNA interactions 
to determine target pathways. A total of 10 target genes were 
obtained that were predicted >5 times, including secreted 
frizzled‑related protein 4, maternally expressed 3 and NIPA 
like domain containing 4. Additionally, a total of 17 target 
pathways were identified, of which cytokine‑cytokine 
receptor interaction (P=8.91x10‑7) was the most significantly 
associated with CC of all pathways. In conclusion, the present 
study predicted target genes and pathways for patients with 
CC based on miRNA expression data, the PIL method and 
pathway analysis. The results of the present study may 
provide an insight into the pathological mechanisms under-
lying CC, and provide potential biomarkers for the diagnosis 
and treatment of this tumor type. However, these biomarkers 
have yet to be validated; these validations will be performed 
in future studies.

Introduction

Cervical cancer (CC) is a leading cause of cancer‑associated 
mortality in women globally, with 500,000 new cases and 
250,000 incidences of mortality annually in 2012 (1). Previous 
studies have reported that human papillomavirus infection is 
a high risk factor for CC; however, it is insufficient to initiate 
of malignancy alone (2), and genetic alterations are essential 
for the progression from precancerous disorder to invasive 
cancer (3). Thus, it is necessary to understand the pathogenic 
progresses that drive CC to further prevent its development 
by dissecting the components involved in the pathogenic 
process (4).

Clinically, early‑stage and locally advanced CC may be 
treated with standard radiotherapy and chemotherapy, or the 
two treatments combined; however, patients with metastatic 
cancer types and those with persistent or recurrent disease 
following platinum‑based chemoradiotherapy have limited 
options  (5,6). Furthermore, the clinical outcomes vary 
substantially and are difficult to predict, owing to the lack of 
effective outcome prediction models, which make it difficult 
to apply individualized treatment protocols to patients with 
CC (7). With the development of gene expression‑associated 
analysis methods, target‑gene treatments may be applied to 
largely solve this problem and potentially improve patient 
survival (8). Therefore, the identification of target genes to aid 
the prediction of CC prognosis is a necessary task.

MicroRNAs (miRNAs/miRs) are a family of small 
non‑coding RNA molecules (~22 nucleotides in length) that 
regulate gene expression by promoting mRNA degradation 
and repressing translation (9). miRNAs modulate the expres-
sion of target mRNAs post‑transcriptionally by base pairing 
to complementary sequences in the 3'‑ and 5'‑untranslated 
regions, and occasionally the open‑reading frames of 
mRNAs  (10,11). However, miRNA expression signatures 
have been revealed to be promising potential biomarkers 
for the classification or outcome prediction of a wide array 
of human cancer types  (12), including lung cancer  (13). 
miRNAs are involved in numerous cancer‑associated 
processes, including proliferation, metabolism, differentia-
tion, apoptosis, cellular signaling and cancer development 
and progression (14). Hence, the investigation of miRNA 
functions allows for the elucidation of the complex patho-
logical mechanisms underlying malignant tumor types, 
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and aids the design of drugs for the treatment of malignant 
tumors.

However, to date, the prediction of miRNAs targets in CC 
has rarely been investigated. Therefore, in the present study, 
target miRNAs involved in CC were predicted utilizing an 
ensemble method proposed by Le et al (15). The ensemble 
method integrated a correlation method [Pearson's correla-
tion coefficient (PCC)], a causal inference method (IDA), and 
a regression method [least absolute shrinkage and selection 
operator (Lasso)], which formed the PCC (16), IDA (17,18) 
and Lasso  (19) (PIL) method, based on the Borda count 
election method. The PIL approach may solve the inconsis-
tencies in results that result from individual methods as it 
includes complementary results (20). Although there is not a 
full understanding regarding miRNA target prediction, the 
ensemble method may aid the identification of a number of 
confirmed interactions that existing individual methods fail 
to discover (15). Overall, using the PIL method, more reliable 
results can be obtained compared with existing individual 
methods (15).

To validate the activity of the predicted miRNA targets in 
patients with CC, effective methods must be utilized. Previous 
studies have proposed the use of a number of different 
methods (21,22), including a semi‑supervised method (21). 
The semi‑supervised method was mainly dependent on a 
support vector machine model, which used the experimentally 
confirmed database miRTarBase (23) as the control set and 
Tarbase (24) as the test set. Owing to the positive classifica-
tion performances, miRTarBase and Tarbase were utilized in 
the present study, in addition to the other two commonly used 
databases, miRecords (25) and miRWalk (26), owing to the 
sparseness of the number of confirmed interactions, for valida-
tion of the miRNA targets.

Following the identification of miRNA targets using 
the PIL method and validating them by matching them 
with confirmed databases [miRTarBase (23), TarBase (24), 
miRecords (25), and miRWalk (26)], Kyoto Encyclopedia 
of Genes and Genomes (KEGG)  (27) pathway enrich-
ment analysis was conducted for target genes in the 1,000 
most frequently predicted miRNA‑mRNA interactions to 
determine target pathways associated with miRNA targets 
in CC. These targets may be potential biomarkers for CC 
treatment, revealing the pathological mechanism underlying 
this cancer.

Materials and methods

Collecting expression data. In the present study, miRNA and 
mRNA expression data from patients with CC were downloaded 
from The Cancer Genome Atlas (TCGA; http://cancergenome.
nih.gov/). TCGA is a comprehensive and coordinated effort to 
accelerate the current understanding of the molecular basis of 
cancer through the application of genome analysis technolo-
gies, including large‑scale genome sequencing (28). Owing to 
the differing quantities and identities of miRNAs and mRNAs 
between samples, only samples with common intersections 
were included as study objects. A total of 309 samples were 
obtained.

To control the quality of miRNA and mRNA in these 
samples, standard pretreatments were performed. In the first 

step, miRNAs or mRNAs with an expression value of zero 
were removed. Secondly, the expression values were normal-
ized and converted into log2 forms, identifying 889 miRNAs 
and 20,104  mRNAs. Thirdly, PCC, which evaluates the 
probability of two gene pairs co‑expressing (16), was used to 
calculate the strength of the correlation between miRNAs and 
mRNAs. Finally, if the absolute value of PCC for an interac-
tion, denoted as δ, met a threshold of δ≥0.70, the correlations 
were selected as effective expression data. This resulted in 
the identification of 53 miRNAs and 216 mRNAs for further 
examination.

Predicting miRNA targets using the PIL method. The PIL 
method is an ensemble method that integrates three methods 
(PCC, IDA and Lasso) based on the Borda count election 
method. This method mainly comprised three steps: Firstly, 
for each miRNA, each of the individual methods (PCC, IDA 
and Lasso) were utilized to produce rankings for each miRNA 
or to determine the predicted targets of the miRNA, and the 
1,000 most frequently predicted performers in identifying 
miRNA targets were selected. The second step was the applica-
tion of the Borda rank election method to the rankings for each 
miRNA to produce a single ranking list of elected mRNAs 
with respect to the miRNA. Finally, the highest‑ranked genes 
from the list were extracted as the final output, as the potential 
target genes for the given miRNA.

The Borda rank election method is an efficient method 
to combine orderly appraising results from several separate 
evaluating methods (29). Its specific process is as follows: With 
an election consisting of a set (V) of voters, each identified 
candidate is assigned a preferential order, a strict, complete 
and transitive order on a set of candidates (C). Subsequently, 
each of the candidates is given ||C||‑n points for each voter 
which ranked them in nth place (for example, ||C||‑1 points for 
first, ||C||‑2 for second, and so forth until the candidate voter 
ranked last receives no points). Finally, the average point score 
of the candidate across all voters was computed, and defined 
as the z‑score. The higher the z‑score, the more significantly 
associated with CC the prediction results were. Ranking the 
predicted miRNA targets according to their z‑scores, the 
1,000 most frequently predicted ranked target genes for CC 
were determined.

Validating predicted miRNA targets. Validating computa-
tion results is difficult, as the number of experimentally 
confirmed targets of miRNAs is limited and there is no 
complete ground‑truth for evaluating and comparing 
different computational methods (30). In the present study, 
four databases, miRTarBase v4.5 (23), TarBase v6.0 (24), 
miRecords  v2013  (25) and miRWalk  v2.0  (26), were 
combined to validate the prediction of miRNA targets 
obtained from the PIL method. miRTarbase provides the 
most up‑to‑date, comprehensive information regarding 
experimentally validated miRNA‑mRNA target inter-
actions  (31). TarBase is the first resource to provide 
experimentally verified miRNA target interactions by 
surveying pertinent literature (32). miRecords accumulates 
experimentally validated miRNA targets and computation-
ally predicted miRNA targets (25). miRWalk is a publicly 
available comprehensive resource, hosting predicted 
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and experimentally validated miRNA target interaction 
pairs (26). There were 37,372 miRNA‑mRNA interactions 
with 576 miRNAs, 20,095 miRNA‑mRNA interactions with 
228  miRNAs, 21,590  miRNA‑mRNA interactions with 
195 miRNAs, and 1,710 miRNA‑mRNA interactions with 
226 miRNAs in the miRTarBase, TarBase, miRecords and 
miRWalk databases, respectively. Following the removal 
of the duplicated miRNA‑mRNA interactions, a total of 
62,858  interactions were retained for validation, termed 
background interactions. If a miRNA target interaction was 
involved in background interactions, the predicted miRNA 
target was validated.

Pathway enrichment analysis. For the purpose of inves-
tigating functional biological processes associated with 
target genes enriched in the 1,000 most frequently predicted 
miRNA‑mRNA interactions for CC, the Database for Anno
tation, Visualization, and Integrated Discovery (DAVID) for 
KEGG pathway enrichment analysis were performed (27). 
KEGG pathways with P<0.05 were selected based on an 
Expression Analysis Systematic Explored (EASE) test 
applied in DAVID. EASE analysis of the regulated genes 
indicated the molecular functions and biological processes 
unique to each category  (33). In functional and pathway 
enrichment analysis, the threshold of the minimum number 
of genes corresponded to ≥2, which was considered to be 
significant for a category:

Where n = a' + b + c + d was the number of background 
genes; a' was the gene number of one gene set in the gene lists; 
a' + b was the number of genes in the gene list including at least 
one gene set; a' + c was the gene number of one gene list in the 
background genes; and a' was replaced with a = a '‑ 1 in EASE.

Results

Predicted miRNA targets. In the present study, based on the CC 
expression data from TCGA database, a total of 53 miRNAs 
and 216 mRNAs were obtained for further analysis subse-
quent to pretreatments. By merging three methods on the 
basis of the Borda count election algorithm, the PIL method 
was formed and was utilized to predict miRNA targets. The 
miRNA targets were identified based on miRNA‑mRNA 
interactions, and the mRNAs or target genes were addition-
ally identified. During this process, each miRNA‑mRNA 
interaction was assigned a z‑score, and all interactions were 
ranked in a descending order of z‑scores. The higher the 
z‑score, the more significantly associated with CC the predic-
tion results. Owing to the large number of miRNA targets, 
the 1,000 most frequently predicted ranked interactions were 
selected, as they may be more strongly associated with CC 
than other interactions.

Table  I displays the 50  most frequently predicted 
mRNA‑miRNA interactions, and Fig.  1 represents the 
network of these interactions. It was revealed that secreted 

Table I. All 50 most frequently predicted mRNA‑miRNA 
interactions.

No.	 mRNA	 miRNA	 z‑score

  1	 SFRP4	 miR‑199a‑1	 219.0
  2	 C9orf3	 miR‑24‑1	 218.5
  3	 DIO3	 miR‑1247	 218.2
  4	 MEG3	 miR‑431	 217.8
  5	 KLHL3	 miR‑874	 216.9
  6	 LOC554202	 miR‑31	 216.8
  7	 MAGEA6	 miR‑105‑1	 216.8
  8	 MIR155HG	 miR‑155	 216.5
  9	 MYH11	 miR‑145	 216.2
10	 PDE2A	 miR‑139	 216.1
11	 PDE4D	 miR‑582	 216.1
12	 PPARGC1B	 miR‑378	 216.1
13	 C21orf34	 miR‑125b‑2	 216.0
14	 UGT8	 miR‑577	 216.0
15	 CALML3	 miR‑675	 130.0
16	 HOXB9	 miR‑196a‑1	 129.6
17	 CNN1	 miR‑145	 128.7
18	 CXCL9	 miR‑483	 123.1
19	 IFNE	 miR‑31	 122.2
20	 MAGEA3	 miR‑105‑1	 118.4
21	 SOX7	 miR‑139	 108.9
22	 CLRN3	 miR‑194‑2	 102.6
23	 LMOD1	 miR‑451	 97.5
24	 C9orf3	 miR‑27b	 85.6
25	 LMOD1	 miR‑145	 81.8
26	 MEG3	 miR‑125b‑1	 77.7
27	 S100A2	 miR‑31	 72.3
28	 RGL3	 miR‑675	 64.8
29	 AIM1L	 miR‑203	 62.9
30	 ARHGAP9	 miR‑142	 60.9
31	 ASPG	 miR‑582	 59.7
32	 CDHR5	 miR‑338	 59.1
33	 IL20RB	 miR‑24‑1	 58.9
34	 SNAI2	 miR‑1247	 57.9
35	 LMOD1	 miR‑199a‑1	 55.3
36	 S100A2	 miR‑105‑1	 54.0
37	 ANKS4B	 miR‑194‑2	 52.6
38	 ASPG	 miR‑203	 51.9
39	 GZMH	 miR‑598	 49.4
40	 LYPD3	 miR‑203	 49.1
41	 MEG3	 miR‑127	 48.3
42	 MYH11	 miR‑95	 47.8
43	 AMICA1	 miR‑1247	 47.3
44	 CTLA4	 miR‑155	 46. 9
45	 DUSP7	 miR‑196a‑1	 46.7
46	 PDE2A	 miR‑378	 46.3
47	 SOX7	 miR‑592	 45.3
48	 IGF2	 miR‑199a‑1	 44.2
49	 LASS3	 miR‑30a	 44.2
50	 MS4A1	 miR‑99a	 43.2

miRNA/miR, microRNA; mRNA, messenger RNA.
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frizzled‑related protein 4 (SFRP4; z‑score=219.0) was the 
most frequently predicted mRNA, and its corresponding 
miRNA was miR‑199a‑1. The next four most frequent 
interactions were chromosome 9 open reading frame  3 
(z‑score=218.5) with miR‑24‑1, iodothyronine deiodinase 3 
(z‑score=218.2) with miR‑1247, maternally expressed  3 
(MEG3; z‑score=217.8) with miR‑431 and kelch‑like family 
member 3 (z‑score=216.9) with miR‑874. Notably, among 
the 50 most frequently predicted interactions, MEG3 was 
regulated by three miRNAs (miR‑431, miR‑125b‑1 and 
miR‑127) simultaneously. miR‑199a‑1 may regulate two 
mRNAs (SFRP4 and insulin like growth factor 2) at the 
same time. Hence, a miRNA may regulate a plurality of 
genes, and multiple miRNAs may alter the expression of a 
single gene.

For the specific 1,000 miRNA targets, genes which were 
regulated by a greater number of miRNAs or which were 
predicted more frequently, may have a stronger association 
with CC compared with those only predicted once. This 
may offer another way to evaluate the importance of one 
gene in certain tumor. Therefore, the predicted frequency 
for mRNAs were computed, and the targets which were 
predicted  >5  times amongst the 1,000  miRNA‑mRNA 
interactions were listed (Table II). SFRP4 and MEG3 were 
predicted 8 times. A total of 7 miRNAs co‑regulated NIPA 
like domain containing 4, whilst guanylate binding protein 
family member 6, interferon gamma inducible protein 6, 

family with sequence similarity  83 member  C, serpin 
family B member 5, adhesion G protein‑coupled receptor F4, 
calponin 1 and leiomodin 1 were all regulated by 6 miRNAs 
simultaneously.

Validation of miRNA targets. To validate the prediction of 
miRNA targets identified by the PIL method, the miRTarBase, 
TarBase, miRecords and miRWalk databases were used. By 
removing duplicated interactions, 62,858 interactions were 
obtained, which were denoted as background interactions. 
Selecting intersections between background interactions and 
all predicted miRNA‑mRNA interactions, 105  intersected 
interactions were detected. The results indicated the feasibility 
and stability of the PIL method.

Enriched pathways for target genes. KEGG pathway enrich-
ment analysis was conducted for genes identified within 
the 1,000 miRNA‑mRNA interactions (Table III). With the 
threshold set at P<0.05 and target genes count ≥2, a total 
of 17 pathways were identified, which were termed ʻtarget 
pathways .̓ In addition, 5 out of the 17  target pathways 
were signaling pathways. The five target pathways with the 
highest significance were cytokine‑cytokine receptor inter-
actions (P=8.91x10‑7), the chemokine signaling pathway 
(P=1.55x10‑5), cell adhesion molecules (CAMs) (P=1.37x10‑4), 
the T‑cell receptor signaling pathway (P=1.58x10‑4) and 
primary immunodeficiency (P=1.75x10‑4).

Figure 1. Network of the 50 most frequently predicted miRNA‑mRNA interactions. Nodes were miRNAs (red) and mRNAs (blue), and edges were the interac-
tions between any two of them. miRNA/miR, microRNA.
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Discussion

A number of differing computational methods have been 
proposed to identify miRNA targets from expression data, 
including PCC  (16), IDA  (17,18) and Lasso  (19). PCC is 
commonly used to measure the strength of associations 
between a pair of variables (16). PCC is used to rank data in 
descending order of absolute PCC values, and may result in 
negative miRNA‑mRNA correlations being highly ranked, 
as miRNAs mainly downregulate mRNAs (15). Additionally, 
the practicability of PCC would be substantially reduced 

if the correlations were non‑linear  (34). IDA, a causal 
inference method, evaluates the causal effect between 
two variables  (17,18). Le et al found that miRNA‑mRNA 
causal regulatory associations revealed by IDA overlapped 
substantially with the results of follow‑up gene‑knockdown 
experiments  (35). Lasso, a regression method, minimizes 
the usual sum of squared errors, with a limit on the sum of 
the absolute values of the coefficients (19). Similar to the 
PCC method, the miRNA‑mRNA pairs with limitations are 
ranked highly to favor downregulation. Therefore, the Borda 
count election method was used to integrate the aforemen-
tioned three methods together, giving the PIL method, and 
validated by identifying intersections between predicted 
miRNA‑mRNA interactions and background interactions.

Using the PIL method, predicted miRNA targets for 
patients with CC were ranked according to their z‑scores 
and the 1,000 highest ranked interactions were obtained. 
For specific interactions, target genes that were predicted 
multiple times were identified. Notably, SFRP4 was the 
most frequently predicted gene during the prediction 
process. SFRP4 is a member of the SFRP family that 
contains a cysteine‑rich domain homologous to the putative 
Wnt‑binding site of Frizzled proteins (36); it serves notable 
functions in tumor progress through antagonizing Wnt 
signaling (37). Hypermethylation of the SFRP4 promoter was 
associated with CC and may have utility for the molecular 
screening of cervical neoplasia (38). Brebi et al (39) revealed 
that SFRP4 may be used as a potential biomarker for CC 
diagnosis. Therefore, SFRP4 was identified to be closely 
associated with CC.

For the purpose of investigating functional gene sets 
involved with miRNA‑mRNA targets, pathway enrichment 
analysis was conducted. A total of 17 target pathways were 
identified for genes in the 1,000 miRNA‑mRNA interactions 
most notably associated with CC based on KEGG pathway 
enrichment analysis, of which cytokine‑cytokine receptor 
interactions (P=8.91x10‑7) was the most significantly associ-
ated with CC. Cytokines are soluble extracellular proteins, 

Table III. Kyoto Encyclopedia of Genes and Genomes 
pathways enriched in cervical cancer.

Rank	 Pathway	 P‑value

  1	 Cytokine‑cytokine receptor interaction	 8.91x10‑7

  2	 Chemokine signaling pathway	 1.55x10‑5

  3	 Cell adhesion molecules	 1.37x10‑4

  4	 T‑cell receptor signaling pathway	 1.58x10‑4

  5	 Primary immunodeficiency	 1.75x10‑4

  6	 Chagas disease (American	 6.09x10‑4

	 trypanosomiasis)
  7	 Hematopoietic cell lineage	 9.24x10‑3

  8	 Rheumatoid arthritis	 9.34x10‑3

  9	 Natural killer cell mediated cytotoxicity	 1.02x10‑2

10	 Toll‑like receptor signaling pathway	 1.21x10‑2

11	 Prion diseases	 1.25x10‑2

12	 Adherens junction	 1.54x10‑2

13	 Type I diabetes mellitus	 1.87x10‑2

14	 Malaria	 2.73x10‑2

15	 Staphylococcus aureus infection	 3.11x10‑2

16	 Maturity onset diabetes of the young	 3.75x10‑2

17	 Tumor protein p53 signaling pathway	 4.70x10‑2

Table II. mRNA targets predicted >5 times.

Target	 Predictions, n	 miRNAs

SFRP4	 8	 miR‑105‑2, miR‑125b‑2, miR‑127, miR‑199a‑1, miR‑335, miR‑451, miR‑95, miR‑99a
MEG3	 8	 miR‑1247, miR‑125b‑1, miR‑127, miR‑199a‑1, miR‑431, miR‑483, miR‑493, miR‑874
NIPAL4	 7	 miR‑1287, miR‑144, miR‑27b, miR‑451, miR‑592, miR‑675, miR‑95
GBP6	 6	 let‑7c, miR‑105‑2, miR‑125b‑2, miR‑30a, miR‑582, miR‑592
IFI16	 6	 let‑7c, miR‑105‑2, miR‑196a‑2, miR‑24‑1, miR‑452, miR‑95
FAM83C	 6	 let‑7c, miR‑127, miR‑30a, miR‑378, miR‑452, miR‑582
SERPINB5	 6	 miR‑105‑2, miR‑152, miR‑23b, miR‑449a, miR‑584, miR‑708
GPR115	 6	 miR‑1287, miR‑452, miR‑584, miR‑592, miR‑874, miR‑944
CNN1	 6	 miR‑139, miR‑144, miR‑145, miR‑23b, miR‑431, miR‑95
LMOD1	 6	 miR‑144, miR‑145, miR‑199a‑1, miR‑31, miR‑451, miR‑95

miRNA/miR, microRNA; mRNA, messenger RNA; SFRP4, secreted frizzled related protein 4; MEG3, maternally expressed 3; NIPAl4, NIPA 
like domain containing  4; GBP6, guanylate binding protein family member  6; IFI16, interferon‑γ inducible protein  16; FAM83C, family 
with sequence similarity 83 member C; SERPINB5, serpin family B member 5; GPR115, adhesion G‑protein‑coupled receptor F4; CNN1, 
calponin 1; LMOD1, leiomodin 1.
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usually secreted in response to an activating stimulus, which 
induce responses through binding to specific receptors on the 
surface of target cells (40). Cytokines can be grouped by struc-
ture into different families, as can and their receptors. It had 
been reported that the cytokine‑cytokine receptor interaction 
gene set may induce cancer (41) and was upregulated in cancer 
cachexia (42); these changes should result in the development 
of markers for early diagnosis and a better understanding of 
the conditions of a tumor. Mak et al  (43) revealed that the 
marked upregulation of genes involved in cytokine‑cytokine 
receptor interactions were consistently detected in tumor 
cell lines. Signaling pathway impact analysis implicated that 
this pathway was commonly altered in triple‑negative breast 
cancer (44). Therefore, it can be inferred that cytokine‑cyto-
kine receptor interactions additionally serve notable functions 
in the progression of CC, and, to the best of our knowledge, 
the present study is the first to reveal the correlation between 
cytokine‑cytokine receptor interactions and CC.

In conclusion, the present study predicted target genes and 
pathways for patients with CC based on miRNA expression 
data, the PIL method and pathway analysis. The results of 
the present study may provide insights into the pathological 
mechanism underlying CC, and provide potential biomarkers 
for the diagnosis and treatment of this tumor type. However, 
these biomarkers are yet to be validated, and the relevant vali-
dations should be performed in future studies.
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