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Abstract. Sphingosine kinase 1 (SphK1) is a master kinase 
that catalyzes the synthesis of sphingosine 1 phosphate 
and participates in the regulation of cell proliferation and 
autophagy. The present study aimed to assess the effects of 
the activation of the SphK1/extracellular signal-regulated 
kinase (ERK)/phosphorylated (p-)ERK pathway in the regu-
lation of autophagy in colon cancer (HT-29) cells. Inverted 
fluorescence microscopy was used to detect the expression of 
green fluorescent protein (GFP) in the SphK1‑overexpressing 
HT-29 cells [SphK1(+)-HT-29] and the negative control HT-29 
cells (NC-HT-29). Western blotting was used to detect the 
protein expression levels of SphK1, ERK1/2, p-ERK1/2, as 
well as those of the autophagy-associated markers LC3A, 
ATG5, and ULK1. Protein localization and expression of 
the LC3A antibody were detected by immunofluorescence. 
The results demonstrated that GFP was similarly expressed 
in SphK1(+)‑HT‑29 and NC‑HT‑29 cells. However, signifi-
cantly increased SphK1 mRNA and protein expression levels 
were detected in SphK1(+)-HT-29 cells compared with in 
NC-HT-29 cells, which resulted in upregulated ERK/p-ERK. 
Furthermore, the protein expression levels of the three 
autophagy-associated markers increased. LC3A protein was 
localized in the cytoplasm of SphK1(+)-HT-29 cells, indicating 
autophagy. In summary, the findings of the present study 
suggested that activation of the SphK1/ERK/p-ERK pathway 
promotes autophagy in colon cancer HT-29 cells.

Introduction

Colon cancer is a type of malignant epithelial cell tumor, and 
presents a major health concern worldwide. The inhibition of 
cancer cell proliferation is an essential strategy in the treat-
ment of colon cancer (1). However, the molecular mechanisms 
of colon cancer cell proliferation remain unresolved.

Autophagy is an evolutionarily conserved process in eukary-
otes. During autophagy, a nascent double membrane-bound 
vesicle called an autophagosome encloses a portion of the 
cytoplasm and the outer membrane of autophagosomes then 
fuses with the vacuolar or lysosomal membrane to release 
the inner-membrane structures called autophagic bodies, into 
the vacuolar or lysosomal lumen for digestion (2). Autophagy 
serves an important role in the proliferation of colorectal 
cancer cells (3), and a number of studies have suggested that 
autophagy prevents metabolites from damaging cells and 
genomes (4,5). Conversely, other studies have suggested that 
autophagy contributes to the supply of nutrients and reused 
metabolites to tumor cells, therefore promoting their survival 
and proliferation (6,7). Although autophagy has been demon-
strated to affect the proliferation of tumor cells, the regulatory 
mechanism underlying autophagy in colon cancer cells has not 
been fully investigated.

Sphingosine kinase-1 (SphK1), is an important enzyme 
that maintains the intracellular sphingolipid balance and has 
a role in the development of multiple malignancies, plays an 
important role in resistance to therapies, tumor growth, tumor 
neovascularization and metastatic spread (8,9). Recently, a 
study reported that SphK1 regulates LC3 expression and 
autophagy in neuroblastoma cells (10). A previous study 
reported that SphK1 protected the breast cancer cell line 
MCF‑7, induced autophagy and increased cell death from 
mortality through nutrient starvation (11). Despite the involve-
ment of SphK1 in autophagy, its specific role and associated 
regulatory mechanism in colon cancer cells remain unclear.

A number of studies have suggested that increased 
extracellular signal-regulated kinase (ERK) phosphoryla-
tion levels induce autophagy in cells (12,13), and that SphK1 
promotes the proliferation of colon cancer cells through 
activation of the ERK/phosphorylated (p-)ERK cascade (14). 
In the present study, the hypothesis that the activation of the 
SphK1/ERK/p-ERK pathway promotes autophagy in HT-29 
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cells was examined. In order to investigate this, the protein 
expression levels of SphK1, ERK1/2 and p-ERK1/2, and those 
of the autophagy-associated markers LC3A, ATG5, and ULK1, 
were analyzed following the upregulation of SphK1 in HT-29 
cells. Additionally, the protein localization and expression 
patterns of intracellular LC3A, a key marker of autophagy, 
were assessed.

Materials and methods

Cell lines and culture. The human colorectal cancer cell line 
HT-29, Caco-2, RKO and HCT116 cells were purchased from 
the American Type Culture Collection (Manassas, VA, USA). 
Cells were cultured in Dulbecco's modified Eagle's medium 
(Gibco; Thermo Fisher Scientific, Inc., Waltham, MA, USA) 
supplemented with 10% fetal bovine serum (FBS; Excell Bio, 
Inc., Shanghai, China) at 37˚C with 5% CO2.

Cell transfection. The Lentiviral vector PLenti‑SPHK1‑ 
IRES‑EGFP and the blank vector (NC; R&S Biotechnology 
Co., Ltd., Shanghai, China) were used for infection of cancer 
cells, the cells inoculated with lentivirus at a multiplicity of 
infection (MOI) of 20 for 48 h, and the percentage of infected 
cells was approximately 90% at this MOI. Blasticidins (2 µg/ml) 
(Merck KGaA, Darmstadt, Germany) was added for 2 weeks. 
The SphK1-overexpressing HT-29 cells [SphK1(+)-HT-29] and 
the corresponding negative control HT-29 cells (NC-HT-29) 
were detected by fluorescence‑activated cell sorting. The stabi-
lized transfected SphK1(+)-HT-29 and NC-HT-29 cells were 
stored in liquid nitrogen (Jinfeng liquid Nitrogen Container 
Co., Ltd., Chengdu, China) and were used within 3 months 
between transfection and subsequent experimentation. Cells 
were cultured in Dulbecco's modified Eagle's medium (Gibco; 
Thermo Fisher Scientific, Inc., Waltham, MA, USA) supple-
mented with 10% FBS at 37˚C with 5% CO2.

Inverted fluorescence microscopy analysis. SphK1(+)-HT-29 
and NC-HT-29 cells were seeded onto a 6-well plate and 
cells covered ~95% of each well. The cells were observed 
under an inverted fluorescence microscope (TS100‑F; Nikon 
Corporation, Tokyo, Japan) at x100 magnification. The 
NIS-Elements software (version 4.0; Nikon Corporation, 
Tokyo, Japan) was used for cell imaging, according to the 
manufacturer's protocol. The transfection efficiency of cells 
was calculated as follows: The number of cells in 3 randomly 
selected fields that expressed green fluorescent protein 
(GFP)/the total number of cells.

Reverse transcription‑quantitative polymerase chain reaction 
(RT‑qPCR) analysis. RNA isolation was performed using the 
Total RNA Extraction Kit (Tiangen Biotech Co., Ltd., Beijing, 
China), according to the manufacturer's protocol. cDNA 
synthesis was performed using the Reverse Transcription Kit 
(Takara Bio, Inc., Otsu, Japan). A fluorescence‑based qPCR 
method was performed using 2 µl cDNA, 10 µl SYBR Green 
(Takara Bio, Inc.), 0.6 µl PCR forward primer (10 µM), 0.6 µl 
PCR reverse primer (10 µM) and 6.8 µl dH2O, in a 20 µl PCR 
reaction volume. The RT‑qPCR reaction was run on a StepOne 
Real‑Time PCR system (Applied Biosystems; Thermo Fisher 
Scientific, Inc.). The cycling parameters were as follows: 

Denaturing at 95˚C for 30 sec, 40 cycles at denaturing at 95˚C 
for 5 sec, primer annealing at 60˚C for 34 sec, and extension 
temperature at 95˚C for 15 sec; final extension at 60˚C for 
1 min and final denaturing at 95˚C for 15 sec. Gene expres-
sion levels were determined via the 2‑ΔΔCq method (15), using 
GAPDH as a reference gene, with the GAPDH gene expression 
level in NC‑HT‑29 cells set to 1. The primers of GAPDH and 
SphK1 were obtained from Takara Bio, Inc., (Otsu Japan). 
GAPDH, forward: 5'‑GCA CCG CAA GGC TGA GAA C‑3', 
and reverse: 5'-TGG TGA AGA CGC CAG TGG A-3'; SphK1, 
forward: 5'-GGC TTC ATT GCT GAT GTG GA-3', and reverse: 
5'-AGG AAG GTG CCC AGA GTG AA-3'.

Western blotting analysis. Total proteins were extracted 
using radioimmunoprecipitation buffer (Beyotime Institute of 
Biotechnology, Haimen, China). Protein concentrations were 
measured by bicinchoninic acid assay (Solarbio Biotech Co., 
Ltd., Beijing, China) according to the manufacturer's protocol. 
A total of 30 µg of protein from each sample was separated 
via 12% SDS‑PAGE (Beyotime Institute of Biotechnology, 
Haimen, China) for 1 h at 100 V, and then transferred onto 
nitrocellulose membranes. Samples were blocked with 5% 
nonfat-milk in Tris-buffered saline with Tween-20 (Solarbio 
Biotech Co., Ltd., Beijing, China) for 1 h at room tempera-
ture. The membranes were incubated overnight at 4˚C with 
antibodies diluted in WB Antibody Diluent (Beyotime 
Institute of Biotechnology, Haimen, China). Subsequently, 
the membranes and secondary antibodies were incubated for 
1 h at room temperature. Bands were quantified by Odyssey 
infrared imaging (LICOR Biosciences, Lincoln, NE, USA) 
and GAPDH acted as an internal reference. Rabbit polyclonal 
anti-SphK1 (dilution 1:1,000; catalog no. A0139), mouse mono-
clonal anti-ERK1/2 (dilution 1:1,500; catalog no. A10613), 
rabbit polyclonal anti-p-ERK1/2 (dilution 1:1,500; catalog 
no. AP0472), mouse monoclonal anti‑ATG5 (dilution 1:1,000; 
catalog no. A2468) and rabbit polyclonal anti-ULK1 (dilution 
1:2,000; catalog no. A8529) were purchased from ABclonal, 
Inc. (Woburn, MA, USA). Rabbit monoclonal anti-LC3A 
(dilution 1:1,000, 4599) was purchased from Cell Signaling 
Technology, Inc. (Danvers, MA, USA). Rabbit polyclonal 
anti‑GAPDH (dilution 1:2,000; catalog no. 10494‑1‑AP) 
was purchased from ProteinTech Group (Rosemont, IL, 
USA). The secondary antibodies horseradish-peroxidase 
(HRP)‑conjugated Goat Anti‑Rabbit IgG (dilution 1:10,000; 
catalog no. AS014) and HRP‑conjugated Goat Anti‑Mouse 
IgG (dilution 1:10,000; catalog no. AS003) were purchased 
from ABclonal Inc.

Immunofluorescence. The Cell slide (Solarbio Biotech Co., 
Ltd., Beijing, China) was placed in 24-well plates and then 
cells were seeded at a density of 1x105. Routinely cultured 
overnight at 37˚C with 5% CO2, the cells were washed with 
PBS, fixed in a 4% paraformaldehyde solution (Solarbio 
Biotech Co., Ltd., Beijing, China ) for 20 min, permeabilized 
with 0.5% Triton X‑100 for 10 min, sealed with 10% FBS 
diluted with 10% PBS (Excell Bio, Inc., Shanghai, China) 
for 20 min, and then incubated overnight at 4˚C with rabbit 
polyclonal anti-LC3A (dilution 1:500; catalog no. 4599, CST, 
USA). Subsequently, the cells were incubated with Anti‑Rabbit 
IgG Fab2 Alexa Flour®594 (dilution 1:500; catalog no. 8889S; 
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Cell Signaling Technology, Inc.) for 1 h at 37˚C. Cells were 
stained with DAPI (Beyotime Institute of Biotechnology) for 
1 min, and then covered with anti‑fluorescent quenching fluid 
(Beyotime Institute of Biotechnology). An Olympus BX53 
(Olympus Corporation, Tokyo, Japan) polarizing microscope 
was used to observe the cells under x600 magnification and 
obtain images for further analysis.

Statistical analysis. Each immunofluorescence assay was 
performed a minimum of three times. Statistical analysis was 
based on the unpaired Student's t test or the one-way analysis 
of variance test using SPSS v.16.0 software (SPSS, Inc., 
Chicago, IL, USA). Data are presented as the mean ± standard 
deviation. P<0.05 was considered to indicate a statistically 
significant difference.

Results

SphK1 expression is upregulated in transfected HT‑29 cells. 
In a previous study, the relative mRNA expression of SphK1, 
when compared with that of the reference gene GAPDH, 
was 0.96±0.02 in Caco2 (colon adenocarcinoma) cells, 
0.61±0.07 in HT-29 cells, 0.92±0.05 in RKO (colon carci-
noma) cells and 0.97±0.02 in HCT116 cells (16). Therefore, 
the lowest expression of SphK1 occurred in the HT-29 cell 
line. To avoid cell autophagy caused by chemical stress, a 
pLenti‑SPHK1‑IRES‑EGFP vector and a blank vector (NC) 
were used to transform HT-29 cells in order to obtain an 
increase in SphK1 expression. The SphK1(+)-HT-29 and 
NC‑HT‑29 cells expressed GFP (Fig. 1A) with a transfec-
tion efficiency of 92% in NC-HT-29 cells and 95% in 
SphK1(+)‑HT‑29 cells. RT‑qPCR results, using GAPDH as a 
reference gene and the SphK1 expression level of NC-HT-29 
cells set to 1, demonstrated that the relative expression of 
SphK1 in SphK1(+)‑HT‑29 cells was significantly increased 
(Fig. 1B). These results also indicated that SphK1(+)‑HT‑29 
and NC‑HT‑29 cells were suitable for the subsequent 
experiments.

The SphK1/ERK/p‑ERK pathway is activated in HT‑29 cells. 
The protein expression levels of SphK1, total ERK1/2 and 
p-ERK, as detected by western blotting, are illustrated in 
Fig. 2. SphK1 and p‑ERK protein expression was increased 
in SphK1(+)-HT-29 cells, compared with in NC-HT-29 cells, 
while there were no significant differences in total ERK1/2 
expression. These results suggest that SphK1 activates ERK 
by phosphorylation.

Autophagy in HT‑29 cells is induced by activation of the 
SphK1/ERK/p‑ERK pathway. LC3A protein is a recognized 
marker for autophagy (17-19), which, upon staining, presents 
a spotted aggregation pattern under fluorescence micros-
copy (20,21). As shown in Fig. 3, the protein expression of 
LC3A appeared as a spotted aggregation in the cytoplasm of 
SphK1(+)-HT-29 cells, but not in NC-HT-29 cells, suggesting 
that SphK1 promotes autophagy in HT-29 cells. ATG5 and 
ULK1 proteins are other important autophagy-associated 
markers (21-23). In the present study, the protein expression 
of LC3A, ATG5 and ULK1 was increased in SphK1(+)-HT-29 
cells when compared with in NC‑HT‑29 cells (Fig. 4). Previous 
studies have reported that increased expression of p-ERK 
decreases the levels of mTOR/p-mTOR, which then results 
in increased expression of ULK1 (24,25). When analyzed 
together, these results suggested that autophagy in HT-29 cells 
is induced via activation of the SphK1/ERK/p-ERK pathway.

Discussion

Increasing evidence suggests that the sphingosine kinase-1 
(SphK1) serves an important role in the development of cancer, 
including cell proliferation, apoptosis, metastasis, angiogen-
esis and chemotherapeutic resistance (9). It has also been 
reported that SphK1 promotes the proliferation and metastasis 
of colon cancer (14). SphK1 is involved in the regulation of 
sphingolipid metabolism via the production of sphingosine-1 
(S1P) (26,27). SphK1/S1P regulates cell proliferation through 
multiple pathways including the ERK, P38 mitogen‑activated 

Figure 1. (A) SphK1(+)‑HT‑29 and NC‑HT‑29 cells were observed by fluorescence microscopy (magnification, x100). (B) A histogram illustrating the relative 
expression of SphK1 mRNA in SphK1(+)-HT-29 and NC-HT-29 cells. Expresison in NC-HT-29 cells was set to 1. (*P<0.05 vs. NC‑HT‑29). SphK1, sphingosine 
kinase 1; NC, negative control.
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protein kinase (MAPK) and Akt pathways (28). In the present 
study, SphK1 expression upregulated ERK phosphorylation, 
as previously hypothesized. This is consistent with the results 
of a previous study, which reported that the activation ERK is 
elevated by the upregulation of SphK1 and attenuated by the 
suppression of SphK1, while the blocking of the ERK pathway 
suppressed the effects that are mediated by the overexpression 
of SphK1 (14). These results suggest that SphK1 modulates the 
ERK/p-ERK pathway.

ERK is an important component of the MAPK system, 
which is one of the most important signaling cascades, 

and has been identified as frequently dysregulated in 
tumors (29). Additionally, an increase in the expression of 
ERK and p-ERK led to a decrease in the levels of mTOR 
and p-mTOR (24). mTOR is an inhibitor of ULK1 (25), 
which induces the initiation of autophagy (23). Similarly, in 
the present study, increased levels of p-ERK were observed 
to promote an increase in ULK1 protein expression. 
Furthermore, it has been reported that ERK and its upstream 
kinase MEK are localized in the extra-luminal face of the 
autophagosomes, and that ERK interacts with autophagy 
proteins via its substrate-binding domains (20). Overall, 

Figure 2. (A) Proteins bands, as obtained by western blotting. (B) Histogram illustrates the protein expression levels of SphK1, ERK1/2 and p‑ERK1/2 in 
SphK1(+)‑HT‑29 and NC‑HT‑29 cells. GAPDH was used as the reference gene. Data are presented as the mean ± standard deviation. (*P<0.05 vs. NC‑HT‑29). 
SphK1, sphingosine kinase 1; NC, negative control; p-, phosphorylated; ERK, extracellular signal-regulated kinase. 

Figure 3. The protein expression of LC3A, as detected by immunofluorescence in SphK1(+)‑HT‑29 and NC‑HT‑29 cells (magnification, x600). SphK1, sphin-
gosine kinase 1; NC, negative control; GFP, green fluorescent protein. The white arrows indicate the LC3 protein formed a spotted aggregation pattern.
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these results suggest that increasing ERK phosphorylation 
induces cell autophagy (12,13).

Autophagy is a degradation system that supplies cyto-
plasmic components into the lysosome or vacuole, where 
the degradation of lipid droplets is known to occur (30). 
Autophagy eliminates incorrectly translated proteins, meta-
bolic waste and toxic oxygen free-radicals in cancer cells 
in order to achieve self-renewal and to promote the growth 
and development of cells (31). Cell autophagy begins with 
the formation of a bilayer structure termed an autophago-
some. Subsequently, two ubiquitination systems are activated, 
including the ATG8/LC3 phosphatidylethanolamine conju-
gate system and the ATG12-ATG5 conjugate system (22). 
LC3 and ATG5 proteins are, consequently, regarded as the 
principal autophagy‑associated proteins. Ubiquitination 
systems are widely known to be involved in various physi-
ological processes, including cell proliferation, apoptosis and 
autophagy (32). In the present study, the LC3 protein formed 
a spotted aggregation pattern in SphK1(+)-HT-29 cells under 
fluorescent microscopy, which suggested autophagy; this was 
in accordance with the results of previous studies (20,21). 
Furthermore, the results of the present study demonstrated 
that the protein expression of LC3A, ATG5 and ULK1 were 
increased in the SphK1-upregulated HT-29 cells. These results 
suggested that SphK1 regulates the expression of LC3 and 
promotes the autophagy process in colon cancer cells, which 
is consistent with SphK1 induced autophagy in neuroblastoma 
and breast cancer cells (13,14).

In summary, the present study demonstrated that activa-
tion of the SphK1/ERK/p-ERK pathway promotes autophagy 
in colon cancer HT-29 cells. An increase in SphK1 lead to an 
upregulation of ERK/p-ERK by increasing ERK phosphoryla-
tion, which in turn resulted in an increase in the expression level 
of the autophagy-associated markers LC3, ATG5 and ULK1 in 
SphK1(+)‑HT‑29 cells. These findings provide a rationale for 
the development of SphK1 inhibitors, or other cell autophagy 
inhibitors, as part of a therapeutic strategy for patients with 
colorectal cancer or other epithelial tumor types. Furthermore, 
in order to further investigate the role of autophagy in colorectal 

cancer cells, gene regulation of ERK expression or change cells 
culture conditions is need in future studies.
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